Configuración de un sistema de empaque activo antimicrobiano para frutos frescos de uchuva (Physalis peruviana L.)

dc.contributor.advisorHerrera Arévalo, Aníbal Orlando
dc.contributor.advisorCastellanos Espinosa, Diego Alberto
dc.contributor.authorCortes Jaimes, Lesley Andrea
dc.contributor.researchgroupHorticulturaspa
dc.coverage.regionVentaquemada - Boyacá
dc.date.accessioned2022-09-26T19:23:02Z
dc.date.available2022-09-26T19:23:02Z
dc.date.issued2022-08-08
dc.descriptionfotografías a blanco y negro, fotografías a color, ilustraciones, gráficas, tablasspa
dc.description.abstractLa uchuva es un fruto apetecido por sus características organolépticas y nutricionales. Sin embargo, sus posibilidades de mercado son limitadas debido a su rápido deterioro tras la cosecha. Una de las principales causas de degradación de esta fruta es la actividad de microorganismos como Botrytis cinerea. En este estudio se propuso un sistema de empaque activo con actividad antifúngica combinado con atmósferas modificadas (MAP), evaluando la capacidad de conservación de los frutos frescos de uchuva. Inicialmente, se evaluó el efecto antifúngico de tres compuestos diferentes de origen vegetal (cinamaldehído, 2-nonanona y aceite esencial de orégano) y en fase de vapor para determinar la concentración mínima inhibitoria (CMI) para Botrytis cinerea con un ensayo in vitro utilizando un sistema cerrado a 23 °C y 74,66 kPa. En la segunda fase, el componente antimicrobiano con mejor capacidad antifúngica se incluyó en un sistema de empaque activo en forma de bolsitas y se adsorbió hasta su saturación en una matriz de bentonita en polvo. Se envasaron 100 ± 1 g de frutas en bandejas de ácido poliláctico (PLA) y se sellaron con una película de PLA con una perforación de 0,058 mm en el centro formando un MAP. Algunos frutos se inocularon deliberadamente con B. cinerea evaluando 4 tratamientos diferentes: 1) sin elemento activo e inóculo de Botrytis (NN), 2) sin elemento activo y con inóculo (NI), 3) con elemento activo y sin inóculo (AN) y 4) con elemento activo y con inóculo (AI). Los frutos envasados se almacenaron a 6 °C y 75% de HR determinando el deterioro fúngico y los cambios en diversas propiedades de calidad. A partir de las pruebas in vitro, se determinó que el cinamaldehído es el componente con mayor capacidad antifúngica con una CIM de 2,38 µg por cm3 de espacio de cabeza. Con el sistema de envasado activo combinado con MAP, fue posible obtener una vida útil de 43 días para el tratamiento AN y de 33 días para el tratamiento AI, cargando los sobres con una cantidad de cinamaldehído correspondiente a tres veces la CIM para compensar las pérdidas de compuestos debidas a la permeación fuera del envase. El envasado activo con inclusión de cinamaldehído en los sobres combinado con MAP constituye un sistema eficaz e innovador para prolongar la vida útil de las frutas de uchuva y puede aplicarse a otras frutas y verduras frescas. (Texto tomado de la fuente)spa
dc.description.abstractIn this project, the configuration of an active antimicrobial packaging system, to extend the shelf life of fresh cape gooseberry (Physalis peruviana L.) fruits from Ventaquemada, Boyacá, was proposed. Initially, Botrytis cinerea mold was identified as the predominant microorganism causing fruit deterioration. Then, in vitro tests were carried out to establish the antimicrobial effect and the minimum inhibitory concentration (MIC) in vapor phase of three compounds of plant origin: 2-nonanone, cinnamaldehyde and oregano essential oil. The cinnamaldehyde was the most active of them obtaining an MIC of 2.38 µg/cm3 headspace for 40 days of storage at 23 °C. Finally, through in vivo tests, deterioration caused by mold was evaluated in a packaging system of sealed trays of polylactic acid (PLA) with modified atmospheres (MAP) and with an active element in sachet composed of bentonite saturated with cinnamaldehyde performing the following packaging treatments: without sachet and without mold inoculum (SS), without sachet and with mold inoculum (SC), with sachet without mold (CS) and with sachet with mold (CC) for 6 weeks at 6 °C and 75% RH. The sachets were prepared to obtain a concentration of 7,14 ± 0.1 µg cinnamaldehyde per cm3 per headspace to evaluate its vapor phase release. The shelf life obtained for cape gooseberry fruits constitutes an opportunity to enhance the commercialization of this product by reducing losses in storage and transport through an integrated, active packaging with natural and biodegradable materials.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCalidad de los Alimentos - Empaques y Envases para Alimentosspa
dc.description.sponsorshipConvocatoria de innovación entre actores del sistema regional-departamento de Boyacá-2018, proyecto No 66121, subvención 80740-554-2019spa
dc.format.extentxiv, 100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82329
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAbarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968–975. https://doi.org/10.1016/j.foodchem.2015.10.023spa
dc.relation.referencesAbarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Fávaro Perez, M. A., Ramos Souza Felipe, F., & Padula, M. (2017). Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585–1594. https://doi.org/10.1007/s11947-017-1926-zspa
dc.relation.referencesAbbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R., & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Medicale, 24(2), e51–e56. https://doi.org/10.1016/j.mycmed.2014.01.063spa
dc.relation.referencesAgronet. (2022). Reporte:Área, Producción y Rendimiento Nacional por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesAhmad A, Khan A, Kumar P, Bhatt RP, M. N. (2011). Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast, Aug;28(8)(Epub 2011 Jul 13), 611–617. https://doi.org/10.1002/yea.1890spa
dc.relation.referencesAlamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., Shamlan, G., Alqah, H. A., & Qasha, A. S. (2021). Food packaging’s materials: A food safety perspective. Saudi Journal of Biological Sciences, 28(8), 4490–4499. https://doi.org/10.1016/J.SJBS.2021.04.047spa
dc.relation.referencesAlegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 100122. https://doi.org/10.1016/J.AFRES.2022.100122spa
dc.relation.referencesAlmasaudi, N. M., Al-Qurashi, A. D., Elsayed, M. I., & Abo-Elyousr, K. A. M. (2022). Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. Journal of Plant Pathology, 104(1), 317–328. https://doi.org/10.1007/s42161-021-01008-8spa
dc.relation.referencesAlmenar, E., Del Valle, V., Catala, R., & Gavara, R. (2007). Active package for wild strawberry fruit (Fragaria vesca L.). Journal of Agricultural and Food Chemistry, 55(6), 2240–2245. https://doi.org/10.1021/jf062809mspa
dc.relation.referencesÁlvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90. https://doi.org/10.1016/j.phymed.2021.153626spa
dc.relation.referencesANALDEX. (2021). Informe exportaciones de uchuva. https://www.analdex.org/2021/10/20/informe-exportaciones-de-uchuva/spa
dc.relation.referencesANALDEX. (2022). Uchuva colombiana a la conquista: en solo dos meses el país exportó US$6,5 millones. https://www.analdex.org/2022/05/06/uchuva-colombiana-a-la-conquista-en-solo-dos-meses-el-pais-exporto-us65-millones/spa
dc.relation.referencesAsohofrucol, & Fondo Nacional de Fomento Hortofrutícola. (2021). Balance del sector hortofrutícola 2020.spa
dc.relation.referencesASTM. (2013). G21-09 Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi.spa
dc.relation.referencesAvila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1–2), 66–72. https://doi.org/10.1016/j.ijfoodmicro.2011.10.017spa
dc.relation.referencesAvissar, I., Droby, S., & Pesis, E. (1990). Characterization of acetaldehyde effect on Rhizopus stolonifer and Botrytis cinerea. Annals of Applied Biology, 116, 213–220.spa
dc.relation.referencesBalaguera-López, H. E., Martínez, C. A., & Aníbal Herrera, A. (2015). Refrigeration affects the postharvest behavior of 1-methylcyclopropene-treated cape gooseberry (Physalis peruviana L.) fruits with the calyx. Agronomia Colombiana, 33(3), 356–364. https://doi.org/10.15446/agron.colomb.v33n3.51896spa
dc.relation.referencesBandyopadhyay, S., Saha, N., Brodnjak, U. V., & Sáha, P. (2019). Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. Food Packaging and Shelf Life, 22(February). https://doi.org/10.1016/j.fpsl.2019.100402spa
dc.relation.referencesBelay, Z. A., Caleb, O. J., & Opara, U. L. (2019). Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packaging and Shelf Life, 21(May). https://doi.org/10.1016/j.fpsl.2019.100359spa
dc.relation.referencesBell, S. R., Hernández Montiel, L. G., González Estrada, R. R., & Gutiérrez Martínez, P. (2021). Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. Lwt, 149(January), 7–12. https://doi.org/10.1016/j.lwt.2021.112046spa
dc.relation.referencesBernardos, A., Bozik, M., Alvarez, S., Saskova, M., Perez-Esteve, E., Kloucek, P., Lhotka, M., Frankova, A., & Martinez-Manez, R. (2019). The efficacy of essential oil components loaded into montmorillonite against Aspergillus niger and Staphylococcus aureus. Flavour and Fragrance Journal, 34(3), 151–162. https://doi.org/10.1002/ffj.3488spa
dc.relation.referencesBouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457–1474. https://doi.org/10.1002/jsfa.9357spa
dc.relation.referencesBurt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022spa
dc.relation.referencesCalvo, H., Mendiara, I., Arias, E., Gracia, A. P., Blanco, D., & Venturini, M. E. (2020). Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biology and Technology, 166. https://doi.org/10.1016/j.postharvbio.2020.111208spa
dc.relation.referencesCamele, I., Altieri, L., de Martino, L., de Feo, V., Mancini, E., & Rana, G. L. (2012). In vitro control of post-harvest fruit rot fungi by some plant essential oil components. International Journal of Molecular Sciences, 13(2), 2290–2300. https://doi.org/10.3390/ijms13022290spa
dc.relation.referencesCanales, D., Montoille, L., Rivas, L. M., Ortíz, J. A., Yañez-S, M., Rabagliati, F. M., Ulloa, M. T., Alvarez, E., & Zapata, P. A. (2019). Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea. MDPI, 1–17. https://doi.org/10.3390/coatings9120795spa
dc.relation.referencesCarvalho, C. P., & Moreno, D. A. (Eds.). (2014). Uchuva Physalis peruviana L.: fruta andina para el mundo. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo – CYTED.spa
dc.relation.referencesCastellanos, D. A., Cerisuelo, J. P., Hernandez-Muñoz, P., Herrera, A. O., & Gavara, R. (2016). Modelling the evolution of O2 and CO2 concentrations in MAP of a fresh product: Application to tomato. Journal of Food Engineering, 168, 84–95. https://doi.org/10.1016/J.JFOODENG.2015.07.019spa
dc.relation.referencesCCI, C. C. I. (2006). Plan Hortícola Nacional. Capítulo 2: Entorno Nacional.spa
dc.relation.referencesCedeño, M. M., & Montenegro, D. M. (2004). Plan exportador, logístico y comercialización de uchuva al mercado de Estados Unidos para FRUTEXPO SCI Ltda. Pontifica Universidad Javeriana.spa
dc.relation.referencesCerdán, M. (2022). Arcillas en cosmética natural: origen, tipos, usos y aplicaciones. Mentactiva. https://www.mentactiva.com/arcillas-en-cosmetica-natural/spa
dc.relation.referencesChawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2(August 2020), 100024. https://doi.org/10.1016/j.carpta.2020.100024spa
dc.relation.referencesChen, M., Chen, X., Ray, S., & Yam, K. (2020). Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends in Food Science and Technology, 95(November 2019), 33–44. https://doi.org/10.1016/j.tifs.2019.11.005spa
dc.relation.referencesCiro, H., Buitrago, O., & Pérez, S. (2007). Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Revista Facultad Nacional de Agronomía.spa
dc.relation.referencesClegg, F., Breen, C., Muranyi, P., & Schönweitz, C. (2019). Antimicrobial, starch based barrier coatings prepared using mixed silver/sodium exchanged bentonite. Applied Clay Science, 179(May), 105144. https://doi.org/10.1016/j.clay.2019.105144spa
dc.relation.referencesConesa, A., Artés-Hernández, F., Geysen, S., Nicolaï, B., & Artés, F. (2007). High oxygen combined with high carbon dioxide improvesmicrobial and sensory quality of fresh-cut peppers. Postharvest Biology and Technology, 43(2), 230–237. https://doi.org/10.1016/J.POSTHARVBIO.2006.08.016spa
dc.relation.referencesContini, C., Katsikogianni, M. G., O’Neill, F. T., O’Sullivan, M., Dowling, D. P., & Monahan, F. J. (2011). Development of active packaging containing natural antioxidants. Procedia Food Science, 1, 224–228. https://doi.org/10.1016/J.PROFOO.2011.09.035spa
dc.relation.referencesCota, L. V., Maffia, L. A., Mizubuti, E. S. G., Macedo, P. E. F., & Antunes, R. F. (2008). Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control, 46(3), 515–522. https://doi.org/10.1016/j.biocontrol.2008.04.023spa
dc.relation.referencesCristescu, S. M., De Martinis, D., Te Lintel Hekkert, S., Parker, D. H., & Harren, F. J. M. (2002). Ethylene production by Botrytis cinerea in vitro and in tomatoes. Applied and Environmental Microbiology, 68(11), 5342–5350. https://doi.org/10.1128/AEM.68.11.5342-5350.2002spa
dc.relation.referencesde Oliveira, L. H., Trigueiro, P., Souza, J. S. N., de Carvalho, M. S., Osajima, J. A., da Silva-Filho, E. C., & Fonseca, M. G. (2022). Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids and Surfaces B: Biointerfaces, 209(October 2021). https://doi.org/10.1016/j.colsurfb.2021.112186spa
dc.relation.referencesDe Souza, A. C., Dias, A. M. A., Sousa, H. C., & Tadini, C. C. (2014). Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydrate Polymers, 102(1), 830–837. https://doi.org/10.1016/j.carbpol.2013.10.082spa
dc.relation.referencesDe Souza, A. C., Ditchfield, C., & Tadini, C. (2009). Biodegradable Films Based on Biopolymers for Food Industries. 511–537. https://doi.org/10.1201/9781420086072-c17spa
dc.relation.referencesDNP. (2020). Estudio de pérdida y desperdicio de alimentos en Colombia.spa
dc.relation.referencesEjaz, M., Arfat, Y. A., Mulla, M., & Ahmed, J. (2018). Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113–121. https://doi.org/10.1016/J.FPSL.2017.12.004spa
dc.relation.referencesEl-Saber Batiha, G., Hussein, D. E., Algammal, A. M., George, T. T., Jeandet, P., Al-Snafi, A. E., Tiwari, A., Pagnossa, J. P., Lima, C. M., Thorat, N. D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H. F., & Cruz-Martins, N. (2021). Application of natural antimicrobials in food preservation: Recent views. Food Control, 126(March). https://doi.org/10.1016/j.foodcont.2021.108066spa
dc.relation.referencesFang, Y., & Wakisaka, M. (2021). A review on the modified atmosphere preservation of fruits and vegetables with cutting-edge technologies. Agriculture (Switzerland), 11(10), 1–16. https://doi.org/10.3390/agriculture11100992spa
dc.relation.referencesFernandez, I. (2022). Berries, un consumo imparable. Mercados. https://revistamercados.com/berries-un-consumo-imparable/spa
dc.relation.referencesFischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva ( Physalis peruviana L .) 1. 1–15.spa
dc.relation.referencesFischer, G., Herrera, A., & Almanza, P. J. (2011). Cape gooseberry ( Physalis peruviana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing Limited. https://doi.org/10.1533/9780857092762.374spa
dc.relation.referencesGaravito, J., Herrera, A. O., & Castellanos, D. A. (2021). A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (Physalis peruviana) fruits. Biosystems Engineering, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015spa
dc.relation.referencesGaravito, J., Mendoza, S. M., & Castellanos, D. A. (2022). Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. Journal of Food Engineering, 314(April 2021), 110761. https://doi.org/10.1016/j.jfoodeng.2021.110761spa
dc.relation.referencesGómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science and Technology, 35(1), 42–51. https://doi.org/10.1016/j.tifs.2013.10.008spa
dc.relation.referencesGuerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C., & Antunes, M. D. C. (2015). The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biology and Technology, 100, 226–233. https://doi.org/10.1016/j.postharvbio.2014.09.002spa
dc.relation.referencesGuilbert, S., Guillaume, C., & Gontard, N. (2011). New packaging materials based on renewable resources: Properties, applications, and prospects. Food Engineering Interfaces, 619–630. https://doi.org/10.1016/b978-0-12-394601-0.00026-6spa
dc.relation.referencesGuo, H., Qin, X., Wu, Y., Yu, W., Liu, J., Xi, Y., Dou, G., Wang, L., & Xiao, H. (2019). Biocontrol of Gray Mold of Cherry Tomatoes with the Volatile Organic Monomer from Hanseniaspora uvarum, Trans-Cinnamaldehyde. Food and Bioprocess Technology, 12(11), 1809–1820. https://doi.org/10.1007/s11947-019-02319-6spa
dc.relation.referencesHan, J. H. (2005). Antimicrobial packaging system. Innovations in Food Packaging, 80–107.spa
dc.relation.referencesHe, C., Zhang, Z., Li, B., Xu, Y., & Tian, S. (2019a). Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology, 151(August 2018), 134–141. https://doi.org/10.1016/j.postharvbio.2019.02.009spa
dc.relation.referencesHe, C., Zhang, Z., Li, B., Xu, Y., & Tian, S. (2019b). Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology, 151(February), 134–141. https://doi.org/10.1016/j.postharvbio.2019.02.009spa
dc.relation.referencesHernández-González, G. (2003). Empacado de uchuva (Physalis peruviana L.) en películas poliméricas con atmósferas modificadas. [Universidad de la Salle]. https://ciencia.lasalle.edu.co/ing_alimentos/290spa
dc.relation.referencesHernández-Muñoz, P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biology and Technology, 39(3), 247–253. https://doi.org/10.1016/J.POSTHARVBIO.2005.11.006spa
dc.relation.referencesHoagland, L., Ximenes, E., Ku, S., & Ladisch, M. (2018). Foodborne pathogens in horticultural production systems: Ecology and mitigation. Scientia Horticulturae, 236, 192–206. https://doi.org/10.1016/J.SCIENTA.2018.03.040spa
dc.relation.referencesHolešová, S., Hundáková, M., & Pazdziora, E. (2016). Antibacterial Kaolinite Based Nanocomposites. Procedia Materials Science, 12, 124–129. https://doi.org/10.1016/j.mspro.2016.03.022spa
dc.relation.referencesHou, H., Zhang, X., Zhao, T., & Zhou, L. (2020). Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. PeerJ, 8, 1–25. https://doi.org/10.7717/peerj.9626spa
dc.relation.referencesHuang, Xinduo, Han, Y., Du, J., Guo, P., Wang, Y., Ma, K., Li, N., Zhang, Z., Li, Y., & Pan, J. (2021). Inhibitory effect of cinnamaldehyde on main destructive microorganisms of Nanhai no. 1 Shipwreck. Applied Sciences (Switzerland), 11(11). https://doi.org/10.3390/app11115262spa
dc.relation.referencesHuang, Xueying, Ge, X., Zhou, L., & Wang, Y. (2022). Eugenol embedded zein and poly(lactic acid) film as active food packaging: Formation, characterization, and antimicrobial effects. Food Chemistry, 384, 132482. https://doi.org/10.1016/J.FOODCHEM.2022.132482spa
dc.relation.referencesNTC 5166 Frutas frescas. Uchuva. Especificaciones del empaque, (2003).spa
dc.relation.referencesNTC 6302-1 Envases, empaques y embalajes. Vocabulario., (2018).spa
dc.relation.referencesNTC 4580 Frutas frescas. Uchuva. Especificaciones, (2022).spa
dc.relation.referencesImran, M., Revol-Junelles, A. M., Martyn, A., Tehrany, E. A., Jacquot, M., Linder, M., & Desobry, S. (2010). Active food packaging evolution: Transformation from micro- to nanotechnology. Critical Reviews in Food Science and Nutrition, 50(9), 799–821. https://doi.org/10.1080/10408398.2010.503694spa
dc.relation.referencesJabeen, N., Majid, I., & Nayik, G. A. (2015). Bioplastics and food packaging: A review. Cogent Food and Agriculture, 1(1). https://doi.org/10.1080/23311932.2015.1117749spa
dc.relation.referencesJanjarasskul, T., & Suppakul, P. (2018). Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition, 58(5), 808–831. https://doi.org/10.1080/10408398.2016.1225278spa
dc.relation.referencesKapetanakou, A. E., & Skandamis, P. N. (2016). Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Current Opinion in Food Science, 12, 1–12. https://doi.org/10.1016/j.cofs.2016.06.001spa
dc.relation.referencesKardam, S. K., Kadam, A. A., & Dutt, D. (2021). Retention of cinnamaldehyde in poly(vinyl alcohol) films intended for preservation of faba beans through vapor-phase antimicrobial effect. Food Packaging and Shelf Life, 29, 100704. https://doi.org/10.1016/J.FPSL.2021.100704spa
dc.relation.referencesKuorwel, K. K., Cran, M. J., Orbell, J. D., Buddhadasa, S., & Bigger, S. W. (2015). Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Comprehensive Reviews in Food Science and Food Safety, 14(4), 411–430. https://doi.org/10.1111/1541-4337.12139spa
dc.relation.referencesLanchero, O., Velandia, G., Fischer, G., Varela, N. C., & García, H. (2007). Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Ciencia & Tecnología Agropecuaria, 8(1), 61–68. https://doi.org/10.21930/rcta.vol8_num1_art:84spa
dc.relation.referencesLeyva-López, N., Gutiérrez-Grijalva, E. P., Vazquez-Olivo, G., & Heredia, J. B. (2017). Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules, 22(6). https://doi.org/10.3390/molecules22060989spa
dc.relation.referencesLi, Q., Ren, T., Perkins, P., Hu, X., & Wang, X. (2021). Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control, 124(August 2020), 107876. https://doi.org/10.1016/j.foodcont.2021.107876spa
dc.relation.referencesLi, X., Xiao, N., Xiao, G., Bai, W., Zhang, X. Q., & Zhao, W. (2021). Lemon essential oil/vermiculite encapsulated in electrospun konjac glucomannan-grafted-poly (acrylic acid)/polyvinyl alcohol bacteriostatic pad: Sustained control release and its application in food preservation. Food Chemistry, 348(December 2020), 129021. https://doi.org/10.1016/j.foodchem.2021.129021spa
dc.relation.referencesLiu, B., Xue, W. wen, Guo, Z. li, Liu, S. yu, Zhu, Q. nan, Pang, X. qun, Zhang, Z. qi, & Fang, F. (2021). Water loss and pericarp browning of litchi (Litchi chinensis) and longan (Dimocarpus longan) fruit maintain seed vigor. Scientia Horticulturae, 290, 110519. https://doi.org/10.1016/J.SCIENTA.2021.110519spa
dc.relation.referencesLufu, R., Ambaw, A., & Opara, U. L. (2020). Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272, 109519. https://doi.org/10.1016/J.SCIENTA.2020.109519spa
dc.relation.referencesManso, S., Becerril, R., Nerín, C., & Gómez-Lus, R. (2015). Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Control, 47, 20–26. https://doi.org/10.1016/j.foodcont.2014.06.014spa
dc.relation.referencesMarchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402–414. https://doi.org/10.1016/j.foodchem.2016.04.111spa
dc.relation.referencesMasek, A., Latos, M., Piotrowska, M., & Zaborski, M. (2018). The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packaging and Shelf Life, 16, 51–58. https://doi.org/10.1016/J.FPSL.2018.02.001spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2022). Colombia es el mayor productor y exportador de uchuva a nivel mundial. MADR Noticias. https://www.minagricultura.gov.co/noticias/Paginas/Colombia-es-el-mayor-productor-y-exportador-de-uchuva-a-nivel-mundial.aspxspa
dc.relation.referencesMontes-de-Oca-Ávalos, J. M., Altamura, D., Herrera, M. L., Huck-Iriart, C., Scattarella, F., Siliqi, D., Giannini, C., & Candal, R. J. (2020). Physical and structural properties of whey protein concentrate - Corn oil - TiO2 nanocomposite films for edible food-packaging. Food Packaging and Shelf Life, 26, 100590. https://doi.org/10.1016/J.FPSL.2020.100590spa
dc.relation.referencesMoreno Guerrero, C., Andrade Cuvi, M. J., & Concellón, A. (2012). Efecto del uso combinado de la radiación UV-C y atmósfera modificada sobre el tiempo de vida útil de uvilla (Physalis peruviana L.) orgánica. Tsafiqui - Revista Científica En Ciencias Sociales, 3, 43–51. https://doi.org/10.29019/tsafiqui.v0i3.220spa
dc.relation.referencesMostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science and Technology, 103(April 2019), 321–332. https://doi.org/10.1016/j.tifs.2020.07.009spa
dc.relation.referencesMousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018a). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19. https://doi.org/10.1016/j.fbp.2018.05.001spa
dc.relation.referencesMousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018b). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19. https://doi.org/10.1016/J.FBP.2018.05.001spa
dc.relation.referencesMukurumbira, A. R., Shellie, R. A., Keast, R., Palombo, E. A., & Jadhav, S. R. (2022). Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control, 136(October 2021), 108883. https://doi.org/10.1016/j.foodcont.2022.108883spa
dc.relation.referencesMuñoz, A., Barbosa, A., Bustos, D., Ramírez, Y., Vásquez, Y., García, J., & Guancha, M. (2017). Conservación de uchuva (Physalis peruviana) mediante la aplicación de un recubrimiento a base de quitosano y áloe vera, utilizando el método de aspersión. Informador Técnico, 81(1), 86. https://doi.org/10.23850/22565035.722spa
dc.relation.referencesNaciones Unidas. (2021). Un reciente Día Internacional con un difícil punto de partida. https://www.un.org/es/observances/end-food-waste-day/backgroundspa
dc.relation.referencesNath, D., R, S., Pal, K., & Sarkar, P. (2022). Nanoclay-based active food packaging systems: A review. Food Packaging and Shelf Life, 31(May 2021), 100803. https://doi.org/10.1016/j.fpsl.2021.100803spa
dc.relation.referencesNieddu, M., Rassu, G., Boatto, G., Bosi, P., Trevisi, P., Giunchedi, P., Carta, A., & Gavini, E. (2014). Improvement of thymol properties by complexation with cyclodextrins: In vitro and in vivo studies. Carbohydrate Polymers, 102(1), 393–399. https://doi.org/10.1016/j.carbpol.2013.10.084spa
dc.relation.referencesNiu, A., Wu, H., Ma, F., Tan, S., Wang, G., & Qiu, W. (2022). The antifungal activity of cinnamaldehyde in vapor phase against Aspergillus niger isolated from spoiled paddy. LWT, 159, 113181. https://doi.org/10.1016/J.LWT.2022.113181spa
dc.relation.referencesOlivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57(September), 83–92. https://doi.org/10.1016/j.tifs.2016.09.009spa
dc.relation.referencesOlivares Tenorio, M. L. (2017). Exploring the potential of an Andean fruit: an interdisciplinary study on the cape gooseberry (Physalis peruviana L.) value chain. https://doi.org/10.18174/393622spa
dc.relation.referencesOliveira, M., Abadias, M., Usall, J., Torres, R., Teixidó, N., & Viñas, I. (2015). Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables - A review. Trends in Food Science and Technology, 46(1), 13–26. https://doi.org/10.1016/j.tifs.2015.07.017spa
dc.relation.referencesPanahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663–673. https://doi.org/10.1016/J.TIFS.2021.02.025spa
dc.relation.referencesPandey, S., Sharma, K., & Gundabala, V. (2022). Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. Food Bioscience, 48, 101730. https://doi.org/10.1016/J.FBIO.2022.101730spa
dc.relation.referencesPaulsen, E., Barrios, S., & Lema, P. (2021). Production of packaged ready – to – eat whole strawberries (cv. San Andreas): Packaging conditions for shelf-life extension. Food Packaging and Shelf Life, 29(April), 100696. https://doi.org/10.1016/j.fpsl.2021.100696spa
dc.relation.referencesPérez, D. A., Gómez, J. M., & Castellanos, D. A. (2020). Combined modified atmosphere packaging and guar gum edible coatings to preserve blackberry (Rubus glaucus Benth). Food Science and Technology International, 27(4), 353–365. https://doi.org/10.1177/1082013220959511spa
dc.relation.referencesPerumal, A. B., Huang, L., Nambiar, R. B., He, Y., Li, X., & Sellamuthu, P. S. (2022a). Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chemistry, 375(June 2021), 131810. https://doi.org/10.1016/j.foodchem.2021.131810spa
dc.relation.referencesPerumal, A. B., Huang, L., Nambiar, R. B., He, Y., Li, X., & Sellamuthu, P. S. (2022b). Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chemistry, 375, 131810. https://doi.org/10.1016/J.FOODCHEM.2021.131810spa
dc.relation.referencesPinto, L., Palma, A., Cefola, M., Pace, B., D’Aquino, S., Carboni, C., & Baruzzi, F. (2020). Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26(October), 100573. https://doi.org/10.1016/j.fpsl.2020.100573spa
dc.relation.referencesPinzón, E. H., Reyes, A. J., Álvarez-herrera, J. G., Leguizamo, M. F., & Joya, J. G. (2015). Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Revista de Ciencias Agrícolas, 32(2), 26–35.spa
dc.relation.referencesPisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922–935. https://doi.org/10.1016/j.ejmech.2017.11.095spa
dc.relation.referencesProcolombia. (2021). Uchuva tiene el potencial para superar los US$100 millones en exportaciones en 5 años. https://procolombia.co/noticias/uchuva-tiene-el-potencial-para-superar-los-us100-millones-en-exportaciones-en-5-anosspa
dc.relation.referencesProcomer, & BID. (2012). Poscosecha de uchuva.spa
dc.relation.referencesPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034spa
dc.relation.referencesQu, S., Yang, K., Chen, L., Liu, M., Geng, Q., He, X., Li, Y., Liu, Y., & Tian, J. (2019). Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Frontiers in Microbiology, 10(December), 1–17. https://doi.org/10.3389/fmicb.2019.02895spa
dc.relation.referencesRaghav, P. K., Agarwal, N., & Saini, M. (2012). Edible coating of fruits and vegetables: A review. Education.spa
dc.relation.referencesRamírez, P. (2017). Consideraciones para el manejo de Botrytis. Mercoflor-Agro. https://www.metroflorcolombia.com/consideraciones-para-el-manejo-de-botrytis/spa
dc.relation.referencesRangaraj, V. M., Rambabu, K., Banat, F., & Mittal, V. (2021). Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience, 43(July), 101251. https://doi.org/10.1016/j.fbio.2021.101251spa
dc.relation.referencesRedagrícola Colombia. (2022). Exportaciones de uchuva colombiana podrían duplicarse tras decisión en EE UU para facilitar su ingreso. https://www.redagricola.com/co/exportaciones-de-uchuva-colombiana-podrian-duplicarse-tras-decision-en-ee-uu-para-facilitar-su-ingreso/spa
dc.relation.referencesReyes, A. J. (2016). Efecto del cloruro de calcio sobre la calidad del fruto de uchuva ( Physalis peruviana L .) Calcium chloride effect on the quality of the cape. 13(2), 7–17.spa
dc.relation.referencesRojas, A., Cerro, D., Torres, A., Galotto, M. J., Guarda, A., & Romero, J. (2015). Supercritical impregnation and kinetic release of 2-nonanone in LLDPE films used for active food packaging. Journal of Supercritical Fluids, 104, 76–84. https://doi.org/10.1016/j.supflu.2015.04.031spa
dc.relation.referencesRozenblit, B., Tenenbaum, G., Shagan, A., Corem Salkmon, E., Shabtay-Orbach, A., & Mizrahi, B. (2018). A new volatile antimicrobial agent-releasing patch for preserving fresh foods. Food Packaging and Shelf Life, 18(January), 184–190. https://doi.org/10.1016/j.fpsl.2018.11.003spa
dc.relation.referencesSanla‐Ead, N., Jangchud, A., Chonhenchob, V., & Suppakul, P. (2011). Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose‐based Packaging Films. Packaging and Technology and Science, 29(June), 399–412. https://doi.org/10.1002/ptsspa
dc.relation.referencesSchumacher, J. (2017). How light affects the life of Botrytis. Fungal Genetics and Biology, 106(June), 26–41. https://doi.org/10.1016/j.fgb.2017.06.002spa
dc.relation.referencesŠernaitė, L., Rasiukevičiūtė, N., & Valiuškaitė, A. (2020). The extracts of cinnamon and clove as potential biofungicides against strawberry grey mould. Plants, 9(5), 15–20. https://doi.org/10.3390/plants9050613spa
dc.relation.referencesShao, P., Liu, L., Yu, J., Lin, Y., Gao, H., Chen, H., & Sun, P. (2021). An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends in Food Science and Technology, 118(PA), 285–296. https://doi.org/10.1016/j.tifs.2021.10.012spa
dc.relation.referencesSharma, R. R., Singh, D., & Singh, R. (2019). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. https://doi.org/10.1016/J.BIOCONTROL.2009.05.001spa
dc.relation.referencesShreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A., & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116–131. https://doi.org/10.1016/J.FITOTE.2016.05.016spa
dc.relation.referencesSierra, N. M., Londoño, A., Gómez, J. M., Herrera, A. O., & Castellanos, D. A. (2019). Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature. Food Science and Technology International, 25(5), 370–384. https://doi.org/10.1177/1082013219826825spa
dc.relation.referencesSmid, E. J., Koeken, J. P. G., & Gorris, L. G. M. (1996). Fungicidal and fungistatic action of the secondary plant metabolites cinnamaldehyde and carvone. Modern Fungicides and Antimicrobial Compounds, 173–180.spa
dc.relation.referencesSnyder, A. B., & Worobo, R. W. (2018). The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control, 85, 144–150. https://doi.org/10.1016/J.FOODCONT.2017.09.025spa
dc.relation.referencesSohail, M., Sun, D. W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662. https://doi.org/10.1080/10408398.2018.1449731spa
dc.relation.referencesSong, X. C., Canellas, E., Wrona, M., Becerril, R., & Nerin, C. (2020). Comparison of two antioxidant packaging based on rosemary oleoresin and green tea extract coated on polyethylene terephthalate for extending the shelf life of minced pork meat. Food Packaging and Shelf Life, 26(October), 100588. https://doi.org/10.1016/j.fpsl.2020.100588spa
dc.relation.referencesSoylu, E. M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143(3), 183–189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015spa
dc.relation.referencesSun, G., Yang, Q., Zhang, A., Guo, J., Liu, X., Wang, Y., & Ma, Q. (2018). Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. International Journal of Food Microbiology, 276, 46–53. https://doi.org/10.1016/J.IJFOODMICRO.2018.04.006spa
dc.relation.referencesSuppakul, P. (2016). Cinnamaldehyde and Eugenol: Use in Antimicrobial Packaging. In Antimicrobial Food Packaging. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800723-5.00039-5spa
dc.relation.referencesTapia, M. E., & Fries, A. M. (2007). Guía de campo de los cultivos andinos (FAO (Ed.)).spa
dc.relation.referencesTreid. (2020). Colombia, líder mundial en la exportación de uchuvas en 2019. https://www.treid.co/post/colombia-lider-mundial-en-la-exportacion-de-uchuvas-en-2019spa
dc.relation.referencesTripathi, A. D., Sharma, R., Agarwal, A., & Haleem, D. R. (2021). Nanoemulsions based edible coatings with potential food applications. International Journal of Biobased Plastics, 3(1), 112–125. https://doi.org/10.1080/24759651.2021.1875615spa
dc.relation.referencesTrombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474–2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005spa
dc.relation.referencesUmaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science and Technology, 98(August 2019), 10–24. https://doi.org/10.1016/j.tifs.2020.01.032spa
dc.relation.referencesValverde, J. M., Guillén, F., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2005). Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and eugenol, menthol, or thymol. Journal of Agricultural and Food Chemistry, 53(19), 7458–7464. https://doi.org/10.1021/jf050913ispa
dc.relation.referencesVan Kan, J. A. L., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: Relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957–961. https://doi.org/10.1111/mpp.12148spa
dc.relation.referencesVarghese, S. A., Siengchin, S., & Parameswaranpillai, J. (2020). Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. Food Bioscience, 38(October), 100785. https://doi.org/10.1016/j.fbio.2020.100785spa
dc.relation.referencesVillegas, C., Arrieta, M. P., Rojas, A., Torres, A., Faba, S., Toledo, M. J., Gutierrez, M. A., Zavalla, E., Romero, J., Galotto, M. J., & Valenzuela, X. (2019). PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 176(August), 107336. https://doi.org/10.1016/j.compositesb.2019.107336spa
dc.relation.referencesVillegas, Carolina, Torres, A., Rios, M., Rojas, A., Romero, J., de Dicastillo, C. L., Valenzuela, X., Galotto, M. J., & Guarda, A. (2017). Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Research International, 99(June), 650–659. https://doi.org/10.1016/j.foodres.2017.06.031spa
dc.relation.referencesVivas, J. R. C., & Rodríguez, J. M. T. (1998). Método espectrofotométrico en la preparación del inóculo de hongos dematiáceos. Revista Iberoamericana de Micologia, 15(3), 155–157.spa
dc.relation.referencesWang, F., Wang, L., Zhang, X., Ma, S., & Zhao, Z. (2022). Enhancement of oil resistance of cellulose packaging paper for food application by coating with materials derived from natural polymers. Journal of Food Engineering, 111039. https://doi.org/10.1016/J.JFOODENG.2022.111039spa
dc.relation.referencesWang, L., Hu, J., Li, D., Reymick, O. O., Tan, X., & Tao, N. (2022). Isolation and control of Botrytis cinerea in postharvest green pepper fruit. Scientia Horticulturae, 302, 111159. https://doi.org/10.1016/J.SCIENTA.2022.111159spa
dc.relation.referencesWilbey, A. (2013). Emerging Food Packaging Technologies. Woodhead Publishing Ltd.spa
dc.relation.referencesWilliamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8(5), 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.xspa
dc.relation.referencesWrona, M., Silva, F., Salafranca, J., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2021). Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control, 120(June 2020). https://doi.org/10.1016/j.foodcont.2020.107536spa
dc.relation.referencesWyrwa, J., & Barska, A. (2017). Innovations in the food packaging market: active packaging. European Food Research and Technology, 243(10), 1681–1692. https://doi.org/10.1007/s00217-017-2878-2spa
dc.relation.referencesXiang, Y., Xu, R. G., & Leng, Y. (2022). How alginate monomers contribute to organic fouling on polyamide membrane surfaces? Journal of Membrane Science, 643, 120078. https://doi.org/10.1016/J.MEMSCI.2021.120078spa
dc.relation.referencesYang, W., Weng, Y., Puglia, D., Qi, G., Dong, W., Kenny, J. M., & Ma, P. (2020). Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. International Journal of Biological Macromolecules, 144, 102–110. https://doi.org/10.1016/J.IJBIOMAC.2019.12.085spa
dc.relation.referencesYildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2017). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17 (1).spa
dc.relation.referencesZhao, W., Liang, X., Wang, X., Wang, S., Wang, L., & Jiang, Y. (2022). Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging. Carbohydrate Polymers, 290, 119471. https://doi.org/10.1016/J.CARBPOL.2022.119471spa
dc.relation.referencesZhao, Y., An, J., Su, H., Li, B., Liang, D., & Huang, C. (2022). Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Research International, 155, 111096. https://doi.org/10.1016/J.FOODRES.2022.111096spa
dc.relation.referencesZhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002spa
dc.relation.referencesZhu, R., Liu, H., Liu, C., Wang, L., Ma, R., Chen, B., Li, L., Niu, J., Fu, M., Zhang, D., & Gao, S. (2017). Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacological Research, 122, 78–89. https://doi.org/10.1016/J.PHRS.2017.05.019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddcConservación de frutasspa
dc.subject.lembFruit Preservationeng
dc.subject.lembPreservación de frutasspa
dc.subject.lembConservación de frutasspa
dc.subject.lembMohosspa
dc.subject.lembMoldseng
dc.subject.proposalPhysalis peruviana L.other
dc.subject.proposalBotrytis cinereaother
dc.subject.proposalCinamaldehídospa
dc.subject.proposalBentonitaspa
dc.subject.proposalEmpaque activo antimicrobianospa
dc.subject.proposalCinnamaldehydeeng
dc.subject.proposalBentoniteeng
dc.subject.proposalAntimicrobial active packagingeng
dc.subject.proposalGooseberryeng
dc.subject.proposalGrey mouldeng
dc.titleConfiguración de un sistema de empaque activo antimicrobiano para frutos frescos de uchuva (Physalis peruviana L.)spa
dc.title.translatedConfiguration of an antimicrobial active packaging system for fresh cape gooseberry (Physalis peruviana L.) fruitseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo y evaluación de un sistema integrado de empaque con actividad antifúngica y control de humedad para la preservación de uchuva (Physalis peruviana)spa
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032442136.2022.pdf
Tamaño:
2.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: