Configuración de un sistema de empaque activo antimicrobiano para frutos frescos de uchuva (Physalis peruviana L.)
dc.contributor.advisor | Herrera Arévalo, Aníbal Orlando | |
dc.contributor.advisor | Castellanos Espinosa, Diego Alberto | |
dc.contributor.author | Cortes Jaimes, Lesley Andrea | |
dc.contributor.researchgroup | Horticultura | spa |
dc.coverage.region | Ventaquemada - Boyacá | |
dc.date.accessioned | 2022-09-26T19:23:02Z | |
dc.date.available | 2022-09-26T19:23:02Z | |
dc.date.issued | 2022-08-08 | |
dc.description | fotografías a blanco y negro, fotografías a color, ilustraciones, gráficas, tablas | spa |
dc.description.abstract | La uchuva es un fruto apetecido por sus características organolépticas y nutricionales. Sin embargo, sus posibilidades de mercado son limitadas debido a su rápido deterioro tras la cosecha. Una de las principales causas de degradación de esta fruta es la actividad de microorganismos como Botrytis cinerea. En este estudio se propuso un sistema de empaque activo con actividad antifúngica combinado con atmósferas modificadas (MAP), evaluando la capacidad de conservación de los frutos frescos de uchuva. Inicialmente, se evaluó el efecto antifúngico de tres compuestos diferentes de origen vegetal (cinamaldehído, 2-nonanona y aceite esencial de orégano) y en fase de vapor para determinar la concentración mínima inhibitoria (CMI) para Botrytis cinerea con un ensayo in vitro utilizando un sistema cerrado a 23 °C y 74,66 kPa. En la segunda fase, el componente antimicrobiano con mejor capacidad antifúngica se incluyó en un sistema de empaque activo en forma de bolsitas y se adsorbió hasta su saturación en una matriz de bentonita en polvo. Se envasaron 100 ± 1 g de frutas en bandejas de ácido poliláctico (PLA) y se sellaron con una película de PLA con una perforación de 0,058 mm en el centro formando un MAP. Algunos frutos se inocularon deliberadamente con B. cinerea evaluando 4 tratamientos diferentes: 1) sin elemento activo e inóculo de Botrytis (NN), 2) sin elemento activo y con inóculo (NI), 3) con elemento activo y sin inóculo (AN) y 4) con elemento activo y con inóculo (AI). Los frutos envasados se almacenaron a 6 °C y 75% de HR determinando el deterioro fúngico y los cambios en diversas propiedades de calidad. A partir de las pruebas in vitro, se determinó que el cinamaldehído es el componente con mayor capacidad antifúngica con una CIM de 2,38 µg por cm3 de espacio de cabeza. Con el sistema de envasado activo combinado con MAP, fue posible obtener una vida útil de 43 días para el tratamiento AN y de 33 días para el tratamiento AI, cargando los sobres con una cantidad de cinamaldehído correspondiente a tres veces la CIM para compensar las pérdidas de compuestos debidas a la permeación fuera del envase. El envasado activo con inclusión de cinamaldehído en los sobres combinado con MAP constituye un sistema eficaz e innovador para prolongar la vida útil de las frutas de uchuva y puede aplicarse a otras frutas y verduras frescas. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this project, the configuration of an active antimicrobial packaging system, to extend the shelf life of fresh cape gooseberry (Physalis peruviana L.) fruits from Ventaquemada, Boyacá, was proposed. Initially, Botrytis cinerea mold was identified as the predominant microorganism causing fruit deterioration. Then, in vitro tests were carried out to establish the antimicrobial effect and the minimum inhibitory concentration (MIC) in vapor phase of three compounds of plant origin: 2-nonanone, cinnamaldehyde and oregano essential oil. The cinnamaldehyde was the most active of them obtaining an MIC of 2.38 µg/cm3 headspace for 40 days of storage at 23 °C. Finally, through in vivo tests, deterioration caused by mold was evaluated in a packaging system of sealed trays of polylactic acid (PLA) with modified atmospheres (MAP) and with an active element in sachet composed of bentonite saturated with cinnamaldehyde performing the following packaging treatments: without sachet and without mold inoculum (SS), without sachet and with mold inoculum (SC), with sachet without mold (CS) and with sachet with mold (CC) for 6 weeks at 6 °C and 75% RH. The sachets were prepared to obtain a concentration of 7,14 ± 0.1 µg cinnamaldehyde per cm3 per headspace to evaluate its vapor phase release. The shelf life obtained for cape gooseberry fruits constitutes an opportunity to enhance the commercialization of this product by reducing losses in storage and transport through an integrated, active packaging with natural and biodegradable materials. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Calidad de los Alimentos - Empaques y Envases para Alimentos | spa |
dc.description.sponsorship | Convocatoria de innovación entre actores del sistema regional-departamento de Boyacá-2018, proyecto No 66121, subvención 80740-554-2019 | spa |
dc.format.extent | xiv, 100 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82329 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.references | Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968–975. https://doi.org/10.1016/j.foodchem.2015.10.023 | spa |
dc.relation.references | Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Fávaro Perez, M. A., Ramos Souza Felipe, F., & Padula, M. (2017). Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585–1594. https://doi.org/10.1007/s11947-017-1926-z | spa |
dc.relation.references | Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R., & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Medicale, 24(2), e51–e56. https://doi.org/10.1016/j.mycmed.2014.01.063 | spa |
dc.relation.references | Agronet. (2022). Reporte:Área, Producción y Rendimiento Nacional por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | spa |
dc.relation.references | Ahmad A, Khan A, Kumar P, Bhatt RP, M. N. (2011). Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast, Aug;28(8)(Epub 2011 Jul 13), 611–617. https://doi.org/10.1002/yea.1890 | spa |
dc.relation.references | Alamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., Shamlan, G., Alqah, H. A., & Qasha, A. S. (2021). Food packaging’s materials: A food safety perspective. Saudi Journal of Biological Sciences, 28(8), 4490–4499. https://doi.org/10.1016/J.SJBS.2021.04.047 | spa |
dc.relation.references | Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 100122. https://doi.org/10.1016/J.AFRES.2022.100122 | spa |
dc.relation.references | Almasaudi, N. M., Al-Qurashi, A. D., Elsayed, M. I., & Abo-Elyousr, K. A. M. (2022). Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. Journal of Plant Pathology, 104(1), 317–328. https://doi.org/10.1007/s42161-021-01008-8 | spa |
dc.relation.references | Almenar, E., Del Valle, V., Catala, R., & Gavara, R. (2007). Active package for wild strawberry fruit (Fragaria vesca L.). Journal of Agricultural and Food Chemistry, 55(6), 2240–2245. https://doi.org/10.1021/jf062809m | spa |
dc.relation.references | Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90. https://doi.org/10.1016/j.phymed.2021.153626 | spa |
dc.relation.references | ANALDEX. (2021). Informe exportaciones de uchuva. https://www.analdex.org/2021/10/20/informe-exportaciones-de-uchuva/ | spa |
dc.relation.references | ANALDEX. (2022). Uchuva colombiana a la conquista: en solo dos meses el país exportó US$6,5 millones. https://www.analdex.org/2022/05/06/uchuva-colombiana-a-la-conquista-en-solo-dos-meses-el-pais-exporto-us65-millones/ | spa |
dc.relation.references | Asohofrucol, & Fondo Nacional de Fomento Hortofrutícola. (2021). Balance del sector hortofrutícola 2020. | spa |
dc.relation.references | ASTM. (2013). G21-09 Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi. | spa |
dc.relation.references | Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1–2), 66–72. https://doi.org/10.1016/j.ijfoodmicro.2011.10.017 | spa |
dc.relation.references | Avissar, I., Droby, S., & Pesis, E. (1990). Characterization of acetaldehyde effect on Rhizopus stolonifer and Botrytis cinerea. Annals of Applied Biology, 116, 213–220. | spa |
dc.relation.references | Balaguera-López, H. E., Martínez, C. A., & Aníbal Herrera, A. (2015). Refrigeration affects the postharvest behavior of 1-methylcyclopropene-treated cape gooseberry (Physalis peruviana L.) fruits with the calyx. Agronomia Colombiana, 33(3), 356–364. https://doi.org/10.15446/agron.colomb.v33n3.51896 | spa |
dc.relation.references | Bandyopadhyay, S., Saha, N., Brodnjak, U. V., & Sáha, P. (2019). Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. Food Packaging and Shelf Life, 22(February). https://doi.org/10.1016/j.fpsl.2019.100402 | spa |
dc.relation.references | Belay, Z. A., Caleb, O. J., & Opara, U. L. (2019). Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packaging and Shelf Life, 21(May). https://doi.org/10.1016/j.fpsl.2019.100359 | spa |
dc.relation.references | Bell, S. R., Hernández Montiel, L. G., González Estrada, R. R., & Gutiérrez Martínez, P. (2021). Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. Lwt, 149(January), 7–12. https://doi.org/10.1016/j.lwt.2021.112046 | spa |
dc.relation.references | Bernardos, A., Bozik, M., Alvarez, S., Saskova, M., Perez-Esteve, E., Kloucek, P., Lhotka, M., Frankova, A., & Martinez-Manez, R. (2019). The efficacy of essential oil components loaded into montmorillonite against Aspergillus niger and Staphylococcus aureus. Flavour and Fragrance Journal, 34(3), 151–162. https://doi.org/10.1002/ffj.3488 | spa |
dc.relation.references | Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457–1474. https://doi.org/10.1002/jsfa.9357 | spa |
dc.relation.references | Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 | spa |
dc.relation.references | Calvo, H., Mendiara, I., Arias, E., Gracia, A. P., Blanco, D., & Venturini, M. E. (2020). Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biology and Technology, 166. https://doi.org/10.1016/j.postharvbio.2020.111208 | spa |
dc.relation.references | Camele, I., Altieri, L., de Martino, L., de Feo, V., Mancini, E., & Rana, G. L. (2012). In vitro control of post-harvest fruit rot fungi by some plant essential oil components. International Journal of Molecular Sciences, 13(2), 2290–2300. https://doi.org/10.3390/ijms13022290 | spa |
dc.relation.references | Canales, D., Montoille, L., Rivas, L. M., Ortíz, J. A., Yañez-S, M., Rabagliati, F. M., Ulloa, M. T., Alvarez, E., & Zapata, P. A. (2019). Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea. MDPI, 1–17. https://doi.org/10.3390/coatings9120795 | spa |
dc.relation.references | Carvalho, C. P., & Moreno, D. A. (Eds.). (2014). Uchuva Physalis peruviana L.: fruta andina para el mundo. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo – CYTED. | spa |
dc.relation.references | Castellanos, D. A., Cerisuelo, J. P., Hernandez-Muñoz, P., Herrera, A. O., & Gavara, R. (2016). Modelling the evolution of O2 and CO2 concentrations in MAP of a fresh product: Application to tomato. Journal of Food Engineering, 168, 84–95. https://doi.org/10.1016/J.JFOODENG.2015.07.019 | spa |
dc.relation.references | CCI, C. C. I. (2006). Plan Hortícola Nacional. Capítulo 2: Entorno Nacional. | spa |
dc.relation.references | Cedeño, M. M., & Montenegro, D. M. (2004). Plan exportador, logístico y comercialización de uchuva al mercado de Estados Unidos para FRUTEXPO SCI Ltda. Pontifica Universidad Javeriana. | spa |
dc.relation.references | Cerdán, M. (2022). Arcillas en cosmética natural: origen, tipos, usos y aplicaciones. Mentactiva. https://www.mentactiva.com/arcillas-en-cosmetica-natural/ | spa |
dc.relation.references | Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2(August 2020), 100024. https://doi.org/10.1016/j.carpta.2020.100024 | spa |
dc.relation.references | Chen, M., Chen, X., Ray, S., & Yam, K. (2020). Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends in Food Science and Technology, 95(November 2019), 33–44. https://doi.org/10.1016/j.tifs.2019.11.005 | spa |
dc.relation.references | Ciro, H., Buitrago, O., & Pérez, S. (2007). Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Revista Facultad Nacional de Agronomía. | spa |
dc.relation.references | Clegg, F., Breen, C., Muranyi, P., & Schönweitz, C. (2019). Antimicrobial, starch based barrier coatings prepared using mixed silver/sodium exchanged bentonite. Applied Clay Science, 179(May), 105144. https://doi.org/10.1016/j.clay.2019.105144 | spa |
dc.relation.references | Conesa, A., Artés-Hernández, F., Geysen, S., Nicolaï, B., & Artés, F. (2007). High oxygen combined with high carbon dioxide improvesmicrobial and sensory quality of fresh-cut peppers. Postharvest Biology and Technology, 43(2), 230–237. https://doi.org/10.1016/J.POSTHARVBIO.2006.08.016 | spa |
dc.relation.references | Contini, C., Katsikogianni, M. G., O’Neill, F. T., O’Sullivan, M., Dowling, D. P., & Monahan, F. J. (2011). Development of active packaging containing natural antioxidants. Procedia Food Science, 1, 224–228. https://doi.org/10.1016/J.PROFOO.2011.09.035 | spa |
dc.relation.references | Cota, L. V., Maffia, L. A., Mizubuti, E. S. G., Macedo, P. E. F., & Antunes, R. F. (2008). Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control, 46(3), 515–522. https://doi.org/10.1016/j.biocontrol.2008.04.023 | spa |
dc.relation.references | Cristescu, S. M., De Martinis, D., Te Lintel Hekkert, S., Parker, D. H., & Harren, F. J. M. (2002). Ethylene production by Botrytis cinerea in vitro and in tomatoes. Applied and Environmental Microbiology, 68(11), 5342–5350. https://doi.org/10.1128/AEM.68.11.5342-5350.2002 | spa |
dc.relation.references | de Oliveira, L. H., Trigueiro, P., Souza, J. S. N., de Carvalho, M. S., Osajima, J. A., da Silva-Filho, E. C., & Fonseca, M. G. (2022). Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids and Surfaces B: Biointerfaces, 209(October 2021). https://doi.org/10.1016/j.colsurfb.2021.112186 | spa |
dc.relation.references | De Souza, A. C., Dias, A. M. A., Sousa, H. C., & Tadini, C. C. (2014). Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydrate Polymers, 102(1), 830–837. https://doi.org/10.1016/j.carbpol.2013.10.082 | spa |
dc.relation.references | De Souza, A. C., Ditchfield, C., & Tadini, C. (2009). Biodegradable Films Based on Biopolymers for Food Industries. 511–537. https://doi.org/10.1201/9781420086072-c17 | spa |
dc.relation.references | DNP. (2020). Estudio de pérdida y desperdicio de alimentos en Colombia. | spa |
dc.relation.references | Ejaz, M., Arfat, Y. A., Mulla, M., & Ahmed, J. (2018). Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113–121. https://doi.org/10.1016/J.FPSL.2017.12.004 | spa |
dc.relation.references | El-Saber Batiha, G., Hussein, D. E., Algammal, A. M., George, T. T., Jeandet, P., Al-Snafi, A. E., Tiwari, A., Pagnossa, J. P., Lima, C. M., Thorat, N. D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H. F., & Cruz-Martins, N. (2021). Application of natural antimicrobials in food preservation: Recent views. Food Control, 126(March). https://doi.org/10.1016/j.foodcont.2021.108066 | spa |
dc.relation.references | Fang, Y., & Wakisaka, M. (2021). A review on the modified atmosphere preservation of fruits and vegetables with cutting-edge technologies. Agriculture (Switzerland), 11(10), 1–16. https://doi.org/10.3390/agriculture11100992 | spa |
dc.relation.references | Fernandez, I. (2022). Berries, un consumo imparable. Mercados. https://revistamercados.com/berries-un-consumo-imparable/ | spa |
dc.relation.references | Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva ( Physalis peruviana L .) 1. 1–15. | spa |
dc.relation.references | Fischer, G., Herrera, A., & Almanza, P. J. (2011). Cape gooseberry ( Physalis peruviana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing Limited. https://doi.org/10.1533/9780857092762.374 | spa |
dc.relation.references | Garavito, J., Herrera, A. O., & Castellanos, D. A. (2021). A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (Physalis peruviana) fruits. Biosystems Engineering, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015 | spa |
dc.relation.references | Garavito, J., Mendoza, S. M., & Castellanos, D. A. (2022). Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. Journal of Food Engineering, 314(April 2021), 110761. https://doi.org/10.1016/j.jfoodeng.2021.110761 | spa |
dc.relation.references | Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science and Technology, 35(1), 42–51. https://doi.org/10.1016/j.tifs.2013.10.008 | spa |
dc.relation.references | Guerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C., & Antunes, M. D. C. (2015). The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biology and Technology, 100, 226–233. https://doi.org/10.1016/j.postharvbio.2014.09.002 | spa |
dc.relation.references | Guilbert, S., Guillaume, C., & Gontard, N. (2011). New packaging materials based on renewable resources: Properties, applications, and prospects. Food Engineering Interfaces, 619–630. https://doi.org/10.1016/b978-0-12-394601-0.00026-6 | spa |
dc.relation.references | Guo, H., Qin, X., Wu, Y., Yu, W., Liu, J., Xi, Y., Dou, G., Wang, L., & Xiao, H. (2019). Biocontrol of Gray Mold of Cherry Tomatoes with the Volatile Organic Monomer from Hanseniaspora uvarum, Trans-Cinnamaldehyde. Food and Bioprocess Technology, 12(11), 1809–1820. https://doi.org/10.1007/s11947-019-02319-6 | spa |
dc.relation.references | Han, J. H. (2005). Antimicrobial packaging system. Innovations in Food Packaging, 80–107. | spa |
dc.relation.references | He, C., Zhang, Z., Li, B., Xu, Y., & Tian, S. (2019a). Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology, 151(August 2018), 134–141. https://doi.org/10.1016/j.postharvbio.2019.02.009 | spa |
dc.relation.references | He, C., Zhang, Z., Li, B., Xu, Y., & Tian, S. (2019b). Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology, 151(February), 134–141. https://doi.org/10.1016/j.postharvbio.2019.02.009 | spa |
dc.relation.references | Hernández-González, G. (2003). Empacado de uchuva (Physalis peruviana L.) en películas poliméricas con atmósferas modificadas. [Universidad de la Salle]. https://ciencia.lasalle.edu.co/ing_alimentos/290 | spa |
dc.relation.references | Hernández-Muñoz, P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biology and Technology, 39(3), 247–253. https://doi.org/10.1016/J.POSTHARVBIO.2005.11.006 | spa |
dc.relation.references | Hoagland, L., Ximenes, E., Ku, S., & Ladisch, M. (2018). Foodborne pathogens in horticultural production systems: Ecology and mitigation. Scientia Horticulturae, 236, 192–206. https://doi.org/10.1016/J.SCIENTA.2018.03.040 | spa |
dc.relation.references | Holešová, S., Hundáková, M., & Pazdziora, E. (2016). Antibacterial Kaolinite Based Nanocomposites. Procedia Materials Science, 12, 124–129. https://doi.org/10.1016/j.mspro.2016.03.022 | spa |
dc.relation.references | Hou, H., Zhang, X., Zhao, T., & Zhou, L. (2020). Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. PeerJ, 8, 1–25. https://doi.org/10.7717/peerj.9626 | spa |
dc.relation.references | Huang, Xinduo, Han, Y., Du, J., Guo, P., Wang, Y., Ma, K., Li, N., Zhang, Z., Li, Y., & Pan, J. (2021). Inhibitory effect of cinnamaldehyde on main destructive microorganisms of Nanhai no. 1 Shipwreck. Applied Sciences (Switzerland), 11(11). https://doi.org/10.3390/app11115262 | spa |
dc.relation.references | Huang, Xueying, Ge, X., Zhou, L., & Wang, Y. (2022). Eugenol embedded zein and poly(lactic acid) film as active food packaging: Formation, characterization, and antimicrobial effects. Food Chemistry, 384, 132482. https://doi.org/10.1016/J.FOODCHEM.2022.132482 | spa |
dc.relation.references | NTC 5166 Frutas frescas. Uchuva. Especificaciones del empaque, (2003). | spa |
dc.relation.references | NTC 6302-1 Envases, empaques y embalajes. Vocabulario., (2018). | spa |
dc.relation.references | NTC 4580 Frutas frescas. Uchuva. Especificaciones, (2022). | spa |
dc.relation.references | Imran, M., Revol-Junelles, A. M., Martyn, A., Tehrany, E. A., Jacquot, M., Linder, M., & Desobry, S. (2010). Active food packaging evolution: Transformation from micro- to nanotechnology. Critical Reviews in Food Science and Nutrition, 50(9), 799–821. https://doi.org/10.1080/10408398.2010.503694 | spa |
dc.relation.references | Jabeen, N., Majid, I., & Nayik, G. A. (2015). Bioplastics and food packaging: A review. Cogent Food and Agriculture, 1(1). https://doi.org/10.1080/23311932.2015.1117749 | spa |
dc.relation.references | Janjarasskul, T., & Suppakul, P. (2018). Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition, 58(5), 808–831. https://doi.org/10.1080/10408398.2016.1225278 | spa |
dc.relation.references | Kapetanakou, A. E., & Skandamis, P. N. (2016). Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Current Opinion in Food Science, 12, 1–12. https://doi.org/10.1016/j.cofs.2016.06.001 | spa |
dc.relation.references | Kardam, S. K., Kadam, A. A., & Dutt, D. (2021). Retention of cinnamaldehyde in poly(vinyl alcohol) films intended for preservation of faba beans through vapor-phase antimicrobial effect. Food Packaging and Shelf Life, 29, 100704. https://doi.org/10.1016/J.FPSL.2021.100704 | spa |
dc.relation.references | Kuorwel, K. K., Cran, M. J., Orbell, J. D., Buddhadasa, S., & Bigger, S. W. (2015). Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Comprehensive Reviews in Food Science and Food Safety, 14(4), 411–430. https://doi.org/10.1111/1541-4337.12139 | spa |
dc.relation.references | Lanchero, O., Velandia, G., Fischer, G., Varela, N. C., & García, H. (2007). Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Ciencia & Tecnología Agropecuaria, 8(1), 61–68. https://doi.org/10.21930/rcta.vol8_num1_art:84 | spa |
dc.relation.references | Leyva-López, N., Gutiérrez-Grijalva, E. P., Vazquez-Olivo, G., & Heredia, J. B. (2017). Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules, 22(6). https://doi.org/10.3390/molecules22060989 | spa |
dc.relation.references | Li, Q., Ren, T., Perkins, P., Hu, X., & Wang, X. (2021). Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control, 124(August 2020), 107876. https://doi.org/10.1016/j.foodcont.2021.107876 | spa |
dc.relation.references | Li, X., Xiao, N., Xiao, G., Bai, W., Zhang, X. Q., & Zhao, W. (2021). Lemon essential oil/vermiculite encapsulated in electrospun konjac glucomannan-grafted-poly (acrylic acid)/polyvinyl alcohol bacteriostatic pad: Sustained control release and its application in food preservation. Food Chemistry, 348(December 2020), 129021. https://doi.org/10.1016/j.foodchem.2021.129021 | spa |
dc.relation.references | Liu, B., Xue, W. wen, Guo, Z. li, Liu, S. yu, Zhu, Q. nan, Pang, X. qun, Zhang, Z. qi, & Fang, F. (2021). Water loss and pericarp browning of litchi (Litchi chinensis) and longan (Dimocarpus longan) fruit maintain seed vigor. Scientia Horticulturae, 290, 110519. https://doi.org/10.1016/J.SCIENTA.2021.110519 | spa |
dc.relation.references | Lufu, R., Ambaw, A., & Opara, U. L. (2020). Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272, 109519. https://doi.org/10.1016/J.SCIENTA.2020.109519 | spa |
dc.relation.references | Manso, S., Becerril, R., Nerín, C., & Gómez-Lus, R. (2015). Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Control, 47, 20–26. https://doi.org/10.1016/j.foodcont.2014.06.014 | spa |
dc.relation.references | Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402–414. https://doi.org/10.1016/j.foodchem.2016.04.111 | spa |
dc.relation.references | Masek, A., Latos, M., Piotrowska, M., & Zaborski, M. (2018). The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packaging and Shelf Life, 16, 51–58. https://doi.org/10.1016/J.FPSL.2018.02.001 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2022). Colombia es el mayor productor y exportador de uchuva a nivel mundial. MADR Noticias. https://www.minagricultura.gov.co/noticias/Paginas/Colombia-es-el-mayor-productor-y-exportador-de-uchuva-a-nivel-mundial.aspx | spa |
dc.relation.references | Montes-de-Oca-Ávalos, J. M., Altamura, D., Herrera, M. L., Huck-Iriart, C., Scattarella, F., Siliqi, D., Giannini, C., & Candal, R. J. (2020). Physical and structural properties of whey protein concentrate - Corn oil - TiO2 nanocomposite films for edible food-packaging. Food Packaging and Shelf Life, 26, 100590. https://doi.org/10.1016/J.FPSL.2020.100590 | spa |
dc.relation.references | Moreno Guerrero, C., Andrade Cuvi, M. J., & Concellón, A. (2012). Efecto del uso combinado de la radiación UV-C y atmósfera modificada sobre el tiempo de vida útil de uvilla (Physalis peruviana L.) orgánica. Tsafiqui - Revista Científica En Ciencias Sociales, 3, 43–51. https://doi.org/10.29019/tsafiqui.v0i3.220 | spa |
dc.relation.references | Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science and Technology, 103(April 2019), 321–332. https://doi.org/10.1016/j.tifs.2020.07.009 | spa |
dc.relation.references | Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018a). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19. https://doi.org/10.1016/j.fbp.2018.05.001 | spa |
dc.relation.references | Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018b). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19. https://doi.org/10.1016/J.FBP.2018.05.001 | spa |
dc.relation.references | Mukurumbira, A. R., Shellie, R. A., Keast, R., Palombo, E. A., & Jadhav, S. R. (2022). Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control, 136(October 2021), 108883. https://doi.org/10.1016/j.foodcont.2022.108883 | spa |
dc.relation.references | Muñoz, A., Barbosa, A., Bustos, D., Ramírez, Y., Vásquez, Y., García, J., & Guancha, M. (2017). Conservación de uchuva (Physalis peruviana) mediante la aplicación de un recubrimiento a base de quitosano y áloe vera, utilizando el método de aspersión. Informador Técnico, 81(1), 86. https://doi.org/10.23850/22565035.722 | spa |
dc.relation.references | Naciones Unidas. (2021). Un reciente Día Internacional con un difícil punto de partida. https://www.un.org/es/observances/end-food-waste-day/background | spa |
dc.relation.references | Nath, D., R, S., Pal, K., & Sarkar, P. (2022). Nanoclay-based active food packaging systems: A review. Food Packaging and Shelf Life, 31(May 2021), 100803. https://doi.org/10.1016/j.fpsl.2021.100803 | spa |
dc.relation.references | Nieddu, M., Rassu, G., Boatto, G., Bosi, P., Trevisi, P., Giunchedi, P., Carta, A., & Gavini, E. (2014). Improvement of thymol properties by complexation with cyclodextrins: In vitro and in vivo studies. Carbohydrate Polymers, 102(1), 393–399. https://doi.org/10.1016/j.carbpol.2013.10.084 | spa |
dc.relation.references | Niu, A., Wu, H., Ma, F., Tan, S., Wang, G., & Qiu, W. (2022). The antifungal activity of cinnamaldehyde in vapor phase against Aspergillus niger isolated from spoiled paddy. LWT, 159, 113181. https://doi.org/10.1016/J.LWT.2022.113181 | spa |
dc.relation.references | Olivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57(September), 83–92. https://doi.org/10.1016/j.tifs.2016.09.009 | spa |
dc.relation.references | Olivares Tenorio, M. L. (2017). Exploring the potential of an Andean fruit: an interdisciplinary study on the cape gooseberry (Physalis peruviana L.) value chain. https://doi.org/10.18174/393622 | spa |
dc.relation.references | Oliveira, M., Abadias, M., Usall, J., Torres, R., Teixidó, N., & Viñas, I. (2015). Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables - A review. Trends in Food Science and Technology, 46(1), 13–26. https://doi.org/10.1016/j.tifs.2015.07.017 | spa |
dc.relation.references | Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663–673. https://doi.org/10.1016/J.TIFS.2021.02.025 | spa |
dc.relation.references | Pandey, S., Sharma, K., & Gundabala, V. (2022). Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. Food Bioscience, 48, 101730. https://doi.org/10.1016/J.FBIO.2022.101730 | spa |
dc.relation.references | Paulsen, E., Barrios, S., & Lema, P. (2021). Production of packaged ready – to – eat whole strawberries (cv. San Andreas): Packaging conditions for shelf-life extension. Food Packaging and Shelf Life, 29(April), 100696. https://doi.org/10.1016/j.fpsl.2021.100696 | spa |
dc.relation.references | Pérez, D. A., Gómez, J. M., & Castellanos, D. A. (2020). Combined modified atmosphere packaging and guar gum edible coatings to preserve blackberry (Rubus glaucus Benth). Food Science and Technology International, 27(4), 353–365. https://doi.org/10.1177/1082013220959511 | spa |
dc.relation.references | Perumal, A. B., Huang, L., Nambiar, R. B., He, Y., Li, X., & Sellamuthu, P. S. (2022a). Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chemistry, 375(June 2021), 131810. https://doi.org/10.1016/j.foodchem.2021.131810 | spa |
dc.relation.references | Perumal, A. B., Huang, L., Nambiar, R. B., He, Y., Li, X., & Sellamuthu, P. S. (2022b). Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chemistry, 375, 131810. https://doi.org/10.1016/J.FOODCHEM.2021.131810 | spa |
dc.relation.references | Pinto, L., Palma, A., Cefola, M., Pace, B., D’Aquino, S., Carboni, C., & Baruzzi, F. (2020). Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26(October), 100573. https://doi.org/10.1016/j.fpsl.2020.100573 | spa |
dc.relation.references | Pinzón, E. H., Reyes, A. J., Álvarez-herrera, J. G., Leguizamo, M. F., & Joya, J. G. (2015). Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Revista de Ciencias Agrícolas, 32(2), 26–35. | spa |
dc.relation.references | Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922–935. https://doi.org/10.1016/j.ejmech.2017.11.095 | spa |
dc.relation.references | Procolombia. (2021). Uchuva tiene el potencial para superar los US$100 millones en exportaciones en 5 años. https://procolombia.co/noticias/uchuva-tiene-el-potencial-para-superar-los-us100-millones-en-exportaciones-en-5-anos | spa |
dc.relation.references | Procomer, & BID. (2012). Poscosecha de uchuva. | spa |
dc.relation.references | Puente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034 | spa |
dc.relation.references | Qu, S., Yang, K., Chen, L., Liu, M., Geng, Q., He, X., Li, Y., Liu, Y., & Tian, J. (2019). Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Frontiers in Microbiology, 10(December), 1–17. https://doi.org/10.3389/fmicb.2019.02895 | spa |
dc.relation.references | Raghav, P. K., Agarwal, N., & Saini, M. (2012). Edible coating of fruits and vegetables: A review. Education. | spa |
dc.relation.references | Ramírez, P. (2017). Consideraciones para el manejo de Botrytis. Mercoflor-Agro. https://www.metroflorcolombia.com/consideraciones-para-el-manejo-de-botrytis/ | spa |
dc.relation.references | Rangaraj, V. M., Rambabu, K., Banat, F., & Mittal, V. (2021). Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience, 43(July), 101251. https://doi.org/10.1016/j.fbio.2021.101251 | spa |
dc.relation.references | Redagrícola Colombia. (2022). Exportaciones de uchuva colombiana podrían duplicarse tras decisión en EE UU para facilitar su ingreso. https://www.redagricola.com/co/exportaciones-de-uchuva-colombiana-podrian-duplicarse-tras-decision-en-ee-uu-para-facilitar-su-ingreso/ | spa |
dc.relation.references | Reyes, A. J. (2016). Efecto del cloruro de calcio sobre la calidad del fruto de uchuva ( Physalis peruviana L .) Calcium chloride effect on the quality of the cape. 13(2), 7–17. | spa |
dc.relation.references | Rojas, A., Cerro, D., Torres, A., Galotto, M. J., Guarda, A., & Romero, J. (2015). Supercritical impregnation and kinetic release of 2-nonanone in LLDPE films used for active food packaging. Journal of Supercritical Fluids, 104, 76–84. https://doi.org/10.1016/j.supflu.2015.04.031 | spa |
dc.relation.references | Rozenblit, B., Tenenbaum, G., Shagan, A., Corem Salkmon, E., Shabtay-Orbach, A., & Mizrahi, B. (2018). A new volatile antimicrobial agent-releasing patch for preserving fresh foods. Food Packaging and Shelf Life, 18(January), 184–190. https://doi.org/10.1016/j.fpsl.2018.11.003 | spa |
dc.relation.references | Sanla‐Ead, N., Jangchud, A., Chonhenchob, V., & Suppakul, P. (2011). Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose‐based Packaging Films. Packaging and Technology and Science, 29(June), 399–412. https://doi.org/10.1002/pts | spa |
dc.relation.references | Schumacher, J. (2017). How light affects the life of Botrytis. Fungal Genetics and Biology, 106(June), 26–41. https://doi.org/10.1016/j.fgb.2017.06.002 | spa |
dc.relation.references | Šernaitė, L., Rasiukevičiūtė, N., & Valiuškaitė, A. (2020). The extracts of cinnamon and clove as potential biofungicides against strawberry grey mould. Plants, 9(5), 15–20. https://doi.org/10.3390/plants9050613 | spa |
dc.relation.references | Shao, P., Liu, L., Yu, J., Lin, Y., Gao, H., Chen, H., & Sun, P. (2021). An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends in Food Science and Technology, 118(PA), 285–296. https://doi.org/10.1016/j.tifs.2021.10.012 | spa |
dc.relation.references | Sharma, R. R., Singh, D., & Singh, R. (2019). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. https://doi.org/10.1016/J.BIOCONTROL.2009.05.001 | spa |
dc.relation.references | Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A., & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116–131. https://doi.org/10.1016/J.FITOTE.2016.05.016 | spa |
dc.relation.references | Sierra, N. M., Londoño, A., Gómez, J. M., Herrera, A. O., & Castellanos, D. A. (2019). Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature. Food Science and Technology International, 25(5), 370–384. https://doi.org/10.1177/1082013219826825 | spa |
dc.relation.references | Smid, E. J., Koeken, J. P. G., & Gorris, L. G. M. (1996). Fungicidal and fungistatic action of the secondary plant metabolites cinnamaldehyde and carvone. Modern Fungicides and Antimicrobial Compounds, 173–180. | spa |
dc.relation.references | Snyder, A. B., & Worobo, R. W. (2018). The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control, 85, 144–150. https://doi.org/10.1016/J.FOODCONT.2017.09.025 | spa |
dc.relation.references | Sohail, M., Sun, D. W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662. https://doi.org/10.1080/10408398.2018.1449731 | spa |
dc.relation.references | Song, X. C., Canellas, E., Wrona, M., Becerril, R., & Nerin, C. (2020). Comparison of two antioxidant packaging based on rosemary oleoresin and green tea extract coated on polyethylene terephthalate for extending the shelf life of minced pork meat. Food Packaging and Shelf Life, 26(October), 100588. https://doi.org/10.1016/j.fpsl.2020.100588 | spa |
dc.relation.references | Soylu, E. M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143(3), 183–189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015 | spa |
dc.relation.references | Sun, G., Yang, Q., Zhang, A., Guo, J., Liu, X., Wang, Y., & Ma, Q. (2018). Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. International Journal of Food Microbiology, 276, 46–53. https://doi.org/10.1016/J.IJFOODMICRO.2018.04.006 | spa |
dc.relation.references | Suppakul, P. (2016). Cinnamaldehyde and Eugenol: Use in Antimicrobial Packaging. In Antimicrobial Food Packaging. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800723-5.00039-5 | spa |
dc.relation.references | Tapia, M. E., & Fries, A. M. (2007). Guía de campo de los cultivos andinos (FAO (Ed.)). | spa |
dc.relation.references | Treid. (2020). Colombia, líder mundial en la exportación de uchuvas en 2019. https://www.treid.co/post/colombia-lider-mundial-en-la-exportacion-de-uchuvas-en-2019 | spa |
dc.relation.references | Tripathi, A. D., Sharma, R., Agarwal, A., & Haleem, D. R. (2021). Nanoemulsions based edible coatings with potential food applications. International Journal of Biobased Plastics, 3(1), 112–125. https://doi.org/10.1080/24759651.2021.1875615 | spa |
dc.relation.references | Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474–2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005 | spa |
dc.relation.references | Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science and Technology, 98(August 2019), 10–24. https://doi.org/10.1016/j.tifs.2020.01.032 | spa |
dc.relation.references | Valverde, J. M., Guillén, F., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2005). Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and eugenol, menthol, or thymol. Journal of Agricultural and Food Chemistry, 53(19), 7458–7464. https://doi.org/10.1021/jf050913i | spa |
dc.relation.references | Van Kan, J. A. L., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: Relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957–961. https://doi.org/10.1111/mpp.12148 | spa |
dc.relation.references | Varghese, S. A., Siengchin, S., & Parameswaranpillai, J. (2020). Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. Food Bioscience, 38(October), 100785. https://doi.org/10.1016/j.fbio.2020.100785 | spa |
dc.relation.references | Villegas, C., Arrieta, M. P., Rojas, A., Torres, A., Faba, S., Toledo, M. J., Gutierrez, M. A., Zavalla, E., Romero, J., Galotto, M. J., & Valenzuela, X. (2019). PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 176(August), 107336. https://doi.org/10.1016/j.compositesb.2019.107336 | spa |
dc.relation.references | Villegas, Carolina, Torres, A., Rios, M., Rojas, A., Romero, J., de Dicastillo, C. L., Valenzuela, X., Galotto, M. J., & Guarda, A. (2017). Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Research International, 99(June), 650–659. https://doi.org/10.1016/j.foodres.2017.06.031 | spa |
dc.relation.references | Vivas, J. R. C., & Rodríguez, J. M. T. (1998). Método espectrofotométrico en la preparación del inóculo de hongos dematiáceos. Revista Iberoamericana de Micologia, 15(3), 155–157. | spa |
dc.relation.references | Wang, F., Wang, L., Zhang, X., Ma, S., & Zhao, Z. (2022). Enhancement of oil resistance of cellulose packaging paper for food application by coating with materials derived from natural polymers. Journal of Food Engineering, 111039. https://doi.org/10.1016/J.JFOODENG.2022.111039 | spa |
dc.relation.references | Wang, L., Hu, J., Li, D., Reymick, O. O., Tan, X., & Tao, N. (2022). Isolation and control of Botrytis cinerea in postharvest green pepper fruit. Scientia Horticulturae, 302, 111159. https://doi.org/10.1016/J.SCIENTA.2022.111159 | spa |
dc.relation.references | Wilbey, A. (2013). Emerging Food Packaging Technologies. Woodhead Publishing Ltd. | spa |
dc.relation.references | Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8(5), 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x | spa |
dc.relation.references | Wrona, M., Silva, F., Salafranca, J., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2021). Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control, 120(June 2020). https://doi.org/10.1016/j.foodcont.2020.107536 | spa |
dc.relation.references | Wyrwa, J., & Barska, A. (2017). Innovations in the food packaging market: active packaging. European Food Research and Technology, 243(10), 1681–1692. https://doi.org/10.1007/s00217-017-2878-2 | spa |
dc.relation.references | Xiang, Y., Xu, R. G., & Leng, Y. (2022). How alginate monomers contribute to organic fouling on polyamide membrane surfaces? Journal of Membrane Science, 643, 120078. https://doi.org/10.1016/J.MEMSCI.2021.120078 | spa |
dc.relation.references | Yang, W., Weng, Y., Puglia, D., Qi, G., Dong, W., Kenny, J. M., & Ma, P. (2020). Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. International Journal of Biological Macromolecules, 144, 102–110. https://doi.org/10.1016/J.IJBIOMAC.2019.12.085 | spa |
dc.relation.references | Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2017). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17 (1). | spa |
dc.relation.references | Zhao, W., Liang, X., Wang, X., Wang, S., Wang, L., & Jiang, Y. (2022). Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging. Carbohydrate Polymers, 290, 119471. https://doi.org/10.1016/J.CARBPOL.2022.119471 | spa |
dc.relation.references | Zhao, Y., An, J., Su, H., Li, B., Liang, D., & Huang, C. (2022). Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Research International, 155, 111096. https://doi.org/10.1016/J.FOODRES.2022.111096 | spa |
dc.relation.references | Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002 | spa |
dc.relation.references | Zhu, R., Liu, H., Liu, C., Wang, L., Ma, R., Chen, B., Li, L., Niu, J., Fu, M., Zhang, D., & Gao, S. (2017). Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacological Research, 122, 78–89. https://doi.org/10.1016/J.PHRS.2017.05.019 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.ddc | Conservación de frutas | spa |
dc.subject.lemb | Fruit Preservation | eng |
dc.subject.lemb | Preservación de frutas | spa |
dc.subject.lemb | Conservación de frutas | spa |
dc.subject.lemb | Mohos | spa |
dc.subject.lemb | Molds | eng |
dc.subject.proposal | Physalis peruviana L. | other |
dc.subject.proposal | Botrytis cinerea | other |
dc.subject.proposal | Cinamaldehído | spa |
dc.subject.proposal | Bentonita | spa |
dc.subject.proposal | Empaque activo antimicrobiano | spa |
dc.subject.proposal | Cinnamaldehyde | eng |
dc.subject.proposal | Bentonite | eng |
dc.subject.proposal | Antimicrobial active packaging | eng |
dc.subject.proposal | Gooseberry | eng |
dc.subject.proposal | Grey mould | eng |
dc.title | Configuración de un sistema de empaque activo antimicrobiano para frutos frescos de uchuva (Physalis peruviana L.) | spa |
dc.title.translated | Configuration of an antimicrobial active packaging system for fresh cape gooseberry (Physalis peruviana L.) fruits | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Desarrollo y evaluación de un sistema integrado de empaque con actividad antifúngica y control de humedad para la preservación de uchuva (Physalis peruviana) | spa |
oaire.fundername | Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032442136.2022.pdf
- Tamaño:
- 2.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: