Metodología para detectar cambios en el uso de la tierra utilizando los principios de la clasificación orientada a objetos, estudio de caso piedemonte de Villavicencio, Meta
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2011Metadata
Show full item recordSummary
En la investigación se presenta una metodología que emplea los principios de la ―Clasificación Orientada a Objetos‖, con el propósito de determinar, cuantificar y visualizar, las coberturas y usos de la tierra para mapear el cambio ocurrido en un lapso de 17 años, en el piedemonte depositacional del municipio de Villavicencio en el departamento del Meta. La metodología se aplicó para las imágenes del sensor Landsat, para los años 1986 y 2003. El programa a utilizar fue ENVI versión 4.6, con el módulo de ENVI ZOOM. Con la clasificación utilizada fue posible delimitar las áreas de tres coberturas: bosques (9.304, 5 ha – 1986 y 2.083,8 ha – 2003), bosques de galería (3.581,5 ha – 1986 y 2.597 ha – 2003) y palma africana (110, 39 -1986 y 218,88 – 2003), con el cambio de uso (bosques: -77.6% y bosques de galería en -27,5 %), a partir de una imagen satelital con resolución espacial media. Los resultados de la validación de la clasificación en la imagen del año 2003, indicaron que fueron aceptables (Coeficiente Kappa = 0.365). De acuerdo a los resultados de la investigación, la clasificación orientada a objetos, puede ser una alternativa eficiente y precisa a implementar para clasificar imágenes de sensores, cuando se requiere delimitar una cobertura específica. / Abstract. The research presents a methodology that employs the principles of "Object-Oriented Classification," with the purpose of identify, quantify and visualize the covers and land uses for mapping the change in a period of 17 years, in the piedmont with depositacional environments of the municipality of Villavicencio in the department of Meta. The methodology was applied to Landsat images from 1986 and 2003. The software used was ENVI version 4.6, with the module ENVI ZOOM. With the classification was possible to delimit three cover: forests (9304, 5 ha - 1986 and 2083.8 ha - 2003), gallery forests (3581.5 ha - 1986 and 2597 ha - 2003) and palm (110,4 - 1.986 and 218.9 ha – 2.003) with the change of use (forests: -77.6% and gallery forests in -27.5%), from a satellite image with medium spatial resolution. The results of the validation of image classification from 2003, indicated that was acceptable (Kappa coefficient = 0.365). According to the results of research, object-oriented classification can be an efficient and accurate implementation of sensors to classify images, when required to delineate a specific coverage.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit