Effect of avocado flour on functional properties in starch films from Plantain (Mussa var. AAB Simonds)
dc.contributor.advisor | Perilla Perilla, Jairo Ernesto | spa |
dc.contributor.advisor | Villa Zabala, Cristian Camilo | spa |
dc.contributor.author | Ávila Martín, Liliana | spa |
dc.contributor.orcid | Avila-Martin, Liliana(0000-0002-4844-8969) | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.date.accessioned | 2025-04-09T00:21:03Z | |
dc.date.available | 2025-04-09T00:21:03Z | |
dc.date.issued | 2025-03-20 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | This study investigates the physicochemical interactions of Hass avocado flour and Dominico Hartón plantain starch to develop biodegradable films with enhanced mechanical strength and reduced water sensitivity for the food packaging industry. The research evaluates the impact of the chemical composition (starch, lipids, and fibers) of avocado seed flour on the mechanical and hydrophobic properties of films. Specific objectives include identifying the film-forming properties of Dominico Hartón plantain starch, analyzing the properties of native starches that favor characteristics for food packaging—such as rigidity or elasticity—using Shannon-TOPSIS for selection, determining the effects of avocado seed flour components on film stability, and assessing the influence of drying temperature on film crystallinity and permeability. A comprehensive experimental methodology was employed, utilizing comparative analysis and response surface methodology (RSM) to optimize the starch-flour-plasticizer formulations. The study also explored the effects of infrared (IR) drying on film properties, comparing films dried under varying conditions. Results indicated that while the differences between Plantain starches are minimal, more pronounced variations were observed when comparing them to starches from other botanical sources. Avocado seed starch demonstrated notable advantages, including excellent hydrophobicity and selective gas sorption, although it faced challenges in forming independent films. The incorporation of avocado seed derivatives enhanced the mechanical and moisture-resistant properties of the films, resulting in a synergistic effect with plantain starch. Overall, this research highlights the potential of utilizing avocado by-products for sustainable bioplastic production, offering valuable insights into optimizing film formulations for effective packaging solutions, particularly for perishable products like strawberries. | eng |
dc.description.abstract | Este estudio investiga las interacciones fisicoquímicas de la harina de aguacate Hass y el almidón de plátano Dominico Hartón para desarrollar películas biodegradables con una resistencia mecánica mejorada y una menor sensibilidad al agua para la industria del empaque de alimentos. La investigación evalúa el impacto de la composición química (almidones, lípidos y fibras) de la harina de semilla de aguacate en las propiedades mecánicas e hidrofóbicas de las películas. Los objetivos específicos incluyen identificar las propiedades formadoras de películas del almidón de plátano Dominico Hartón, analizar las propiedades de almidones nativos que favorecen características para el empaque de alimentos—como rigidez o elasticidad—usando TOPSIS de Shannon para la selección, determinar los efectos de los componentes de la harina de semilla de aguacate en la estabilidad de las películas y evaluar la influencia de la temperatura de secado en la cristalinidad y permeabilidad de las películas. Se empleó una metodología experimental integral que utilizó análisis comparativo y metodología de superficie de respuesta (RSM) para optimizar las formulaciones de almidón-harina-plastificante. El estudio también exploró los efectos del secado por radiación infrarroja (IR) en las propiedades de las películas, comparando aquellas secadas en diferentes condiciones. Los resultados indicaron que, si bien las diferencias entre los almidones de plátano son mínimas, se observaron variaciones más pronunciadas al compararlos con almidones de otras fuentes botánicas. El almidón de semilla de aguacate demostró ventajas notables, incluyendo excelente hidrofobicidad y sorción selectiva de gases, aunque enfrentó desafíos en la formación de películas independientes. La incorporación de derivados de semilla de aguacate mejoró las propiedades mecánicas y de resistencia a la humedad de las películas, resultando en un efecto sinérgico con el almidón de plátano. En general, esta investigación resalta el potencial de utilizar subproductos de aguacate para la producción sostenible de bioplásticos, ofreciendo valiosos conocimientos sobre la optimización de formulaciones de películas para soluciones efectivas de empaque, particularmente para productos perecederos como las fresas. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Biopolímeros | spa |
dc.description.sponsorship | Minciencias: Beca Bicentenario corte I Red CYTED envabio 100 | spa |
dc.format.extent | xiv, 239 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87900 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Química y Ambiental | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | A. A. B. A. ; Mohammed et al., “Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films,” Polymers 2023, Vol. 15, Page 63, vol. 15, no. 1, p. 63, Dec. 2022, doi: 10.3390/POLYM15010063. | spa |
dc.relation.references | A. Altskär et al., “Some effects of processing on the molecular structure and morphology of thermoplastic starch,” Carbohydr Polym, vol. 71, no. 4, pp. 591–597, Mar. 2008, doi: 10.1016/J.CARBPOL.2007.07.003. | spa |
dc.relation.references | A. Aprianita, T. Vasiljevic, A. Bannikova, and S. Kasapis, “Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots,” J Food Sci Technol, vol. 51, no. 12, pp. 3669–3679, Dec. 2014, doi: 10.1007/S13197-012-0915-5. | spa |
dc.relation.references | A. B. Dias, C. M. O. Müller, F. D. S. Larotonda, and J. B. Laurindo, “Mechanical and barrier properties of composite films based on rice flour and cellulose fibers,” LWT - Food Science and Technology, vol. 44, no. 2, pp. 535–542, Mar. 2011, doi: 10.1016/j.lwt.2010.07.006. | spa |
dc.relation.references | A. Barrett and A. Okikiola, “Top Bioplastics Producers,” Bioplastics News. Accessed: May 05, 2020. [Online]. Available: https://bioplasticsnews.com/top-bioplastics-producers/ | spa |
dc.relation.references | A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int J Biol Macromol, vol. 23, no. 2, pp. 85–112, Aug. 1998, doi: 10.1016/S0141-8130(98)00040-3. | spa |
dc.relation.references | A. Chávez-Salazar, C. I. Álvarez-Barreto, J. D. Hoyos-Leyva, L. A. Bello-Pérez, and F. J. Castellanos-Galeano, “Drying processes of OSA-modified plantain starch trigger changes in its functional properties and digestibility,” LWT, vol. 154, Jan. 2022, doi: 10.1016/j.lwt.2021.112846. | spa |
dc.relation.references | A. Chávez-Salazar, L. A. Bello-Pérez, E. Agama-Acevedo, F. J. Castellanos-Galeano, C. I. Álvarez-Barreto, and G. Pacheco-Vargas, “Isolation and partial characterization of starch from banana cultivars grown in Colombia,” Int J Biol Macromol, vol. 98, pp. 240–246, May 2017, doi: 10.1016/j.ijbiomac.2017.01.024. | spa |
dc.relation.references | A. Di Bartolo, G. Infurna, and N. T. Dintcheva, “A review of bioplastics and their adoption in the circular economy,” Apr. 02, 2021, MDPI AG. doi: 10.3390/polym13081229. | spa |
dc.relation.references | A. E. Restrepo, J. D. Rojas, O. R. García, L. T. Sánchez, M. I. Pinzón, and C. C. Villa, “Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass ( Cymbopogon citratus) and rosemary ( Rosmarinus officinalis) essential oils,” Food Sci Technol Int, vol. 24, no. 8, pp. 705–712, Dec. 2018, doi: 10.1177/1082013218792133. | spa |
dc.relation.references | A. H. D. Abdullah, S. Chalimah, I. Primadona, and M. H. G. Hanantyo, “Physical and chemical properties of corn, cassava, and potato starchs,” IOP Conf Ser Earth Environ Sci, vol. 160, no. 1, p. 012003, Jun. 2018, doi: 10.1088/1755-1315/160/1/012003. | spa |
dc.relation.references | A. I. Petaloti, S. Makri, and D. S. Achilias, “Bioactive Edible Gel Films Based on Wheat Flour and Glucose for Food Packaging Applications,” Gels 2024, Vol. 10, Page 105, vol. 10, no. 2, p. 105, Jan. 2024, doi: 10.3390/GELS10020105. | spa |
dc.relation.references | A. I. Quilez-Molina, U. Chandra Paul, D. Merino, and A. Athanassiou, “Composites of Thermoplastic Starch and Lignin-Rich Agricultural Waste for the Packaging of Fatty Foods,” ACS Sustain Chem Eng, vol. 10, no. 47, pp. 15402–15413, Nov. 2022, doi: 10.1021/ACSSUSCHEMENG.2C04326/ASSET/IMAGES/LARGE/SC2C04326_0008.JPEG. | spa |
dc.relation.references | A. Jiménez, M. J. Fabra, P. Talens, and A. Chiralt, “Edible and Biodegradable Starch Films: A Review,” Food and Bioprocess Technology 2012 5:6, vol. 5, no. 6, pp. 2058–2076, Apr. 2012, doi: 10.1007/S11947-012-0835-4. | spa |
dc.relation.references | A. K. Dey and A. Dey, “Selection of Optimal Processing Condition during Removal of Methylene Blue Dye Using Treated Betel Nut Fibre Implementing Desirability Based RSM Approach,” Response Surface Methodology in Engineering Science, Nov. 2021, doi: 10.5772/INTECHOPEN.98428. | spa |
dc.relation.references | A. Krishnamurthy and P. Amritkumar, “Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources,” SN Appl Sci, vol. 1, no. 11, pp. 1–13, Nov. 2019, doi: 10.1007/S42452-019-1460-X/FIGURES/7. | spa |
dc.relation.references | A. L. Andrady et al., “Effects of UV radiation on natural and synthetic materials,” Photochemical & Photobiological Sciences, vol. 22, no. 5, p. 1, May 2023, doi: 10.1007/S43630-023-00377-6. | spa |
dc.relation.references | A. L. V. Cubas, R. T. Bianchet, I. M. A. S. dos Reis, and I. C. Gouveia, “Plastics and Microplastic in the Cosmetic Industry: Aggregating Sustainable Actions Aimed at Alignment and Interaction with UN Sustainable Development Goals,” Polymers 2022, Vol. 14, Page 4576, vol. 14, no. 21, p. 4576, Oct. 2022, doi: 10.3390/POLYM14214576. | spa |
dc.relation.references | A. Samir, F. H. Ashour, A. A. A. Hakim, and M. Bassyouni, “Recent advances in biodegradable polymers for sustainable applications,” Npj Mater Degrad, vol. 6, no. 1, pp. 1–28, Aug. 2022, doi: 10.1038/s41529-022-00277-7. | spa |
dc.relation.references | A. Sultan et al., “Comparative analysis of physical and mechanical properties of starch based bioplastic derived from the pulp and peel of potatoes,” Journal of the Indian Chemical Society, vol. 101, no. 10, p. 101301, Oct. 2024, doi: 10.1016/J.JICS.2024.101301. | spa |
dc.relation.references | A. V. García, O. B. Álvarez-Pérez, R. Rojas, C. N. Aguilar, and M. C. Garrigós, “Impact of Olive Extract Addition on Corn Starch-Based Active Edible Films Properties for Food Packaging Applications,” Foods 2020, Vol. 9, Page 1339, vol. 9, no. 9, p. 1339, Sep. 2020, doi: 10.3390/FOODS9091339. | spa |
dc.relation.references | B. Biduski et al., “Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films,” Food Chem, vol. 214, pp. 53–60, Jan. 2017, doi: 10.1016/J.FOODCHEM.2016.07.039. | spa |
dc.relation.references | B. Khan, M. Bilal Khan Niazi, G. Samin, and Z. Jahan, “Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review,” J Food Process Eng, vol. 40, no. 3, 2017, doi: 10.1111/jfpe.12447. | spa |
dc.relation.references | B. Niu, P. Shao, H. Chen, and P. Sun, “Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation,” Carbohydr Polym, vol. 208, pp. 276–284, Mar. 2019, doi: 10.1016/J.CARBPOL.2018.12.070. | spa |
dc.relation.references | B. Ospina and H. Ceballos, “La Yuca en el Tercer Milenio: Sistemas Modernos de Producción Procesamiento, Utilización y Comercialización,” CIAT. Accessed: May 05, 2020. [Online]. Available: http://www.clayuca.org/sitio/index.php/component/k2/item/27-la-yuca-en-el-tercer-milenio-sistemas-modernos-de-producci%C3%B3n-procesamiento-utilizaci%C3%B3n-y-comercializaci%C3%B3n | spa |
dc.relation.references | B. Peron-Schlosser, D. Carpiné, R. M. Matos Jorge, and M. Rigon Spier, “Optimization of wheat flour by product films: A technological and sustainable approach for bio-based packaging material,” J Food Sci, vol. 86, no. 10, pp. 4522–4538, Oct. 2021, doi: 10.1111/1750-3841.15908. | spa |
dc.relation.references | B. S. Saharan and D. Sharma, “Bioplastics-For Sustainable Development : A Review,” International Journal of Microbial Resource Technology, vol. 1, no. 1, pp. 11–23, 2012. | spa |
dc.relation.references | C. Dalle Mulle Santos, C. H. Pagno, T. M. Haas Costa, D. Jung Luvizetto Faccin, S. Hickmann Flôres, and N. S. Medeiros Cardozo, “Biobased polymer films from avocado oil extraction residue: Production and characterization,” J Appl Polym Sci, vol. 133, no. 37, 2016, doi: 10.1002/app.43957. | spa |
dc.relation.references | C. F. Espinal G., H. J. Martínez Covaleda, and Y. Peña Marín, “La cadena de la plátano en Colombia :una mirada global de su estructura y dinámica 1991 - 2005,” 2005. Accessed: May 05, 2020. [Online]. Available: https://repository.agrosavia.co/bitstream/handle/20.500.12324/18871/43921_55682.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | C. Hogseth Olsen, M. Augestad, I. Helland, B. M. E Moldestad, and M. S. Eikeland, “Diffusion of CO2 through polymer membranes,” 2020, doi: 10.2495/EID200201. | spa |
dc.relation.references | C. I. La Fuente Arias, C. González-Martínez, and A. Chiralt, “Active Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Films Containing Phenolic Compounds with Different Molecular Structures,” Polymers 2024, Vol. 16, Page 1574, vol. 16, no. 11, p. 1574, Jun. 2024, doi: 10.3390/POLYM16111574. | spa |
dc.relation.references | C. J. A. M. Keetels, G. T. Oostergetel, and T. Van Vliet, “Recrystallization of amylopectin in concentrated starch gels,” Carbohydr Polym, vol. 30, no. 1, pp. 61–64, May 1996, doi: 10.1016/S0144-8617(96)00057-4. | spa |
dc.relation.references | C. J. A. M. Keetels, T. Van Vliet, and P. Walstra, “Gelation and retrogradation of concentrated starch systems: 2. Retrogradation,” Food Hydrocoll, vol. 10, no. 3, pp. 355–362, Jul. 1996, doi: 10.1016/S0268-005X(96)80012-9. | spa |
dc.relation.references | C. L. Luchese, P. Benelli, J. C. Spada, and I. C. Tessaro, “Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films,” J Appl Polym Sci, vol. 135, no. 33, p. 46564, Sep. 2018, doi: 10.1002/APP.46564. | spa |
dc.relation.references | C. L. Reichert et al., “Bio-based packaging: Materials, modifications, industrial applications and sustainability,” Jul. 01, 2020, MDPI AG. doi: 10.3390/polym12071558. | spa |
dc.relation.references | C. Menzel, “Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement,” Carbohydr Polym, vol. 250, p. 116828, Dec. 2020, doi: 10.1016/J.CARBPOL.2020.116828. | spa |
dc.relation.references | C. R. Bernal, “Chapter 9: Fracture and Failure of Starch-based Composites,” in Starch-based Blends, Composites and Nanocomposites, Royal Society of Chemistry, 2016, ch. 9, pp. 326–351. doi: 10.1039/9781782622796-00326. | spa |
dc.relation.references | C. Shanbhag, R. Shenoy, P. Shetty, M. Srinivasulu, and R. Nayak, “Formulation and characterization of starch-based novel biodegradable edible films for food packaging,” J Food Sci Technol, vol. 60, no. 11, pp. 2858–2867, Nov. 2023, doi: 10.1007/S13197-023-05803-2/TABLES/4. | spa |
dc.relation.references | CONPES, “CONPES-3934-Política de Crecimiento Verde,” Departamento Nacional de Planeación, p. 114, 2018, [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3934.pdf | spa |
dc.relation.references | D. Dabas, R. Shegog, G. Ziegler, and J. Lambert, “Avocado (Persea americana) seed as a source of bioactive phytochemicals,” Curr Pharm Des, vol. 19, no. 34, pp. 6133–6140, Sep. 2013, doi: 10.2174/1381612811319340007. | spa |
dc.relation.references | D. Dehnad, S. M. Jafari, and M. Afrasiabi, “Influence of drying on functional properties of food biopolymers: From traditional to novel dehydration techniques,” Trends Food Sci Technol, vol. 57, pp. 116–131, Nov. 2016, doi: 10.1016/J.TIFS.2016.09.002. | spa |
dc.relation.references | D. Domene-López, J. C. García-Quesada, I. Martin-Gullon, and M. G. Montalbán, “Influence of Starch Composition and Molecular Weight on Physicochemical Properties of Biodegradable Films,” Polymers 2019, Vol. 11, Page 1084, vol. 11, no. 7, p. 1084, Jun. 2019, doi: 10.3390/POLYM11071084. | spa |
dc.relation.references | D. F. Nury, M. Z. Luthfi, and M. P. Ramadhan, “Optimization of the drying process of edible film-based cassava starch using response surface methodology,” BIO Web Conf, vol. 77, p. 01005, Nov. 2023, doi: 10.1051/BIOCONF/20237701005. | spa |
dc.relation.references | D. Lourdin, G. Della Valle, and P. Colonna, “Influence of amylose content on starch films and foams,” Carbohydr Polym, vol. 27, no. 4, pp. 261–270, Jan. 1995, doi: 10.1016/0144-8617(95)00071-2. | spa |
dc.relation.references | D. M. Iván, “CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL (CONPES 4023) ,” Bogotá, 2021. Accessed: Jan. 25, 2022. [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3999.pdf. | spa |
dc.relation.references | D. Merino, L. Bertolacci, U. C. Paul, R. Simonutti, and A. Athanassiou, “Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films,” ACS Appl Mater Interfaces, vol. 13, no. 32, pp. 38688–38699, Aug. 2021, doi: 10.1021/acsami.1c09433. | spa |
dc.relation.references | D. Nogueira, N. S Marasca, J. M. Latorres, and V. G. Martins, “Eco-friendly bean flour films for sustainable food packaging,” https://doi.org/10.1177/20412479231202093, vol. 14, no. 4, pp. 250–263, Sep. 2023, doi: 10.1177/20412479231202093. | spa |
dc.relation.references | D. P. ; Arbeláez et al., “Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications,” Molecules 2022, Vol. 27, Page 2264, vol. 27, no. 7, p. 2264, Mar. 2022, doi: 10.3390/MOLECULES27072264. | spa |
dc.relation.references | D. Qiao et al., “Hydration-induced crystalline transformation of starch polymer under ambient conditions,” Int J Biol Macromol, vol. 103, pp. 152–157, Oct. 2017, doi: 10.1016/J.IJBIOMAC.2017.05.008. | spa |
dc.relation.references | D. Tapia-Blácido, A. N. Mauri, F. C. Menegalli, P. J. A. Sobral, and M. C. Añón, “Contribution of the starch, protein, and lipid fractions to the physical, thermal, and structural properties of amaranth (Amaranthus caudatus) flour films,” J Food Sci, vol. 72, no. 5, Jun. 2007, doi: 10.1111/J.1750-3841.2007.00359.X. | spa |
dc.relation.references | DNP, “Manual de Clasificación Presupuestal del Gasto de Inversión,” p. 46, 2011. | spa |
dc.relation.references | E. A. Arik Kibar and F. Us, “Evaluation of Structural Properties of Cellulose Ether-Corn Starch Based Biodegradable Films,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 63, no. 7, pp. 342–351, Jan. 2014, doi: 10.1080/00914037.2013.845190. | spa |
dc.relation.references | E. Agama-Acevedo, M. C. Nuñez-Santiago, J. Alvarez-Ramirez, and L. A. Bello-Pérez, “Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars,” Carbohydr Polym, vol. 124, pp. 17–24, Jun. 2015, doi: 10.1016/j.carbpol.2015.02.003. | spa |
dc.relation.references | E. Argüello-García, J. Solorza-Feria, J. R. Rendón-Villalobos, F. Rodríguez-González, A. Jiménez-Pérez, and E. Flores-Huicochea, “Properties of Edible Films Based on Oxidized Starch and Zein,” Int J Polym Sci, vol. 2014, no. 1, p. 292404, Jan. 2014, doi: 10.1155/2014/292404. | spa |
dc.relation.references | E. B. M. Viana et al., “Development of starch-based bioplastics of green plantain banana (Musa paradisiaca L.) modified with heat-moisture treatment (HMT),” Food Packag Shelf Life, vol. 31, Mar. 2022, doi: 10.1016/j.fpsl.2021.100776. | spa |
dc.relation.references | E. Basiak, A. Lenart, and F. Debeaufort, “How glycerol and water contents affect the structural and functional properties of starch-based edible films,” Polymers (Basel), vol. 10, no. 4, 2018, doi: 10.3390/polym10040412. | spa |
dc.relation.references | E. Basiak, F. Debeaufort, and A. Lenart, “Effect of oil lamination between plasticized starch layers on film properties,” Food Chem, vol. 195, pp. 56–63, Mar. 2016, doi: 10.1016/J.FOODCHEM.2015.04.098. | spa |
dc.relation.references | E. F. Douglass, H. Avci, R. Boy, O. J. Rojas, and R. Kotek, “A Review of Cellulose and Cellulose Blends for Preparation of Bio-derived and Conventional Membranes, Nanostructured Thin Films, and Composites,” Polymer Reviews, vol. 58, no. 1, pp. 102–163, 2018, doi: 10.1080/15583724.2016.1269124. | spa |
dc.relation.references | E. Podgorbunskikh et al., “Disordering of Starch Films as a Factor Influencing the Release Rate of Biologically Active Substances,” Polymers (Basel), vol. 15, no. 10, p. 2303, May 2023, doi: 10.3390/POLYM15102303/S1. | spa |
dc.relation.references | E. Pérez-Pacheco, J. C. Canto-Pinto, V. M. Moo-Huchin, I. A. Estrada-Mota, R. J. Estrada-León, and L. Chel-Guerrero, “Thermoplastic Starch (TPS)‐Cellulosic Fibers Composites: Mechanical Properties and Water Vapor Barrier: A Review,” in Composites from Renewable and Sustainable Materials, InTech, 2016. doi: 10.5772/65397. | spa |
dc.relation.references | F. Dominici, F. Luzi, P. Benincasa, L. Torre, and D. Puglia, “Biocomposites based on plasticized wheat flours: Effect of bran content on thermomechanical behavior,” Polymers (Basel), vol. 12, no. 10, pp. 1–16, Oct. 2020, doi: 10.3390/polym12102248. | spa |
dc.relation.references | F. G. Henning, V. C. Ito, I. M. Demiate, and L. G. Lacerda, “Non-conventional starches for biodegradable films: A review focussing on characterisation and recent applications in food packaging,” Carbohydrate Polymer Technologies and Applications, vol. 4, p. 100157, Dec. 2022, doi: 10.1016/J.CARPTA.2021.100157. | spa |
dc.relation.references | F. Liu et al., “Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure,” Int J Biol Macromol, vol. 260, p. 129404, Mar. 2024, doi: 10.1016/J.IJBIOMAC.2024.129404. | spa |
dc.relation.references | F. M. Pelissari, M. M. Andrade-Mahecha, P. J. D. A. Sobral, and F. C. Menegalli, “Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca),” Starch/Staerke, vol. 64, no. 5, pp. 382–391, 2012, doi: 10.1002/star.201100133. | spa |
dc.relation.references | F. M. Pelissari, M. M. Andrade-Mahecha, P. J. do A. Sobral, and F. C. Menegalli, “Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca),” Food Hydrocoll, vol. 30, no. 2, pp. 681–690, Mar. 2013, doi: 10.1016/j.foodhyd.2012.08.007. | spa |
dc.relation.references | F. S. Gómez, S. Peirósánchez, M. G. G. Iradi, N. A. M. Azman, and M. P. Almajano, “Avocado seeds: Extraction optimization and possible use as antioxidant in food,” Antioxidants, vol. 3, no. 2, pp. 439–454, Jun. 2014, doi: 10.3390/antiox3020439. | spa |
dc.relation.references | F. Van De Velde, A. M. Tarola, D. Güemes, and M. E. Pirovani, “Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.),” Foods, vol. 2, no. 2, pp. 120–131, Jun. 2013, doi: 10.3390/FOODS2020120. | spa |
dc.relation.references | F. Xie et al., “Rheological properties of starches with different amylose/amylopectin ratios,” J Cereal Sci, vol. 49, no. 3, pp. 371–377, May 2009, doi: 10.1016/j.jcs.2009.01.002. | spa |
dc.relation.references | F. Zhu, “Barley Starch: Composition, Structure, Properties, and Modifications,” Compr Rev Food Sci Food Saf, vol. 16, no. 4, pp. 558–579, Jul. 2017, doi: 10.1111/1541-4337.12265. | spa |
dc.relation.references | Facultad de Ciencias Agrarias. Universidad del Cauca, “Bioempaques cauca,” 2017. Accessed: May 05, 2020. [Online]. Available: https://bioempaquescauca.com/images/BoletinBioempaques/febrero2017.pdf | spa |
dc.relation.references | G. Ayala, R. A. Vargas, and A. C. Agudelo, “Influence of glycerol and temperature on the rheological properties of potato starch solutions,” Int Agrophys, vol. 28, no. 3, pp. 261–268, Jul. 2014, doi: 10.2478/intag-2014-0016. | spa |
dc.relation.references | G. Ischia et al., “Cellulose Acetates in Hydrothermal Carbonization: a Green Pathway to Valorize Residual Bioplastics,” ChemSusChem, p. e202401163, Aug. 2024, doi: 10.1002/CSSC.202401163. | spa |
dc.relation.references | G. K. P. De Araújo et al., “Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract,” Int J Food Sci Technol, vol. 50, no. 9, pp. 2080–2087, Sep. 2015, doi: 10.1111/IJFS.12869. | spa |
dc.relation.references | G. Oliveri Conti et al., “Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population,” Environ Res, vol. 187, p. 109677, Aug. 2020, doi: 10.1016/J.ENVRES.2020.109677. | spa |
dc.relation.references | G. P. Singh, S. P. Bangar, T. Yang, M. Trif, V. Kumar, and D. Kumar, “Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review,” Polymers 2022, Vol. 14, Page 1987, vol. 14, no. 10, p. 1987, May 2022, doi: 10.3390/POLYM14101987. | spa |
dc.relation.references | G. R. de Carvalho, G. S. Marques, L. M. de Matos Jorge, and R. M. M. Jorge, “Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable films,” J Appl Polym Sci, vol. 136, no. 12, Mar. 2019, doi: 10.1002/app.47224. | spa |
dc.relation.references | G. Rivera–González, C. A. Amaya–Guerra, and J. de la Rosa–Millán, “Physicochemical characterisation and in vitro Starch digestion of Avocado Seed Flour (Persea americana V. Hass) and its starch and fibrous fractions,” Int J Food Sci Technol, vol. 54, no. 7, pp. 2447–2457, Jul. 2019, doi: 10.1111/ijfs.14160. | spa |
dc.relation.references | G. S. Nilsson, K. E. Bergquist, U. Nilsson, and L. Gorton, “Determination of the Degree of Branching in Normal and Amylopectin Type Potato Starch with 1H-NMR Spectroscopy Improved resolution and two-dimensional spectroscopy,” Starch - Stärke, vol. 48, no. 10, pp. 352–357, Jan. 1996, doi: 10.1002/STAR.19960481003. | spa |
dc.relation.references | Grand View-Research, “Bioplastics Market Size, Share & Growth Analysis Report, 2030.” Accessed: Aug. 30, 2023. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/bioplastics-industry | spa |
dc.relation.references | H. Chen, Y. Yuan, and Q. Li, “Preparation and Characterization of Corn Starch‐Based Composite Films Containing Corncob Cellulose and Cassia Oil,” Starch - Stärke, vol. 1900209, p. 1900209, 2020, doi: 10.1002/star.201900209. | spa |
dc.relation.references | H. Liu, F. Xie, L. Yu, L. Chen, and L. Li, “Thermal processing of starch-based polymers,” Prog Polym Sci, vol. 34, no. 12, pp. 1348–1368, Dec. 2009, doi: 10.1016/J.PROGPOLYMSCI.2009.07.001. | spa |
dc.relation.references | H. Liu, L. Yu, F. Xie, and L. Chen, “Gelatinization of cornstarch with different amylose/amylopectin content,” Carbohydr Polym, vol. 65, no. 3, pp. 357–363, Aug. 2006, doi: 10.1016/J.CARBPOL.2006.01.026. | spa |
dc.relation.references | H. Molavi, S. Behfar, M. A. Shariati, M. Kaviani, and S. Atarod, “A review on biodegradable starch based film,” J Microbiol Biotech Food Sci, vol. 4, no. 5, pp. 456–461, 2015, doi: 10.15414/jmbfs.2015.4.5.456-461. | spa |
dc.relation.references | H. Nasution, Y. Afandy, and M. T. Al-Fath, “Effect of cellulose nanocrystals (CNC) addition and citric acid as co-plasticizer on physical properties of sago starch biocomposite,” AIP Conf Proc, vol. 1945, 2018, doi: 10.1063/1.5030261. | spa |
dc.relation.references | H. Suryanto, U. Yanuhar, Aminnudin, Y. R. A. Pradana, and R. D. Bintara, “Starch/Carrageenan Blend-Based Biocomposites as Packaging Materials,” pp. 139–161, 2023, doi: 10.1007/978-981-19-5327-9_6. | spa |
dc.relation.references | H. Sánchez, W. Ponce, B. Brito, W. Viera, R. Baquerizo, and M. Riera, “Biofilms production from avocado waste,” Ingenieria y Universidad, vol. 25, 2021, doi: 10.11144/JAVERIANA.IUED25.BPAW. | spa |
dc.relation.references | I. Chakraborty, S. Pallen, Y. Shetty, N. Roy, and N. Mazumder, “Advanced microscopy techniques for revealing molecular structure of starch granules.,” Biophys Rev, vol. 12, no. 1, pp. 105–122, Jan. 2020, doi: 10.1007/S12551-020-00614-7. | spa |
dc.relation.references | Idayani, A. Hasizah, and A. Syarifuddin, “The effect of additional orange Pangkep (Citrus maxima) peel oil on characteristics and microbial inhibition of corn flour-based edible film,” IOP Conf Ser Earth Environ Sci, vol. 1200, no. 1, p. 012039, Jun. 2023, doi: 10.1088/1755-1315/1200/1/012039. | spa |
dc.relation.references | J. A. García-Ramón et al., “Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis,” Int J Biol Macromol, vol. 187, pp. 35–42, Sep. 2021, doi: 10.1016/j.ijbiomac.2021.07.112. | spa |
dc.relation.references | J. Carvalho et al., “Development of Bioplastic Film for Application in the Footwear Industry,” Lecture Notes in Electrical Engineering, vol. 505, pp. 712–718, 2019, doi: 10.1007/978-3-319-91334-6_97. | spa |
dc.relation.references | J. Juansang, C. Puttanlek, V. Rungsardthong, S. Puncha-Arnon, W. Jiranuntakul, and D. Uttapap, “Pasting properties of heat-moisture treated canna starches using different plasticizers during treatment,” Carbohydr Polym, vol. 122, pp. 152–159, May 2015, doi: 10.1016/j.carbpol.2014.12.074. | spa |
dc.relation.references | J. L. Espinoza Acosta et al., “Mechanical, thermal, and antioxidant properties of composite films prepared from durum wheat starch and lignin,” Starch - Stärke, vol. 67, no. 5–6, pp. 502–511, May 2015, doi: 10.1002/STAR.201500009. | spa |
dc.relation.references | J. O. de Moraes and J. B. Laurindo, “Properties of starch–cellulose fiber films produced by tape casting coupled with infrared radiation,” Drying Technology, vol. 36, no. 7, pp. 830–840, May 2018, doi: 10.1080/07373937.2017.1357568. | spa |
dc.relation.references | J. Oliveira de Moraes, A. S. Scheibe, B. Augusto, M. Carciofi, and J. B. Laurindo, “Conductive drying of starch-fiber films prepared by tape casting: Drying rates and film properties,” LWT - Food Science and Technology, vol. 64, no. 1, pp. 356–366, Nov. 2015, doi: 10.1016/J.LWT.2015.05.038. | spa |
dc.relation.references | J. P. C. Niño, J. H. M. Hernandez, and A. V. González, “Potential uses of musaceae wastes: Case of application in the development of bio-based composites,” Jun. 01, 2021, MDPI AG. doi: 10.3390/polym13111844. | spa |
dc.relation.references | J. Qin, M. Xiao, S. Wang, C. Peng, X. Wu, and F. Jiang, “Effect of drying temperature on microstructural, mechanical, and water barrier properties of konjac glucomannan/agar film produced at industrial scale,” LWT, vol. 173, p. 114275, Jan. 2023, doi: 10.1016/J.LWT.2022.114275. | spa |
dc.relation.references | J. Thomas, “A Methodological Outlook on Bioplastics from Renewable Resources,” Open Journal of Polymer Chemistry, vol. 10, no. 02, pp. 21–47, 2020, doi: 10.4236/ojpchem.2020.102002. | spa |
dc.relation.references | J. Wang et al., “Wheat Flour-Based Edible Films: Effect of Gluten on the Rheological Properties, Structure, and Film Characteristics,” Int J Mol Sci, vol. 23, no. 19, Oct. 2022, doi: 10.3390/IJMS231911668. | spa |
dc.relation.references | J. Yang and A. J. Di Gioia, “Analysis of Starch Using the Alliance GPCV2000 System,” 2005. | spa |
dc.relation.references | J. Yee et al., “The molecular structure of starch from different Musa genotypes: Higher branching density of amylose chains seems to promote enzyme-resistant structures,” Food Hydrocoll, vol. 112, p. 106351, Mar. 2021, doi: 10.1016/J.FOODHYD.2020.106351. | spa |
dc.relation.references | J. Zhao, Y. Wang, and C. Liu, “Film Transparency and Opacity Measurements,” Food Anal Methods, vol. 15, no. 10, pp. 2840–2846, Oct. 2022, doi: 10.1007/S12161-022-02343-X/METRICS. | spa |
dc.relation.references | K. Cieśla and B. Sartowska, “Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM,” Radiation Physics and Chemistry, vol. 118, pp. 87–95, Jan. 2016, doi: 10.1016/J.RADPHYSCHEM.2015.04.027. | spa |
dc.relation.references | K. D. Vu, R. G. Hollingsworth, E. Leroux, S. Salmieri, and M. Lacroix, “Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries,” Food Research International, vol. 44, no. 1, pp. 198–203, Jan. 2011, doi: 10.1016/J.FOODRES.2010.10.037. | spa |
dc.relation.references | K. O. Olatunji, N. A. Ahmed, and O. Ogunkunle, “Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review,” Biotechnology for Biofuels 2021 14:1, vol. 14, no. 1, pp. 1–34, Jul. 2021, doi: 10.1186/S13068-021-02012-X. | spa |
dc.relation.references | K. S. Trinh and T. B. Dang, “Structural, Physicochemical, and Functional Properties of Electrolyzed Cassava Starch,” Int J Food Sci, vol. 2019, 2019, doi: 10.1155/2019/9290627. | spa |
dc.relation.references | K. Siyaduba, “Avocado seed starch and carboxymethyl cellulose superabsorbent polymer: Synthesis and characterisation.,” University of Zimbabwe Repository. Accessed: Apr. 28, 2022. [Online]. Available: http://41.175.146.201/handle/10646/3452 | spa |
dc.relation.references | K. Thitipraphunkul, D. Uttapap, K. Piyachomkwan, and Y. Takeda, “A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin,” Carbohydr Polym, vol. 54, no. 4, pp. 489–498, Dec. 2003, doi: 10.1016/J.CARBPOL.2003.08.003. | spa |
dc.relation.references | K. Y. Perera, A. K. Jaiswal, and S. Jaiswal, “Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications,” Foods 2023, Vol. 12, Page 2422, vol. 12, no. 12, p. 2422, Jun. 2023, doi: 10.3390/FOODS12122422. | spa |
dc.relation.references | L. A. Fernández-Castañeda, H. Arias-Candamil, B. Zapata-Torres, and M. P. Ardila-Castañeda, “Evaluation of the antimicrobial capacity of hass avocado seed extract (Persea americana) for potential application in the meat industry,” DYNA (Colombia), vol. 85, no. 207, pp. 346–350, Oct. 2018, doi: 10.15446/dyna.v85n207.72980. | spa |
dc.relation.references | L. Copeland, J. Blazek, H. Salman, and M. C. Tang, “Form and functionality of starch,” Food Hydrocoll, vol. 23, no. 6, pp. 1527–1534, Aug. 2009, doi: 10.1016/J.FOODHYD.2008.09.016. | spa |
dc.relation.references | L. D. Daza, M. Á. Montealegre, C. Reche, A. Sandoval-Aldana, V. S. Eim, and H. A. Váquiro, “Chachafruto starch: Physicochemical characterization, film-forming properties, and 3D printability,” Int J Biol Macromol, vol. 247, p. 125795, Aug. 2023, doi: 10.1016/J.IJBIOMAC.2023.125795. | spa |
dc.relation.references | L. G. Lacerda et al., “Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions,” J Therm Anal Calorim, vol. 115, no. 2, pp. 1893–1899, Feb. 2014, doi: 10.1007/S10973-013-3349-Z/FIGURES/5. | spa |
dc.relation.references | L. M. Srivastava, “Seed Food Reserves and Their Accumulation,” in Plant Growth and Development, Elsevier, 2002, pp. 503–520. doi: 10.1016/b978-0-12-660570-9.50178-7. | spa |
dc.relation.references | L. Polasek et al., “Marine debris in five national parks in Alaska,” Mar Pollut Bull, vol. 117, no. 1–2, pp. 371–379, Apr. 2017, doi: 10.1016/J.MARPOLBUL.2017.01.085. | spa |
dc.relation.references | L. R. Magnaghi, M. Guembe-Garcia, V. Cerone, P. Perugini, G. Alberti, and R. Biesuz, “DOE-based multi-criteria optimization of starch/gly/CMC films’ composition and preparation procedure by casting deposition,” Chemometrics and Intelligent Laboratory Systems, vol. 244, p. 105044, Jan. 2024, doi: 10.1016/J.CHEMOLAB.2023.105044. | spa |
dc.relation.references | L. V. Peñaranda, S. P. Montenegro, and P. A. Giraldo, “Exploitation of agroindustrial waste in Colombia,” Revista de Investigación Agraria y Ambiental, vol. 8, no. 2, pp. 141–150, 2018, doi: 10.22490/21456453.2040. | spa |
dc.relation.references | L. Z. Linan, F. M. Fakhouri, G. F. Nogueira, J. Zoppe, and J. I. Velasco, “Benefits of Incorporating Lignin into Starch-Based Films: A Brief Review,” Polymers 2024, Vol. 16, Page 2285, vol. 16, no. 16, p. 2285, Aug. 2024, doi: 10.3390/POLYM16162285. | spa |
dc.relation.references | L. Ávila-Martín, D. K. Guzmán Silva, J. E. Perilla, and C. C. Villa Zabala, “Preliminary Modeling Study of a Tape Casting System for Thermoplastic Starch Film Forming,” in Biology and Life Sciences Forum , MDPI AG, Nov. 2023, p. 4. doi: 10.3390/blsf2023028004. | spa |
dc.relation.references | L. Ávila-Martín, Á. A. Beltrán-Osuna, and J. E. Perilla, “Effect of the Addition of Citric Acid and Whey Protein Isolate in Canna indica L. Starch Films Obtained by Solvent Casting,” J Polym Environ, vol. 28, no. 3, pp. 871–883, Mar. 2020, doi: 10.1007/S10924-019-01648-Z/METRICS. | spa |
dc.relation.references | M. A. García, M. N. Martino, and N. E. Zaritzky, “Edible starch films and coatings characterization: scanning electron microscopy, water vapor, and gas permeabilities,” Scanning, vol. 21, no. 5, pp. 348–353, Sep. 1999, doi: 10.1002/SCA.4950210508. | spa |
dc.relation.references | M. A. García, M. N. Martino, and N. E. Zaritzky, “Lipid Addition to Improve Barrier Properties of Edible Starch-based Films and Coatings,” J Food Sci, vol. 65, no. 6, pp. 941–944, Sep. 2000, doi: 10.1111/J.1365-2621.2000.TB09397.X. | spa |
dc.relation.references | M. C. Galdeano, M. V. E. Grossmann, S. Mali, L. A. Bello-Perez, M. A. Garcia, and P. B. Zamudio-Flores, “Effects of production process and plasticizers on stability of films and sheets of oat starch,” Materials Science and Engineering C, vol. 29, no. 2, pp. 492–498, Mar. 2009, doi: 10.1016/J.MSEC.2008.08.031. | spa |
dc.relation.references | M. Calderón-Oliver, H. B. ector Escalona-Buendía, O. N. Medina-Campos, J. Pedraza-Chaverri, R. Pedroza-Islas, and E. Ponce-Alquicira, “Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts,” 2016, doi: 10.1016/j.lwt.2015.07.048. | spa |
dc.relation.references | M. D. de M. Innocentini and C. E. Formigoni, “Rapid pressure-decay technique for determining the O2 and CO2 permeability coefficients of polymeric films considering the gas compressibility effect,” Chem Eng Commun, vol. 210, no. 12, pp. 2261–2268, 2023, doi: 10.1080/00986445.2023.2189108. | spa |
dc.relation.references | M. D. Hazrol, S. M. Sapuan, E. S. Zainudin, M. Y. M. Zuhri, and N. I. A. Wahab, “Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol,” Polymers (Basel), vol. 13, no. 2, pp. 1–22, Jan. 2021, doi: 10.3390/POLYM13020242. | spa |
dc.relation.references | M. D. Salazar-Irrazabal, E. E. Ramirez-Tixe, F. F. Velasquez-Barreto, and L. A. Bello-Pérez, “Avocado seed starch: Effect of the variety on molecular, physicochemical, and digestibility characteristics,” Int J Biol Macromol, vol. 247, p. 125746, Aug. 2023, doi: 10.1016/J.IJBIOMAC.2023.125746 | spa |
dc.relation.references | M. Esmaeili, G. Pircheraghi, and R. Bagheri, “Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol,” Polym Int, vol. 66, no. 6, pp. 809–819, Jun. 2017, doi: 10.1002/PI.5319. | spa |
dc.relation.references | M. F. Valero-Valdivieso, Y. Ortegón, and Y. Uscategui, “BIOPOLÍMEROS: AVANCES Y PERSPECTIVAS BIOPOLYMERS: PROGRESS AND PROSPECTS,” Dyna rev.fac.nac.minas, vol. 80, no. 181, pp. 171–180, 2013. | spa |
dc.relation.references | M. Faisal et al., “A Comparison of Cellulose Nanocrystals and Nanofibers as Reinforcements to Amylose-Based Composite Bioplastics,” Coatings, vol. 13, no. 9, p. 1573, Sep. 2023, doi: 10.3390/COATINGS13091573/S1. | spa |
dc.relation.references | M. G. De Paola, D. Mammolenti, F. R. Lupi, M. P. De Santo, D. Gabriele, and V. Calabrò, “Formulation and process investigation of glycerol/starch suspensions for edible films production by tape casting,” Chemical Papers, vol. 76, no. 3, pp. 1525–1538, Mar. 2022, doi: 10.1007/S11696-021-01956-6/METRICS. | spa |
dc.relation.references | M. H. Klopffer and B. Flaconnèche, “Transport Properties of Gases in Polymers: Bibliographic Review,” Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 2001. | spa |
dc.relation.references | M. H. S. Ginting, M. F. Ramadhan Tarigan, and A. M. Singgih, “Effect of Gelatinization Temperature and Chitosan on Mechanical Properties of Bioplastics from Avocado Seed Starch (Persea americana mill) with Plasticizer Glycerol,” The International Journal Of Engineering And Science (IJES) ||, vol. 4, no. 12, pp. 36–43, 2015, Accessed: Apr. 30, 2022. [Online]. Available: www.theijes.com | spa |
dc.relation.references | M. H. Tran, D. P. Phan, and E. Y. Lee, “Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens,” Green Chemistry, vol. 23, no. 13, pp. 4633–4646, Jul. 2021, doi: 10.1039/D1GC01139A. | spa |
dc.relation.references | M. Horvat, D. Ladiges, and H. P. Schuchmann, “Investigation of the Nucleation During Extrusion Cooking of Corn Starch by A Novel Nucleation Die,” Food Bioproc Tech, vol. 7, no. 3, pp. 654–660, Mar. 2014, doi: 10.1007/S11947-013-1109-5/METRICS. | spa |
dc.relation.references | M. I. Sánchez-Tamayo, C. Vélez Pasos, and C. I. Ochoa-Martínez, “Methods for gas permeability measurement in edible films for fruits and vegetables: a review,” Food Science and Technology, vol. 41, no. 4, pp. 807–815, Oct. 2020, doi: 10.1590/FST.07520. | spa |
dc.relation.references | M. J. dos Santos Alves et al., “Starch nanoparticles containing phenolic compounds from green propolis: Characterization and evaluation of antioxidant, antimicrobial and digestibility properties,” Int J Biol Macromol, vol. 255, p. 128079, Jan. 2024, doi: 10.1016/J.IJBIOMAC.2023.128079. | spa |
dc.relation.references | M. Kedzierski, D. Frère, G. Le Maguer, and S. Bruzaud, “Why is there plastic packaging in the natural environment? Understanding the roots of our individual plastic waste management behaviours,” Science of The Total Environment, vol. 740, p. 139985, Oct. 2020, doi: 10.1016/J.SCITOTENV.2020.139985. | spa |
dc.relation.references | M. L. Rodriguez-Marín, L. A. Bello-Perez, H. Yee-Madeira, and R. A. González-Soto, “Mechanical and barrier properties of film elaborated with rice and banana flour reinforced with nanoparticles: study with response surface,” Rev Mex Ing Quim, vol. 12, no. 1, pp. 165–176, 2013, [Online]. Available: www.rmiq.org | spa |
dc.relation.references | M. L. Rodríguez-Marín, J. Alvarez-Ramírez, and L. A. Bello-Perez, “Influence of Storage Time on Mechanical Properties of Films Made with Montmorillonite/Flour (Unripe Banana and Rice) Blends,” Rev Mex Ing Quim, vol. 15, no. 2, pp. 433–439, 2016, [Online]. Available: http://www.redalyc.org/articulo.oa?id=62046829011 | spa |
dc.relation.references | M. Leon-Bejarano, Y. Durmus, M. Ovando-Martínez, and S. Simsek, “Physical, barrier, mechanical, and biodegradability properties of modified starch films with nut by-products extracts,” Foods, vol. 9, no. 2, 2020, doi: 10.3390/foods9020226. | spa |
dc.relation.references | M. Liu et al., “Preparation of a high-strength, hydrophobic performance starch-based adhesive with oxidative cross-linking via Fenton’s reagent,” Int J Biol Macromol, vol. 253, p. 126995, Dec. 2023, doi: 10.1016/J.IJBIOMAC.2023.126995. | spa |
dc.relation.references | M. Lubis, M. B. Harahap, M. H. S. Ginting, M. Sartika, and H. Azmi, “Production of Bioplastic from Avocado Seed Starch Reinforced with Microcrystalline Cellulose from Sugar Palm Fibers,” International Published Articles, 2018, Accessed: Feb. 25, 2022. [Online]. Available: https://repository.usu.ac.id/handle/123456789/70008 | spa |
dc.relation.references | M. M. Godoy Zúniga et al., “Avocado seed starch utilized in eco-friendly, UV-blocking, and high-barrier polylactic acid (PLA) biocomposites for active food packaging applications,” Int J Biol Macromol, vol. 265, p. 130837, Apr. 2024, doi: 10.1016/J.IJBIOMAC.2024.130837. | spa |
dc.relation.references | M. M. Ibrahim, H. Moustafa, E. N. A. El Rahman, S. Mehanny, M. H. Hemida, and E. El-Kashif, “Reinforcement of Starch Based Biodegradable Composite Using Nile Rose Residues,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 6160–6171, May 2020, doi: 10.1016/J.JMRT.2020.04.018. | spa |
dc.relation.references | M. M. Millard, F. R. Dintzis, J. L. Willett, and J. A. Klavons, “Light-Scattering Molecular Weights and Intrinsic Viscosities of Processed Waxy Maize Starches in 90% Dimethyl Sulfoxide and H2O,” Cereal Chem, vol. 74, no. 5, pp. 687–691, Sep. 1997, doi: 10.1094/CCHEM.1997.74.5.687. | spa |
dc.relation.references | M. P. Silveira et al., “Development of active cassava starch cellulose nanofiber-based films incorporated with natural antimicrobial tea tree essential oil,” J Appl Polym Sci, vol. 48726, no. Mic, pp. 1–11, 2019, doi: 10.1002/app.48726. | spa |
dc.relation.references | M. P. Van Leeuwen et al., “Assessment of starch branching and lamellar structure in rice flours,” Food Structure, vol. 29, p. 100201, Jul. 2021, doi: 10.1016/J.FOOSTR.2021.100201. | spa |
dc.relation.references | M. Ramadhia, Y. Erning Indrastuti, and L. Purwandani, “Mechanical and Barrier Properties of Biocellulose Nata de Coco-Based Edible Film: Influence of Purple Yam (Dioscorea alata) Flour and Glycerol Concentration,” Demeter: Journal of Farming and Agriculture, vol. 1, no. 2, pp. 61–67, Feb. 2023, doi: 10.58905/DEMETER.V1I2.226. | spa |
dc.relation.references | M. Rusková et al., “Biodegradable Active Packaging Enriched with Essential Oils for Enhancing the Shelf Life of Strawberries,” Antioxidants, vol. 12, no. 3, p. 755, Mar. 2023, doi: 10.3390/ANTIOX12030755/S1. | spa |
dc.relation.references | M. S. Aday, C. Caner, and F. Rahvali, “Effect of oxygen and carbon dioxide absorbers on strawberry quality,” Postharvest Biol Technol, vol. 62, no. 2, pp. 179–187, Nov. 2011, doi: 10.1016/J.POSTHARVBIO.2011.05.002. | spa |
dc.relation.references | M. S. S. Reyes and P. M. B. Medina, “Leachates from plastics and bioplastics reduce lifespan, decrease locomotion, and induce neurotoxicity in Caenorhabditis elegans,” Environmental Pollution, vol. 357, p. 124428, Sep. 2024, doi: 10.1016/J.ENVPOL.2024.124428. | spa |
dc.relation.references | M. Sandanayake, Y. Bouras, and Z. Vrcelj, “A feasibility study of using coffee cup waste as a building material - Life cycle assessment and multi-objective optimisation,” J Clean Prod, vol. 339, p. 130498, Mar. 2022, doi: 10.1016/J.JCLEPRO.2022.130498. | spa |
dc.relation.references | M. Sartika, M. Lubis, M. B. Harahap, E. Afrida, and M. H. S. Ginting, “Production of bioplastic from avocado seed starch as matrix and microcrystalline cellulose from sugar palm fibers with schweizer’s reagent as solvent,” Asian Journal of Chemistry, vol. 30, no. 5, pp. 1051–1056, 2018, doi: 10.14233/ajchem.2018.21155. | spa |
dc.relation.references | M. Wei, R. Andersson, G. Xie, S. Salehi, D. Boström, and S. Xiong, “Properties of Cassava Stem Starch Being a New Starch Resource,” Starch - Stärke, vol. 70, no. 5–6, p. 1700125, May 2018, doi: 10.1002/STAR.201700125. | spa |
dc.relation.references | M. Włodarczyk-Stasiak and A. Mazurek, “The Use of Starch Drying Kinetics Curves for Experimental Determination of Its Specific Surface Area,” Molecules, vol. 26, no. 18, Sep. 2021, doi: 10.3390/MOLECULES26185508. | spa |
dc.relation.references | MinAgricultura, “Cadena De Plátano Febrero 2018,” p. 27, 2018, [Online]. Available: https://sioc.minagricultura.gov.co/Platano/Documentos/002 - Cifras Sectoriales/Cifras Sectoriales - 2018 Febrero Platano.pdf | spa |
dc.relation.references | MinAgricultura, “Cadena productiva Aguacate,” 2021. | spa |
dc.relation.references | Ministerio de Agricultura y Desarollo rural, “Cadena de Plátano,” Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas, no. 571, p. 28, 2014, [Online]. Available: https://sioc.minagricultura.gov.co/Platano/Documentos/004 - Documentos Competitividad Cadena/D.C. 2014 Octubre - Indicadores platano.pdf | spa |
dc.relation.references | N. A. Al-Tayyar, A. M. Youssef, and R. Al-hindi, “Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review,” Food Chem, vol. 310, p. 125915, 2020, doi: 10.1016/j.foodchem.2019.125915. | spa |
dc.relation.references | N. Albar et al., “Chemical, Mechanical, and Wettability Properties of Bioplastic Material from Manihot esculenta Cassava–Chitosan Blends as Plastic Alternative,” Starch - Stärke, p. 2300278, 2024, doi: 10.1002/STAR.202300278. | spa |
dc.relation.references | N. Alemu, S. Balakrishnan, and B. Debtera, “Extraction and Characterisation of Avocado Seed Starch, and Its Blend with Enset Cellulosic,” Advances in Materials Science and Engineering, vol. 2022, no. 1, p. 9908295, Jan. 2022, doi: 10.1155/2022/9908295. | spa |
dc.relation.references | N. De Dios-Avila et al., “Physicochemical, Structural, Thermal and Rheological Properties of Flour and Starch Isolated from Avocado Seeds of Landrace and Hass Cultivars,” Molecules, vol. 27, no. 3, p. 910, Jan. 2022, doi: 10.3390/MOLECULES27030910. | spa |
dc.relation.references | N. K. Rastogi, “Recent trends and developments in infrared heating in food processing,” Crit Rev Food Sci Nutr, vol. 52, no. 9, pp. 737–760, 2012, doi: 10.1080/10408398.2010.508138. | spa |
dc.relation.references | N. L. Yulianti, B. A. Harsojuwono, I. B. P. Gunadnya, and I. W. Arnata, “Optimization of Cellulose Nanofibers and Castor Oil in the Synthesis of Starch-carrageenan-polyvinyl Alcohol Biothermoplastic Film,” Pakistan Journal of Analytical & Environmental Chemistry, vol. 25, no. 1, pp. 31–48, Apr. 2024, doi: 10.21743/PJAEC/2024.06.04. | spa |
dc.relation.references | N. Leblanc, R. Saiah, E. Beucher, R. Gattin, M. Castandet, and J. M. Saiter, “Structural investigation and thermal stability of new extruded wheat flour based polymeric materials,” Carbohydr Polym, vol. 73, no. 4, pp. 548–557, Sep. 2008, doi: 10.1016/J.CARBPOL.2007.12.034. | spa |
dc.relation.references | N. Pragmanik, P; Mina U. Sharman, “Bioplastic sustainable green plastic,” no. December, p. 3, 2015, [Online]. Available: http://nopr.niscair.res.in/bitstream/123456789/33495/1/SR 52%2812%29 26-27.pdf | spa |
dc.relation.references | N. Reddy and Y. Yang, “Extraction and characterization of natural cellulose fibers from common milkweed stems,” Polym Eng Sci, vol. 49, no. 11, pp. 2212–2217, 2009, doi: 10.1002/pen.21469. | spa |
dc.relation.references | N. S. Mohamad Yazid, N. Abdullah, Norhayati Muhammad, and Matias-Peralta Hazel Monica, “Application of Starch and Starch-Based Products in Food Industry,” Journal of Science and Technology, vol. 10, no. 2, pp. 144–174, 2018, doi: 10.30880/jst.2018.10.02.023. | spa |
dc.relation.references | N. Yacob, M. R. Yusof, Z. M. A. Ainun, and K. H. Badri, “Effect of cellulose fiber from sago waste on properties of starch-based films,” IOP Conf Ser Mater Sci Eng, vol. 368, no. 1, 2018, doi: 10.1088/1757-899X/368/1/012028. | spa |
dc.relation.references | O. Aras, G. Kamel, and M. Kazanci, “Green plastics: Direct production from grocery wastes to bioplastics and structural characterization by using synchrotron FTIR,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 323, p. 124919, Dec. 2024, doi: 10.1016/J.SAA.2024.124919. | spa |
dc.relation.references | O. H. Arroyo, “Procesamiento de compuestos poliméricos biodegradables de almidón reforzados con fibras naturales mediante moldeo por compresión,” Pontificia Universidad Católica del Perú, 2004. | spa |
dc.relation.references | O. H. Pardo Cuervo, W. A. Aperador Chaparro, and W. M. Sanabria, “Efecto de la modificación del almidón de arracacha y la concentración del plastificante sobre las propiedades mecánicas de películas biodegradables - Dialnet,” Prospectiva, vol. 10, no. 1, pp. 37–43, 2012, Accessed: May 05, 2020. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=4212019 | spa |
dc.relation.references | O. O. Oluwasina, B. P. Akinyele, S. J. Olusegun, O. O. Oluwasina, and N. D. S. Mohallem, “Evaluation of the effects of additives on the properties of starch-based bioplastic film,” SN Appl Sci, vol. 3, no. 4, pp. 1–12, Apr. 2021, doi: 10.1007/S42452-021-04433-7/TABLES/5. | spa |
dc.relation.references | O. S. Lawal, O. O. Ogundiran, K. Awokoya, and A. O. Ogunkunle, “The low-substituted propylene oxide etherified plantain (Musa paradisiaca normalis) starch: Characterization and functional parameters,” Carbohydr Polym, vol. 74, no. 3, pp. 717–724, Nov. 2008, doi: 10.1016/j.carbpol.2008.04.039. | spa |
dc.relation.references | P. B. Zamudio Flores et al., “Caracterización fisicoquímica, mecánica y estructural de películas de almidones oxidados de avena y plátano adicionadas con betalaínas,” Agrociencia, ISSN 2521-9766, ISSN-e 1405-3195, Vol. 49, No. 5, 2015, págs. 483-498, vol. 49, no. 5, pp. 483–498, 2015, Accessed: Jul. 15, 2024. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=5318754&info=resumen&idioma=ENG | spa |
dc.relation.references | P. Benincasa et al., “Relationships between wheat flour baking properties and tensile characteristics of derived thermoplastic films,” Ind Crops Prod, vol. 100, pp. 138–145, Jun. 2017, doi: 10.1016/J.INDCROP.2017.02.021. | spa |
dc.relation.references | P. Brdlík, J. Novák, M. Borůvka, L. Běhálek, and P. Lenfeld, “The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions,” Polymers (Basel), vol. 15, no. 1, p. 140, Jan. 2023, doi: 10.3390/POLYM15010140/S1. | spa |
dc.relation.references | P. Chavan et al., “Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials,” Starch - Stärke, vol. 74, no. 5–6, p. 2100302, May 2022, doi: 10.1002/STAR.202100302. | spa |
dc.relation.references | P. Dole, C. Joly, E. Espuche, I. Alric, and N. Gontard, “Gas transport properties of starch based films,” Carbohydr Polym, vol. 58, no. 3, pp. 335–343, Nov. 2004, doi: 10.1016/J.CARBPOL.2004.08.002. | spa |
dc.relation.references | P. Ezati, A. Khan, R. Priyadarshi, T. Bhattacharya, S. K. Tammina, and J. W. Rhim, “Biopolymer-based UV protection functional films for food packaging,” Food Hydrocoll, vol. 142, p. 108771, Sep. 2023, doi: 10.1016/J.FOODHYD.2023.108771. | spa |
dc.relation.references | P. Jha, “Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications,” Int J Biol Macromol, vol. 160, pp. 571–582, Oct. 2020, doi: 10.1016/J.IJBIOMAC.2020.05.242. | spa |
dc.relation.references | P. Kaewprachu, C. Jaisan, W. Klunklin, S. Phongthai, S. Rawdkuen, and W. Tongdeesoontorn, “Mechanical and Physicochemical Properties of Composite Biopolymer Films Based on Carboxymethyl Cellulose from Young Palmyra Palm Fruit Husk and Rice Flour,” Polymers (Basel), vol. 14, no. 9, May 2022, doi: 10.3390/POLYM14091872. | spa |
dc.relation.references | P. M. Baldwin, “Starch Granule-Associated Proteins and Polypeptides: A Review,” Starch/Stärke, vol. 53, no. 10, pp. 475–503, Sep. 2001, doi: 10.1002/1521-379X(200110)53:10<475::AID-STAR475>3.0.CO;2-E. | spa |
dc.relation.references | P. Sakare, N. Prasad, N. Thombare, R. Singh, and S. C. Sharma, “Infrared Drying of Food Materials: Recent Advances,” Food Engineering Reviews, vol. 12, no. 3, pp. 381–398, Sep. 2020, doi: 10.1007/S12393-020-09237-W/METRICS. | spa |
dc.relation.references | P. Stegmann, V. Daioglou, M. Londo, D. P. van Vuuren, and M. Junginger, “Plastic futures and their CO2 emissions,” Nature 2022 612:7939, vol. 612, no. 7939, pp. 272–276, Dec. 2022, doi: 10.1038/s41586-022-05422-5. | spa |
dc.relation.references | P. Thipchai et al., “Preparation and Characterization of Cellulose Nanocrystals from Bamboos and Their Application in Cassava Starch-Based Film,” Polymers (Basel), vol. 15, no. 12, p. 2622, Jun. 2023, doi: 10.3390/POLYM15122622/S1. | spa |
dc.relation.references | Q. Duan et al., “Study on hydroxypropyl corn starch/alkyl ketene dimer composite film with enhanced water resistance and mechanical properties,” Int J Biol Macromol, vol. 253, p. 126613, Dec. 2023, doi: 10.1016/J.IJBIOMAC.2023.126613. | spa |
dc.relation.references | R. Dewi et al., “The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM),” Polymers (Basel), vol. 16, no. 16, Aug. 2024, doi: 10.3390/polym16162384. | spa |
dc.relation.references | R. Farajpour, Z. Emam Djomeh, S. Moeini, H. Tavahkolipour, and S. Safayan, “Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles,” Int J Biol Macromol, vol. 149, pp. 941–950, Apr. 2020, doi: 10.1016/J.IJBIOMAC.2020.01.175. | spa |
dc.relation.references | R. G. Araújo, R. M. Rodriguez-Jasso, H. A. Ruiz, M. Govea-Salas, M. E. Pintado, and C. N. Aguilar, “Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds,” Ind Crops Prod, vol. 154, p. 112623, Oct. 2020, doi: 10.1016/J.INDCROP.2020.112623. | spa |
dc.relation.references | R. Jiménez, G. Sandoval-Flores, S. Alvarado-Reyna, S. E. Alemán-Castillo, R. Santiago-Adame, and G. Velázquez, “Extraction of starch from Hass avocado seeds for the preparation of biofilms,” Food Science and Technology, vol. 42, p. e56820, Apr. 2021, doi: 10.1590/FST.56820. | spa |
dc.relation.references | R. K. Basha et al., “Sorption characteristic of starch-based film,” Food Res, vol. 5, pp. 193–200, 2021, doi: 10.26656/fr.2017.5(S1).056. | spa |
dc.relation.references | R. Mohamed, N. Mohd, N. Nurazzi, M. I. Siti Aisyah, and F. Mohd Fauzi, “Swelling and tensile properties of starch glycerol system with various crosslinking agents,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Aug. 2017. doi: 10.1088/1757-899X/223/1/012059. | spa |
dc.relation.references | R. Nadal-Medina, G. Manzo-Sánchez, J. Orozco-Romero, M. Orozco-Santos, and S. Guzmán-González, “Diversidad genética de bananos y plátanos (Musa spp.) determinada mediante marcadores RAPD,” Revista fitotecnia mexicana, vol. 32, no. 1, 2009, Accessed: Apr. 14, 2022. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802009000100001 | spa |
dc.relation.references | R. Ramesh, H. Palanivel, S. Venkatesa Prabhu, B. Z. Tizazu, and A. A. Woldesemayat, “Process Development for Edible Film Preparation Using Avocado Seed Starch: Response Surface Modeling and Analysis for Water-Vapor Permeability,” Advances in Materials Science and Engineering, vol. 2021, 2021, doi: 10.1155/2021/7859658. | spa |
dc.relation.references | R. Syafiq, S. M. Sapuan, and R. A. Ilyas, “Starch-based polymer film incorporated with antimicrobial plant essential oil : A Review,” 6th Postgraduate Seminar on Natural Fiber Reinforced Polymer Composites 2018, no. December, pp. 74–78, 2018. | spa |
dc.relation.references | R. Thakur, P. Pristijono, C. J. Scarlett, M. Bowyer, S. P. Singh, and Q. V. Vuong, “Starch-based films: Major factors affecting their properties,” Int J Biol Macromol, vol. 132, pp. 1079–1089, Jul. 2019, doi: 10.1016/J.IJBIOMAC.2019.03.190. | spa |
dc.relation.references | R. V. Gadhave, A. Das, P. A. Mahanwar, and P. T. Gadekar, “Starch Based Bio-Plastics: The Future of Sustainable Packaging,” Open Journal of Polymer Chemistry, vol. 08, no. 02, pp. 21–33, 2018, doi: 10.4236/ojpchem.2018.82003. | spa |
dc.relation.references | R. Venegas, A. Torres, A. M. Rueda, M. A. Morales, M. J. Arias, and A. Porras, “Development and Characterization of Plantain (Musa paradisiaca) Flour-Based Biopolymer Films Reinforced with Plantain Fibers,” Polymers (Basel), vol. 14, no. 4, Feb. 2022, doi: 10.3390/polym14040748. | spa |
dc.relation.references | S. Agarwal, “Major factors affecting the characteristics of starch based biopolymer films,” Eur Polym J, vol. 160, p. 110788, Nov. 2021, doi: 10.1016/J.EURPOLYMJ.2021.110788. | spa |
dc.relation.references | S. B. Pawar and V. M. Pratape, “Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review,” J Food Process Eng, vol. 40, no. 1, p. e12308, Feb. 2017, doi: 10.1111/JFPE.12308. | spa |
dc.relation.references | S. C. Alcázar-Alay and M. A. A. Meireles, “Physicochemical properties, modifications and applications of starches from different botanical sources,” Food Science and Technology, vol. 35, no. 2, pp. 215–236, 2015, doi: 10.1590/1678-457X.6749. | spa |
dc.relation.references | S. Duarte, M. Monteiro, P. A. Campuzano, N. Giménez, and M. C. Penayo, “Microcrystals and Microfibers of Cellulose from Acrocomia aculeata (Arecaceae) Characterization,” Biology and Life Sciences Forum 2023, Vol. 28, Page 8, vol. 28, no. 1, p. 8, Nov. 2023, doi: 10.3390/BLSF2023028008. | spa |
dc.relation.references | S. H. F. Martins, K. V. Pontes, R. L. Fialho, and F. M. Fakhouri, “Extraction and characterization of the starch present in the avocado seed (Persea americana mill) for future applications,” J Agric Food Res, vol. 8, p. 100303, Jun. 2022, doi: 10.1016/J.JAFR.2022.100303. | spa |
dc.relation.references | S. H. Othman, B. M. Wane, N. Nordin, N. Z. Noor Hasnan, R. A. Talib, and J. N. W. Karyadi, “Physical, Mechanical, and Water Vapor Barrier Properties of Starch/Cellulose Nanofiber/Thymol Bionanocomposite Films,” Polymers 2021, Vol. 13, Page 4060, vol. 13, no. 23, p. 4060, Nov. 2021, doi: 10.3390/POLYM13234060. | spa |
dc.relation.references | S. J. Calva-Estrada, M. Jiménez-Fernández, and E. Lugo-Cervantes, “Protein-Based Films: Advances in the Development of Biomaterials Applicable to Food Packaging,” Food Engineering Reviews 2019 11:2, vol. 11, no. 2, pp. 78–92, Mar. 2019, doi: 10.1007/S12393-019-09189-W. | spa |
dc.relation.references | S. L. Gómez Ayala and F. L. Yory Sanabria, “Aprovechamiento de recursos renovables en la obtención de nuevos materiales,” Ingenierías USBMed, vol. 9, no. 1, p. 69, 2018, doi: 10.21500/20275846.3008. | spa |
dc.relation.references | S. P. Bangar et al., “Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach,” Foods 2021, Vol. 10, Page 2181, vol. 10, no. 9, p. 2181, Sep. 2021, doi: 10.3390/FOODS10092181. | spa |
dc.relation.references | S. Parvez and I. A. Wani, “Postharvest Biology and Technology of Strawberry,” Postharvest Biology and Technology of Temperate Fruits, pp. 331–348, 2018, doi: 10.1007/978-3-319-76843-4_14. | spa |
dc.relation.references | S. Puncha-arnon, C. Puttanlek, V. Rungsardthong, W. Pathipanawat, and D. Uttapap, “Changes in physicochemical properties and morphology of canna starches during rhizomal development,” Carbohydr Polym, vol. 70, no. 2, pp. 206–217, Sep. 2007, doi: 10.1016/J.CARBPOL.2007.03.020. | spa |
dc.relation.references | S. R. Djafari Petroudy, “Physical and mechanical properties of natural fibers,” Advanced High Strength Natural Fibre Composites in Construction, pp. 59–83, Jan. 2017, doi: 10.1016/B978-0-08-100411-1.00003-0. | spa |
dc.relation.references | S. Radosta, M. Haberer, and W. Vorwerg, “Molecular Characteristics of Amylose and Starch in Dimethyl Sulfoxide,” Biomacromolecules, vol. 2, no. 3, pp. 970–978, 2001, doi: 10.1021/BM0100662. | spa |
dc.relation.references | S. Rojas-Lema, S. Torres-Giner, L. Quiles-Carrillo, J. Gomez-Caturla, D. Garcia-Garcia, and R. Balart, “On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films,” Antioxidants 2021, Vol. 10, Page 14, vol. 10, no. 1, p. 14, Dec. 2020, doi: 10.3390/ANTIOX10010014. | spa |
dc.relation.references | S. Schmitz, A. C. Dona, P. Castignolles, R. G. Gilbert, and M. Gaborieau, “Assessment of the Extent of Starch Dissolution in Dimethyl Sulfoxide by 1H NMR Spectroscopy,” Macromol Biosci, vol. 9, no. 5, pp. 506–514, May 2009, doi: 10.1002/MABI.200800244. | spa |
dc.relation.references | S. Sid, R. S. Mor, A. Kishore, and V. S. Sharanagat, “Bio-sourced polymers as alternatives to conventional food packaging materials: A review,” Trends Food Sci Technol, vol. 115, pp. 87–104, Sep. 2021, doi: 10.1016/J.TIFS.2021.06.026. | spa |
dc.relation.references | S. Sinha, “An overview of biopolymer-derived packaging material,” https://doi.org/10.1177/20412479241226884, vol. 15, no. 2, pp. 193–209, Jan. 2024, doi: 10.1177/20412479241226884. | spa |
dc.relation.references | S. Wang, Y. Hao, Q. He, and Q. Gao, “Biodegradable starch-polyvinyl alcohol composite films by the incorporation of lignin for packaging applications,” Journal of Thermoplastic Composite Materials, Feb. 2024, doi: 10.1177/08927057241233566/ASSET/IMAGES/LARGE/10.1177_08927057241233566-FIG8.JPEG. | spa |
dc.relation.references | S. X. Tan, A. Andriyana, H. C. Ong, S. Lim, Y. L. Pang, and G. C. Ngoh, “A Comprehensive Review on the Emerging Roles of Nanofillers and Plasticizers towards Sustainable Starch-Based Bioplastic Fabrication,” Polymers (Basel), vol. 14, no. 4, Feb. 2022, doi: 10.3390/POLYM14040664. | spa |
dc.relation.references | S. xiang Guo, Z. qiang Fu, Y. Sun, X. ying Wang, and M. Wu, “Effect of Plasticizers on the Properties of Potato Flour Films,” Starch - Stärke, vol. 74, no. 1–2, p. 2100179, Jan. 2022, doi: 10.1002/STAR.202100179. | spa |
dc.relation.references | S. Zhan et al., “Influence of Water Absorption Behavior on Mechanical and Tribological Performance of Polymer Materials,” Polymer (Korea), vol. 47, no. 3, pp. 264–277, 2023, doi: 10.7317/PK.2023.47.3.264. | spa |
dc.relation.references | Suhartini et al., “Synthesis and characterization of nano chitosan-avocado seed starch as edible films,” Jurnal Kimia Riset, vol. 8, no. 1, pp. 49–58, Jun. 2023, doi: 10.20473/JKR.V8I1.43394. | spa |
dc.relation.references | T. Chowdhury and M. Das, “Effect of antimicrobial on mechanical, barrier and optical properties of corn starch based self-supporting edible film,” International Journal of Food Studies, vol. 2, no. 2, pp. 212–223, Oct. 2013, doi: 10.7455/IJFS/2.2.2013.A7. | spa |
dc.relation.references | T. Chu, J. Shi, Y. Xia, H. Wang, G. Fan, and M. Yang, “Development of high strength potato starch nanocomposite films with excellent UV-blocking performance: Effect of heat moisture treatment synergistic with ligninsulfonic acid,” Ind Crops Prod, vol. 187, p. 115327, Nov. 2022, doi: 10.1016/J.INDCROP.2022.115327. | spa |
dc.relation.references | T. D. Oluwajuyitan, “Avocado seed starch: structure, functionality, and applications,” Non-Conventional Starch Sources: Properties, Functionality, and Applications, pp. 3–19, Jan. 2024, doi: 10.1016/B978-0-443-18981-4.00001-X. | spa |
dc.relation.references | T. J. Gutiérrez and G. González, “Effect of Cross-Linking with Aloe vera Gel on Surface and Physicochemical Properties of Edible Films Made from Plantain Flour,” Food Biophys, vol. 12, no. 1, pp. 11–22, Mar. 2017, doi: 10.1007/S11483-016-9458-Z/METRICS. | spa |
dc.relation.references | T. J. Gutiérrez and K. Álvarez, “Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel,” J Funct Foods, vol. 26, pp. 750–762, Oct. 2016, doi: 10.1016/j.jff.2016.08.054. | spa |
dc.relation.references | T. J. Gutiérrez and V. A. Alvarez, “Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst,” Carbohydr Polym, vol. 178, pp. 260–269, Dec. 2017, doi: 10.1016/j.carbpol.2017.09.026. | spa |
dc.relation.references | T. Mekonnen, P. Mussone, H. Khalil, and D. Bressler, “Progress in bio-based plastics and plasticizing modifications,” J Mater Chem A Mater, vol. 1, p. 13379, 2013, doi: 10.1039/c3ta12555f. | spa |
dc.relation.references | V. Bátori, D. Åkesson, A. Zamani, M. J. Taherzadeh, and I. Sárvári Horváth, “Anaerobic degradation of bioplastics: A review,” Waste Management, vol. 80, pp. 406–413, Oct. 2018, doi: 10.1016/j.wasman.2018.09.040. | spa |
dc.relation.references | V. D. Alves, S. Mali, A. Beléia, and M. V. E. Grossmann, “Effect of glycerol and amylose enrichment on cassava starch film properties,” J Food Eng, vol. 78, no. 3, pp. 941–946, Feb. 2007, doi: 10.1016/j.jfoodeng.2005.12.007. | spa |
dc.relation.references | V. Gupta, D. Ramakanth, C. Verma, P. K. Maji, and K. K. Gaikwad, “Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace,” Biomass Convers Biorefin, vol. 13, no. 17, pp. 15451–15462, Nov. 2023, doi: 10.1007/S13399-021-01852-9/METRICS. | spa |
dc.relation.references | V. K. Aralappanavar et al., “Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling – A review,” Science of The Total Environment, vol. 924, p. 171435, May 2024, doi: 10.1016/J.SCITOTENV.2024.171435. | spa |
dc.relation.references | V. Nebrigić et al., “Influence of drying process on chemical composition, antioxidant and enzyme-inhibitory activity of Helichrysum italicum essential oils,” J Herb Med, vol. 40, p. 100680, Aug. 2023, doi: 10.1016/J.HERMED.2023.100680. | spa |
dc.relation.references | V. P. Romani, V. G. Martins, A. S. da Silva, P. C. Martins, D. Nogueira, and N. Carbonera, “Amazon-sustainable-flour from açaí seeds added to starch films to develop biopolymers for active food packaging,” J Appl Polym Sci, vol. 139, no. 5, p. 51579, Feb. 2022, doi: 10.1002/APP.51579. | spa |
dc.relation.references | V. S. Kuchi, Ch. S. R. Sharavani, V. S. Kuchi, and Ch. S. R. Sharavani, “Fruit Physiology and Postharvest Management of Strawberry,” Strawberry - Pre- and Post-Harvest Management Techniques for Higher Fruit Quality, Mar. 2019, doi: 10.5772/INTECHOPEN.84205. | spa |
dc.relation.references | V. Shanmugam, K. Babu, G. Kannan, R. A. Mensah, S. K. Samantaray, and O. Das, “The thermal properties of FDM printed polymeric materials: A review,” Polym Degrad Stab, vol. 228, p. 110902, Oct. 2024, doi: 10.1016/J.POLYMDEGRADSTAB.2024.110902. | spa |
dc.relation.references | V. Srivastava, S. Singh, and D. Das, “Environmental Impact Assessment of Active Biocomposite Packaging and Comparison with Conventional Packaging for Food Application,” DS 130: Proceedings of NordDesign 2024, Reykjavik, Iceland, 12th - 14th August 2024, pp. 402–410, 2024, doi: 10.35199/NORDDESIGN2024.43. | spa |
dc.relation.references | V. Srivastava, S. Singh, and D. Das, “Rice husk fiber-reinforced starch antimicrobial biocomposite film for active food packaging,” J Clean Prod, vol. 421, p. 138525, Oct. 2023, doi: 10.1016/J.JCLEPRO.2023.138525. | spa |
dc.relation.references | W. Granados Pérez and M. E. Noreña Triana, “Indicadores e instrumentos cadena Plátano,” 2018. [Online]. Available: https://sioc.minagricultura.gov.co/Platano/Documentos/2018-10-30 Cifras Sectoriales.pdf | spa |
dc.relation.references | W. Lan et al., “Investigation of Ultrasonic Treatment on Physicochemical, Structural and Morphological Properties of Sodium Alginate/AgNPs/Apple Polyphenol Films and Its Preservation Effect on Strawberry,” Polymers 2020, Vol. 12, Page 2096, vol. 12, no. 9, p. 2096, Sep. 2020, doi: 10.3390/POLYM12092096. | spa |
dc.relation.references | Wokadala Cuthbert Obiro, Suprakas Sinha Ray, and Mohammad Naushad Emmambux, “V-amylose Structural Characteristics, Methods of Preparation, Significance and Potential Applications,” Food Reviews International , vol. 28, 2012. | spa |
dc.relation.references | X. Fu et al., “Development of a chitosan/pectin-based multi-active food packaging with both UV and microbial defense functions for effectively preserving of strawberry,” Int J Biol Macromol, vol. 254, p. 127968, Jan. 2024, doi: 10.1016/J.IJBIOMAC.2023.127968. | spa |
dc.relation.references | X. Shang, H. Jiang, Q. Wang, P. Liu, and F. Xie, “Cellulose-starch Hybrid Films Plasticized by Aqueous ZnCl 2 Solution,” Int J Mol Sci, vol. 20, p. 474, 2019, doi: 10.3390/ijms20030474. | spa |
dc.relation.references | X. Song, L. Cheng, and L. Tan, “Edible iron yam and maize starch convenient food flavoring packaging films with lemon essential oil as plasticization,” Food Science and Technology, vol. 39, no. 4, pp. 971–979, Dec. 2018, doi: 10.1590/FST.13118. | spa |
dc.relation.references | Y. A. Vargas Corredor and L. I. Peréz Pérez, “Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente,” Revista Facultad de Ciencias Básicas, vol. V, no. 1, pp. 59–72, 2018, doi: 10.18359/rfcb.3108. | spa |
dc.relation.references | Y. Chen, S. Huang, Z. Tang, X. Chen, and Z. Zhang, “Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase,” Carbohydr Polym, vol. 85, no. 1, pp. 272–275, Apr. 2011, doi: 10.1016/J.CARBPOL.2011.01.047. | spa |
dc.relation.references | Y. Cheng et al., “Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing,” Int J Biol Macromol, vol. 185, pp. 1005–1014, Aug. 2021, doi: 10.1016/J.IJBIOMAC.2021.06.203. | spa |
dc.relation.references | Y. Esaki, O. Fukuda, W. L. Yeoh, H. Okumura, and N. Yamaguchi, “Strawberry Packaging Support System Based on Image Recognition,” 2024 IEEE/SICE International Symposium on System Integration, SII 2024, pp. 496–501, 2024, doi: 10.1109/SII58957.2024.10417558. | spa |
dc.relation.references | Y. Fan and F. Picchioni, “Modification of starch: A review on the application of ‘green’ solvents and controlled functionalization,” Carbohydr Polym, vol. 241, p. 116350, Aug. 2020, doi: 10.1016/J.CARBPOL.2020.116350. | spa |
dc.relation.references | Y. L. Sen Ma, J. Y. Binghua Sun, and Xiaoxi Wang, “Effect of Heat–Moisture Treatment on the Physicochemical Properties, Structure, Morphology, and Starch Digestibility of Highland Barley (Hordeum vulgare L. var. nudum Hook. f) Flour,” Foods, vol. 11, no. 21, Nov. 2022, doi: 10.3390/foods11213511. | spa |
dc.relation.references | Y. Sasaki et al., “Optimal packaging for strawberry transportation: Evaluation and modeling of the relationship between food loss reduction and environmental impact,” J Food Eng, vol. 314, p. 110767, Feb. 2022, doi: 10.1016/J.JFOODENG.2021.110767. | spa |
dc.relation.references | Y. U. Nabar, D. Draybuck, and R. Narayan, “Physicomechanical and hydrophobic properties of starch foams extruded with different biodegradable polymers,” J Appl Polym Sci, vol. 102, no. 1, pp. 58–68, Oct. 2006, doi: 10.1002/APP.22127. | spa |
dc.relation.references | Y. Zhang and J. H. Han, “Crystallization of high-amylose starch by the addition of plasticizers at low and intermediate concentrations,” J Food Sci, vol. 75, no. 1, Jan. 2010, doi: 10.1111/J.1750-3841.2009.01404.X. | spa |
dc.relation.references | Y. Zhang, C. Rempel, Y. Zhang, and C. Rempel, “Retrogradation and Antiplasticization of Thermoplastic Starch,” Thermoplastic Elastomers, Mar. 2012, doi: 10.5772/35848. | spa |
dc.relation.references | Z. E. Cabrera-Canales et al., “Dual modification of achira ( Canna indica L) starch and the effect on its physicochemical properties for possible food applications,” J Food Sci Technol, vol. 58, no. 3, pp. 952–961, Mar. 2021, doi: 10.1007/S13197-020-04609-W. | spa |
dc.relation.references | Z. Liu and J. H. Han, “Film-forming Characteristics of Starches,” J Food Sci, vol. 70, 1999, Accessed: Jun. 13, 2021. [Online]. Available: www.ift.org | spa |
dc.relation.references | Z. Żołek-Tryznowska and A. Kałuża, “The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance,” Materials, vol. 14, no. 5, pp. 1–11, Mar. 2021, doi: 10.3390/MA14051146. | spa |
dc.relation.references | Á. Castaño, M. Aristizábal, and H. González, “HYDRIC REQUIREMENTS OF PLANTAIN DOMINICO-HARTON (Musa AAB SIMMONDS) INTHE SANTAGUEDA REGION (PALESTINA, CALDAS),” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 15, no. 2, pp. 331–338, 2012. | spa |
dc.relation.references | “Ecobioplast – Empresa Colombiana de Bioplásticos S.A.S.” Accessed: May 26, 2022. [Online]. Available: https://www.ecobioplast.com.co/wp/ | spa |
dc.relation.references | “PACTO POR COLOMBIA PACTO POR LA EQUIDAD IV. Pacto por la sostenibilidad: producir conservando y conservar produciendo ODS RELACIONADOS,” 2018. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Film (empaque) | spa |
dc.subject.agrovoc | film (packaging) | eng |
dc.subject.agrovoc | Bioplástico | spa |
dc.subject.agrovoc | bioplastics | eng |
dc.subject.agrovoc | Aguacate | spa |
dc.subject.agrovoc | avocados | eng |
dc.subject.agrovoc | Almidón | spa |
dc.subject.agrovoc | starch | eng |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.proposal | Películas biodegradables | spa |
dc.subject.proposal | Almidón de plátano | spa |
dc.subject.proposal | Harina de semilla de aguacate | spa |
dc.subject.proposal | Resistencia mecánica | spa |
dc.subject.proposal | Hidrofobicidad | spa |
dc.subject.proposal | Secado por infrarrojo | spa |
dc.subject.proposal | Bioplástico | spa |
dc.subject.proposal | Biodegradable films | eng |
dc.subject.proposal | Plantain starch | eng |
dc.subject.proposal | Avocado seed flour | eng |
dc.subject.proposal | Mechanical strength | eng |
dc.subject.proposal | Hydrophobicity | eng |
dc.subject.proposal | Infrared drying | eng |
dc.subject.proposal | Bioplastics | eng |
dc.title | Effect of avocado flour on functional properties in starch films from Plantain (Mussa var. AAB Simonds) | eng |
dc.title.translated | Efecto de la harina de aguacate en propiedades funcionales de películas de almidón de plátano (Mussa var. AAB Simonds) | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estudio de las aplicaciones de residuos agroindustriales de plátano Dominico-Hartón (Mussa AAB Simonds) producidos en el departamento de Quindío para la obtención de películas poliméricas. | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015401865.2025.pdf
- Tamaño:
- 7.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: