Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF

dc.contributor.advisorCatellanos Marquez, Nelson Jair
dc.contributor.authorMartinez Ruiz, Diana Camila
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2022-03-24T17:04:45Z
dc.date.available2022-03-24T17:04:45Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLos aceites vegetales representan una de las fuentes renovables más prometedoras para la industria química debido a su disponibilidad mundial, bajo costo y funcionalidad incorporada en su estructura química para obtener compuestos de interés comercial como los epóxidos. En esta tesis de maestría, se evaluó una estructura organometálica de galio funcionalizada con centros activos de dioxo-molibdeno(VI) como catalizador en la epoxidación de aceite de soja empleando ter-butil-hidroperoxido como agente oxidante. Se estudió la influencia del tiempo de reacción, la temperatura y la concentración del agente oxidante y se demostró que la mayor selectividad de epóxido se obtuvo a 110 °C después de 4 horas de reacción (29% de conversión y 91% de selectividad) empleando una relación molar 200:100:1 (ter-butil-hidroperoxido: dobles enlaces: catalizador). La estabilidad de la estructura del catalizador después del proceso catalítico fue confirmada por espectroscopía infrarroja, difracción de rayos X en polvo, termogravimetría, microscopía SEM y espectroscopía EDS. Asimismo, los test de estabilidad demostraron que la actividad de la estructura metal-orgánica MoO2Cl2@COMOC-4 es conservada durante dos ciclos de uso en el proceso de valorización de aceites vegetales, con una disminución de su actividad en un tercer ciclo catalítico. (Texto tomado de la fuente)spa
dc.description.abstractVegetable oils represent one of the most promising renewable sources for the chemical industry due to their worldwide availability, low cost, and built-in functionality in their chemical structure to obtain commercially interesting compounds such as epoxides. In this work, a functionalized gallium metal-organic framework with active dioxo-molybdenum(VI) centers was evaluated as a catalyst in the epoxidation of soybean oil using ter-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction time, temperature, and concentration of the oxidizing agent was studied and demonstrated that the highest epoxide selectivity was obtained at 110 °C after 4 hours of reaction (29% conversion and 91% selectivity) using a molar ratio 200:100:1 (ter-butyl-hydroperoxide: double bonds:catalyst). The stability of the metal-organic framework was confirmed by infrared spectroscopy, X-ray powder diffraction analysis, thermogravimetric analysis, SEM microscopy, and EDS spectroscopy analysis. The stability tests demonstrated that the catalyst could be reused for at least two cycles in the catalytic process for the recovery of vegetable oils with decreasing its activity in a third catalytic cycle.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaCatálisis heterogénea ambiental, con énfasis en catálisis acida, oxidación y reformadospa
dc.format.extentxix, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81364
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesM.A.R. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev. 36 (2007) 1788–1802. https://doi.org/10.1039/b703294c.spa
dc.relation.referencesU. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.spa
dc.relation.referencesS.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/c7cy00988g.spa
dc.relation.referencesP. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41 (2012) 1538–1558. https://doi.org/10.1039/c1cs15147a.spa
dc.relation.referencesL. Faba, E. Díaz, S. Ordóñez, Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey, Renew. Sustain. Energy Rev. 51 (2015) 273–287. https://doi.org/10.1016/j.rser.2015.06.020.spa
dc.relation.referencesA. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, (2007). https://doi.org/10.1021/cr050989d.spa
dc.relation.referencesG. Knothe, Vegetable oils, Handb. Bioenergy Crop Plants. (2012) 793–810. https://doi.org/10.32741/fihb.19.vegetableoil.spa
dc.relation.referencesC. Bueno Ferrer, Bio-compuestos termoplásticos basados en aceites vegetales: estudio de su aplicabilidad al envasado de alimentos, (2012) 1.spa
dc.relation.referencesS.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/C7CY00988G.spa
dc.relation.referencesS.Z. Erhan, S. Asadauskas, Lubricant basestocks from vegetable oils, Ind. Crops Prod. 11 (2000) 277–282. https://doi.org/10.1016/S0926-6690(99)00061-8.spa
dc.relation.referencesH. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification, Appl. Catal. A Gen. 221 (2001) 429–442. https://doi.org/10.1016/S0926-860X(01)00891-2.spa
dc.relation.referencesH. Hosney, B. Nadiem, I. Ashour, I. Mustafa, A. El-Shibiny, Epoxidized vegetable oil and bio-based materials as PVC plasticizer, J. Appl. Polym. Sci. 135 (2018) 1–12. https://doi.org/10.1002/app.46270.spa
dc.relation.referencesP. Karmalm, T. Hjertberg, A. Jansson, R. Dahl, Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer, Polym. Degrad. Stab. 94 (2009) 2275–2281. https://doi.org/10.1016/j.polymdegradstab.2009.07.019.spa
dc.relation.referencesP.G. Nihul, S.T. Mhaske, V. V. Shertukde, Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC), Iran. Polym. J. (English Ed. 23 (2014) 599–608. https://doi.org/10.1007/s13726-014-0254-7.spa
dc.relation.referencesW. He, G. Zhu, Y. Gao, H. Wu, Z. Fang, K. Guo, Green plasticizers derived from epoxidized soybean oil for poly (vinyl chloride): Continuous synthesis and evaluation in PVC films, Chem. Eng. J. 380 (2020) 122532. https://doi.org/10.1016/j.cej.2019.122532.spa
dc.relation.referencesA. Guo, W. Zhang, Z.S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci. 41 (2006) 4914–4920. https://doi.org/10.1007/s10853-006-0310-6.spa
dc.relation.referencesC. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Recent advances in vegetable oil-based polymers and their composites, Elsevier B.V., 2017. https://doi.org/10.1016/j.progpolymsci.2016.12.009.spa
dc.relation.referencesI. Javni, Z.S. Petrović, A. Guo, R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci. 77 (2000) 1723–1734. https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K.spa
dc.relation.referencesM.A. Sawpan, Polyurethanes from vegetable oils and applications: a review, J. Polym. Res. 25 (2018). https://doi.org/10.1007/s10965-018-1578-3.spa
dc.relation.referencesA. Köckritz, A. Martin, Oxidation of unsaturated fatty acid derivatives and vegetable oils, Eur. J. Lipid Sci. Technol. 110 (2008) 812–824. https://doi.org/10.1002/ejlt.200800042.spa
dc.relation.referencesT.W. Findley, D. Swern, J.T. Scanlan, Epoxidation of Unsaturated Fatty Materials with Peracetic Acid in Glacial Acetic Acid Solution, J. Am. Chem. Soc. 67 (1945) 412–414. https://doi.org/10.1021/ja01219a018.spa
dc.relation.referencesR. Mungroo, N.C. Pradhan, V. V. Goud, A.K. Dalai, Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin, JAOCS, J. Am. Oil Chem. Soc. 85 (2008) 887–896. https://doi.org/10.1007/s11746-008-1277-z.spa
dc.relation.referencesA. Campanella, M.A. Baltanás, M.C. Capel-Sánchez, J.M. Campos-Martín, J.L.G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst, Green Chem. 6 (2004) 330–334. https://doi.org/10.1039/B404975F.spa
dc.relation.referencesX. Zhang, J. Burchell, N.S. Mosier, Enzymatic Epoxidation of High Oleic Soybean Oil, (2018). https://doi.org/10.1021/acssuschemeng.8b00884.spa
dc.relation.referencesA.E. Gerbase, J.R. Gregório, M. Martinelli, M.C. Brasil, A.N.F. Mendes, Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2 / H2O2 catalytic biphasic system, J. Am. Oil Chem. Soc. 79 (2002) 179–181. https://doi.org/10.1007/s11746-002- 0455-0.spa
dc.relation.referencesZ. Chen, G. Yin, The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations, Chem. Soc. Rev. 44 (2015) 1083–1100. https://doi.org/10.1039/C4CS00244J.spa
dc.relation.referencesK.A. Joergensen, K.A. Jørgensen, K.A. Joergensen, Transition-Metal-Catalyzed Epoxidations, Chem. Rev. 89 (1989) 431–458. https://doi.org/10.1021/cr00093a001.spa
dc.relation.referencesJ.M. Brégeault, Transition-metal complexes for liquid-phase catalytic oxidation: Some aspects of industrial reactions and of emerging technologies, J. Chem. Soc. Dalt. Trans. 3 (2003) 3289–3302. https://doi.org/10.1039/b303073n.spa
dc.relation.referencesT. Punniyamurthy, S. Velusamy, J. Iqbal, Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen, (2005). https://doi.org/10.1021/cr050523v.spa
dc.relation.referencesA. Ali, W. Akram, H.Y. Liu, Reactive cobalt-oxo complexes of tetrapyrrolic macrocycles and N-based ligand in oxidative transformation reactions, Molecules. 24 (2019). https://doi.org/10.3390/molecules24010078.spa
dc.relation.referencesR.A. Sheldon, I. Arends, U. Hanefeld, Wiley InterScience (Online service), Green chemistry and catalysis, Wiley-VCH, 2007.spa
dc.relation.referencesK.B. Sharpless, T.R. Verhoeven, Metal-catalyzed, highly selective oxygenations of olefins and acetylenes with tert-butyl hydroperoxide. Practical considerations and mechanisms, Aldrichim. Acta. 12 (1979) 63–74.spa
dc.relation.referencesJ. Sobczak, J.J. Ziółkowski, The catalytic epoxidation of olefins with organic hydroperoxides, J. Mol. Catal. 13 (1981) 11–42. https://doi.org/10.1016/0304-5102(81)85028-6.spa
dc.relation.referencesA.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 1–15. https://doi.org/10.1038/natrevmats.2015.18.spa
dc.relation.referencesJ.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater. 73 (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.spa
dc.relation.referencesX.L. Ni, J. Liu, Y.Y. Liu, K. Leus, H. Depauw, A.J. Wang, P. Van Der Voort, J. Zhang, Y.K. Hu, Synthesis, characterization and catalytic performance of Mo based metalorganic frameworks in the epoxidation of propylene by cumene hydroperoxide, Chinese Chem. Lett. 28 (2017) 1057–1061. https://doi.org/10.1016/j.cclet.2017.01.020.spa
dc.relation.referencesY.Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van Der Voort, Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene, ChemCatChem. 5 (2013) 3657–3664. https://doi.org/10.1002/cctc.201300529.spa
dc.relation.referencesK. Leus, Y.Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations, J. Catal. 316 (2014) 201–209. https://doi.org/10.1016/j.jcat.2014.05.019.spa
dc.relation.referencesM. El-Hamidi, F.A. Zaher, Production of vegetable oils in the world and in Egypt: an overview, Bull. Natl. Res. Cent. 42 (2018). https://doi.org/10.1186/s42269-018-0019-0.spa
dc.relation.referencesP. Quosai, A. Anstey, A.K. Mohanty, M. Misra, Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: For polymer composite applications, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171970.spa
dc.relation.referencesEuropean Commission, Oilseeds and Protein Crops market situation, (2021). https://circabc.europa.eu/sd/a/215a681a-5f50-4a4b-a953-e8fc6336819c/oilseedsmarketsituation. pdf.spa
dc.relation.referencesA. Demirbas, S. Karslioglu, Biodiesel production facilities from vegetable oils and animal fats, Energy Sources, Part A Recover. Util. Environ. Eff. 29 (2007) 133–141. https://doi.org/10.1080/009083190951320.spa
dc.relation.referencesT. Issariyakul, A.K. Dalai, Biodiesel from vegetable oils, Renew. Sustain. Energy Rev. 31 (2014) 446–471. https://doi.org/10.1016/j.rser.2013.11.001.spa
dc.relation.referencesB.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils in India, Renew. Sustain. Energy Rev. 9 (2005) 363–378. https://doi.org/10.1016/j.rser.2004.05.007.spa
dc.relation.referencesFrank Gunstone, Vegetable Oils in Food Technology: Composition, Properties and Uses, Second edi, 2011. https://books.google.es/books?hl=es&lr=&id=lnk2tdo8_P4C&oi=fnd&pg=PR11&dq=vegetable+oils+food&ots=2_Ghve8LXI&sig=_l7fNkow-tZrLTxaZMg-jsDCos#v=onepage&q=vegetable oils food&f=false.spa
dc.relation.referencesR.A. Pineda Beltran, Uso de la oxidación catalítica del acetaldehído en la epoxidación de aceites vegetales, 2018.spa
dc.relation.referencesA. Enferadi Kerenkan, F. Béland, T.O. Do, Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: A review and perspective, Catal. Sci. Technol. 6 (2016) 971–987. https://doi.org/10.1039/c5cy01118c.spa
dc.relation.referencesL.L. Monteavaro, E.O. da Silva, A.P.O. Costa, D. Samios, A.E. Gerbase, C.L. Petzhold, Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization, J. Am. Oil Chem. Soc. 82 (2005) 365–371.spa
dc.relation.referencesP.S. Zade, M.B. Mandake, S. Walke, N. Mumbai, Review: Epoxidation of Vegetable oils, 5 (2018).spa
dc.relation.referencesM. chao Kuo, T. chuan Chou, Kinetics and Mechanism of the Catalyzed Epoxidation of Oleic Acid with Oxygen in the Presence of Benzaldehyde, Ind. Eng. Chem. Res. 26 (1987) 277–284. https://doi.org/10.1021/ie00062a016.spa
dc.relation.referencesT. Saurabh, M. Patnaik, S.L. Bhagt, V.C. Renge, Epoxidation of vegetable oils: a review, Int. J. Adv. Eng. Technol. 2 (2011) 491–501.spa
dc.relation.referencesL. Alejandro, Á. Aurora, L.A. Boyacá, Á.A. Beltrán, Soybean epoxide production with in situ peracetic acid using homogeneous catalysis, Ing. e Investig. 30 (2010) 136–140.spa
dc.relation.referencesK. Cruz, J. Montañez, C. Aguilar, A. Sáenz, I. Gámez, E. Flores, Obtención De Aceite Epoxidado De Semilla De Algodón Utilizando Un Ácido Débil, Av. En Ciencias e Ing. 6 (2015) 11–18. http://www.redalyc.org/articulo.oa?id=323643356002.spa
dc.relation.referencesT. Vlček, Z.S. Petrović, Optimization of the chemoenzymatic epoxidation of soybean oil, JAOCS, J. Am. Oil Chem. Soc. 83 (2006) 247–252. https://doi.org/10.1007/s11746-006-1200-4.spa
dc.relation.referencesS. Sun, X. Ke, L. Cui, G. Yang, Y. Bi, F. Song, X. Xu, Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology, Ind. Crops Prod. 33 (2011) 676–682. https://doi.org/10.1016/j.indcrop.2011.01.002.spa
dc.relation.referencesK. Konakom, P. Kittisupakorn, I.M. Mujtaba, Chemoenzymatic epoxidation of karanja oil: an alternative to chemical epoxidation, 2011 Int. Symp. Adv. Control Ind. Process. (2011) 361–377. https://doi.org/10.1002/apj.spa
dc.relation.referencesJ. Wu, P. Jiang, X. Qin, Y. Ye, Y. Leng, Peroxopolyoxotungsten-based ionic hybrid as a highly efficient recyclable catalyst for epoxidation of vegetable oil with H2O2, Bull. Korean Chem. Soc. 35 (2014) 1675–1680. https://doi.org/10.5012/bkcs.2014.35.6.1675.spa
dc.relation.referencesW. Cheng, G. Liu, X. Wang, X. Liu, L. Jing, Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol, Eur. J. Lipid Sci. Technol. 117 (2015) 1185–1191. https://doi.org/10.1002/ejlt.201400614.spa
dc.relation.referencesJ. Jiang, Y. Zhang, L. Yan, P. Jiang, Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes, Appl. Surf. Sci. 258 (2012) 6637–6642. https://doi.org/10.1016/j.apsusc.2012.03.095.spa
dc.relation.referencesM. Farias, M. Martinelli, D.P. Bottega, Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex, Appl. Catal. A Gen. 384 (2010) 213–219. https://doi.org/10.1016/j.apcata.2010.06.038.spa
dc.relation.referencesM.R. Janković, S. V. Sinadinović-Fišer, O.M. Govedarica, Kinetics of the epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion-exchange resin, Ind. Eng. Chem. Res. 53 (2014) 9357–9364. https://doi.org/10.1021/ie500876a.spa
dc.relation.referencesR. Turco, C. Pischetola, R. Tesser, S. Andini, M. Di Serio, New findings on soybean nd methylester epoxidation with alumina as the catalyst, RSC Adv. 6 (2016) 31647–31652. https://doi.org/10.1039/c6ra01780k.spa
dc.relation.referencesS. Sankaranarayanan, A. Sharma, K. Srinivasan, CoCuAl layered double hydroxides-Efficient solid catalysts for the preparation of industrially important fatty epoxides, Catal. Sci. Technol. 5 (2015) 1187–1197. https://doi.org/10.1039/c4cy01138d.spa
dc.relation.referencesX. Ye, P. Jiang, P. Zhang, Y. Dong, C. Jia, X. Zhang, H. Xu, Novel Ti and Mn mesoporous molecular sieves: Synthesis, characterization and catalytic activity in the epoxidation of vegetable oil, Catal. Letters. 137 (2010) 88–93. https://doi.org/10.1007/s10562-010-0334-z.spa
dc.relation.referencesM. Farias, M. Martinelli, G.K. Rolim, Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils, Appl. Catal. A Gen. 403 (2011) 119–127. https://doi.org/https://doi.org/10.1016/j.apcata.2011.06.021.spa
dc.relation.referencesJ. Manjanna, T. Kozaki, N. Kozai, S. Sato, A new method for Fe(II)-montmorillonite preparation using Fe(II)-nitrilotriacetate complex, J. Nucl. Sci. Technol. 44 (2007) 929–932. https://doi.org/10.1080/18811248.2007.9711331.spa
dc.relation.referencesR.A. Sheldon, Aspects of homogeneous catalysis, Vol. 4 (1981) 3–64.spa
dc.relation.referencesO. S.Ted, Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, (n.d.). https://books.google.com.co/books?hl=es&lr=&id=xJpkegngTqAC&oi=fnd&pg=PP1 &dq=S.T.+Oyama,+Mechanisms+in+Homogeneous+and+Heterogeneous+Epoxida tion+Catalysis,+Elsevier,+Burlington,+MA,+2008.+p.+xix.&ots=sgEbCYYU_Y&sig=j VINSnYsWlBG_xCUJIWdrTUQu8k&redir_esc=y# (accessed October 8, 2019).spa
dc.relation.referencesY. Shen, P. Jiang, P.T. Wai, Q. Gu, W. Zhang, Recent progress in application of molybdenum-based catalysts for epoxidation of alkenes, Catalysts. 9 (2019). https://doi.org/10.3390/catal9010031.spa
dc.relation.referencesW. Fan, D. Shi, B. Feng, Immobilizing of oxo-molybdenum complex on cross-linked copolymer and its catalytic activity for epoxidation reactions, Catal. Commun. 74 (2016) 1–4. https://doi.org/10.1016/j.catcom.2015.10.022.spa
dc.relation.referencesY. Shen, P. Jiang, J. Zhang, G. Bian, P. Zhang, Y. Dong, W. Zhang, Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins, Mol. Catal. 433 (2017) 212–223. https://doi.org/10.1016/j.mcat.2016.12.011.spa
dc.relation.referencesM. Masteri-Farahani, S. Mirshekar, Covalent functionalization of graphene oxide with molybdenum-carboxylate complexes: New reusable catalysts for the epoxidation of olefins, Colloids Surfaces A Physicochem. Eng. Asp. 538 (2018) 387–392. https://doi.org/10.1016/j.colsurfa.2017.11.025.spa
dc.relation.referencesG. Bian, P. Jiang, K. Jiang, Y. Shen, L. Kong, L. Hu, Y. Dong, W. Zhang, MoO2 Formed on Mesoporous Graphene Oxide: Efficient and Stable Catalyst for Epoxidation of Olefins, Aust. J. Chem. 70 (2017) 1039–1047. https://doi.org/10.1071/CH17089.spa
dc.relation.referencesH. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2, J. Mol. Catal. A Chem. 423 (2016) 248–255. https://doi.org/10.1016/J.MOLCATA.2016.07.006.spa
dc.relation.referencesG. Bian, P. Jiang, F. Wang, Y. Shen, K. Jiang, L. Liu, W. Zhang, Light driven epoxidation of olefins using a graphene oxide/g-C3N4 supported Mo (salen) complex, New J. Chem. 42 (2018) 85–90. https://doi.org/10.1039/c7nj02894f.spa
dc.relation.referencesM. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes, Chem. Eng. J. 308 (2017) 160–168. https://doi.org/10.1016/j.cej.2016.09.055.spa
dc.relation.referencesM. Mirzaee, B. Bahramian, M. Shahraki, H. Moghadam, A. Mirzaee, Molybdenum Containing Catalysts Grafted on Functionalized Hydrous Zirconia Nano-particles for Epoxidation of Alkenes, Catal. Letters. 148 (2018) 3003–3017. https://doi.org/10.1007/s10562-018-2521-2.spa
dc.relation.referencesW.F. Brill, N. Indictor, Reactions of t-Butyl Hydroperoxide with Olefins, J. Org. Chem. 29 (1964) 710–713. https://doi.org/10.1021/jo01026a045.spa
dc.relation.referencesK. John, Epoxidation process, (1967).spa
dc.relation.referencesA.O. Chong, K.B. Sharpless, On the Mechanism of the Molybdenum and Vanadium Catalyzed Epoxidation of Olefins by Alkyl Hydroperoxides, J. Org. Chem. 42 (1977) 1587–1590. https://doi.org/10.1021/jo00429a024.spa
dc.relation.referencesP. Chaumette, H. Mimoun, L. Saussine, J. Fischer, A. Mitschler, Peroxo and alkylperoxidic molybdenum(VI) complexes as intermediates in the epoxidation of olefins by alkyl hydroperoxides, J. Organomet. Chem. 250 (1983) 291–310. https://doi.org/10.1016/0022-328X(83)85059-1.spa
dc.relation.referencesR. Hille, Molybdenum and tungsten in biology, Trends Biochem. Sci. 27 (2002) 360–367. https://doi.org/10.1016/S0968-0004(02)02107-2.spa
dc.relation.referencesR. Hille, The Mononuclear Molybdenum Enzymes.pdf, Chem. Rev. 96 (1996) 2757–2816.spa
dc.relation.referencesK. Heinze, Bioinspired functional analogs of the active site of molybdenum enzymes: Intermediates and mechanisms, Coord. Chem. Rev. 300 (2015) 121–141. https://doi.org/10.1016/j.ccr.2015.04.010.spa
dc.relation.referencesY. He, B. Chen, Metal-Organic Frameworks: Frameworks Containing Open Sites, Encycl. Inorg. Bioinorg. Chem. (2014) 1–23. https://doi.org/10.1002/9781119951438.eibc2213.spa
dc.relation.referencesF. Gándara, Metal-organic frameworks: nuevos materiales con espacios llenos de posibilidades, An. La Real Soc. Española Química. 108 (2012) 190–196.spa
dc.relation.referencesT. Rios Carvajal, Síntesis y caracterización de redes metal---orgánicas (MOF) a partir de ligantes orgánicos tipo fenilenvinileno modificados con grupos electrodonores, 2014.spa
dc.relation.referencesK. Leus, I. Muylaert, V. Van Speybroeck, G.B. Marin, P. Van Der Voort, A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity, Elsevier B.V., 2010. https://doi.org/10.1016/S0167- 2991(10)75053-9.spa
dc.relation.referencesM. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J. Am. Chem. Soc. 131 (2009) 10857–10859. https://doi.org/10.1021/ja903726m.spa
dc.relation.referencesJ. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev. 43 (2014) 6011–6061. https://doi.org/10.1039/c4cs00094c.spa
dc.relation.referencesJ. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450–1459. https://doi.org/10.1039/b807080f.spa
dc.relation.referencesZ.M. Rojas, Estructuras metal orgánicas de titanio (MIL-125 y MIL-125-NH 2 ): síntesis, caracterización y evaluación de la actividad en procesos fotocatalíticos, 2017.spa
dc.relation.referencesK. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation, Chem. Commun. 46 (2010) 5085–5087. https://doi.org/10.1039/c0cc01506g.spa
dc.relation.referencesT.U. Yoon, S. Ahn, A.R. Kim, J.M. Notestein, O.K. Farha, Y.S. Bae, Cyclohexene epoxidation with H2O2 in the vapor and liquid phases over a vanadium-based metalorganic framework, Catal. Sci. Technol. 10 (2020) 4580–4585. https://doi.org/10.1039/d0cy00833h.spa
dc.relation.referencesI.D. Ivanchikova, J.S. Lee, N. V. Maksimchuk, A.N. Shmakov, Y.A. Chesalov, A.B. Ayupov, Y.K. Hwang, C.H. Jun, J.S. Chang, O.A. Kholdeeva, Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL-125 metal-organic frameworks, Eur. J. Inorg. Chem. 373 (2014) 132–139. https://doi.org/10.1002/ejic.201301098.spa
dc.relation.referencesH.G.T. Nguyen, L. Mao, A.W. Peters, C.O. Audu, Z.J. Brown, O.K. Farha, J.T. Hupp, S.T. Nguyen, Comparative study of titanium-functionalized UiO-66: Support effect on the oxidation of cyclohexene using hydrogen peroxide, Catal. Sci. Technol. 5 (2015) 4444–4451. https://doi.org/10.1039/c5cy00825e.spa
dc.relation.referencesS. Abednatanzi, A. Abbasi, M. Masteri-Farahani, Post-synthetic modification of nanoporous Cu3(BTC)2 metal-organic framework via immobilization of a molybdenum complex for selective epoxidation, J. Mol. Catal. A Chem. 399 (2015) 10–17. https://doi.org/10.1016/j.molcata.2015.01.014.spa
dc.relation.referencesASTM E200-16, Standard Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis, (2016). www.astm.org.spa
dc.relation.referencesPanReac AppliChem, Panreac Catálogo General. Reactivos para Análisis y Productos para Química Fina, (n.d.) 594. http://www.ictsl.net/downloads/catpanreac2012.pdf.spa
dc.relation.referencesG.G. Shimamoto, J.A. Aricetti, M. Tubino, A Simple, Fast, and Green Titrimetric Method for the Determination of the Iodine Value of Vegetable Oils Without Wijs Solution (ICl), Food Anal. Methods. 9 (2016) 2479–2483. https://doi.org/10.1007/s12161-016-0401-1.spa
dc.relation.referencesA. Of, C. Fats, Oxirane Oxygen, AOCS Off. Method CD 9-57. (1997) 8–9.spa
dc.relation.referencesY.Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, Bipyridine-based nanosized metal-organic framework with tunable luminescence by a postmodification with Eu(III): An experimental and theoretical study, J. Phys. Chem. C. 117 (2013) 11302–11310. https://doi.org/10.1021/jp402154q.spa
dc.relation.referencesM. Tubino, J.A. Aricetti, A green potentiometric method for the determination of the iodine number of biodiesel, Fuel. 103 (2013) 1158–1163. https://doi.org/10.1016/j.fuel.2012.10.011.spa
dc.relation.referencesW. Xia, S.M. Budge, M.D. Lumsden, New 1H NMR-Based Technique to Determine Epoxide Concentrations in Oxidized Oil, J. Agric. Food Chem. 63 (2015) 5780–5786. https://doi.org/10.1021/acs.jafc.5b01719.spa
dc.relation.referencesY. Miyake, K. Yokomizo, N. Matsuzaki, Rapid Determination of Iodine Value by 1H Nuclear Magnetic Resonance Spectroscopy, (n.d.) 15–19.spa
dc.relation.referencesH.A.J. Aerts, P.A. Jacobs, Epoxide Yield Determination of Oils and Fatty Acid Methyl Esters Using 1 H NMR, (2004).spa
dc.relation.referencesM. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.spa
dc.relation.referencesK.S.W. Sing, F. Rouquerol, J. Rouquerol, P. Llewellyn, Assessment of Mesoporosity, 2013. https://doi.org/10.1016/B978-0-08-097035-6.00008-5.spa
dc.relation.referencesI. Union, O.F. Pure, A. Chemistry, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem. 66 (1994) 1739–1758. https://doi.org/10.1351/pac199466081739.spa
dc.relation.referencesF. Carson, S. Agrawal, M. Gustafsson, A. Bartoszewicz, F. Moraga, X. Zou, B. Martín-Matute, Ruthenium Complexation in an Aluminium Metal–Organic Framework and Its Application in Alcohol Oxidation Catalysis, Chem. – A Eur. J. 18 (2012) 15337–15344. https://doi.org/10.1002/CHEM.201200885.spa
dc.relation.referencesM.L. D’Amico, K. Rasmussen, D. Sisneros, C. Magnussen, H. Wade, J.G. Russell, L.L. Borer, Epoxidation of cyclic olefins using dimeric molybdenum(VI) catalysts, Inorganica Chim. Acta. 191 (1992) 167–170. https://doi.org/10.1016/S0020- 1693(00)93456-X.spa
dc.relation.referencesH. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord. Chem. Rev. 178–180 (1998) 191–202. https://doi.org/10.1016/s0010-8545(98)00056-3.spa
dc.relation.referencesA. Prazeres, A.M. Santos, M.J. Calhorda, C.C. Roma, I.S. Gonáalves, Octahedral Bipyridine and Bipyrimidine Dioxomolybdenum (VI) Complexes: Characterization, Application in Catalytic Epoxidation, and Density Functional Mechanistic Study, (2002) 2370–2383.spa
dc.relation.referencesM. Salavati-niasari, M. Bazarganipour, Effect of single-wall carbon nanotubes on direct epoxidation of cyclohexene catalyzed by new derivatives of cis-dioxomolybdenum (VI) complexes with bis-bidentate Schiff-base containing aromatic nitrogen – nitrogen linkers, 278 (2007) 173–180. https://doi.org/10.1016/j.molcata.2007.09.009.spa
dc.relation.referencesG. Wang, G. Chen, R.L. Luck, Z. Wang, D.G. Evans, X. Duan, New molybdenum (VI) catalysts for the epoxidation of cyclohexene : synthesis , reactivity and crystal structures, 357 (2004) 3223–3229. https://doi.org/10.1016/j.ica.2004.03.030.spa
dc.relation.referencesM.G. Lindley, The impact of food processing on antioxidants in vegetable oils , fruits and vegetables, 9 (1998) 336–340.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalEpoxidación de aceites vegetalesspa
dc.subject.proposalEstructuras metal-orgánicasspa
dc.subject.proposalComplejos de dioxo-molibdeno(VI)spa
dc.subject.proposalVegetable oils epoxidationeng
dc.subject.proposalMetal-organic frameworkseng
dc.subject.proposalDioxo-molybdenum(VI) complexeseng
dc.subject.unescoAceite vegetalspa
dc.subject.unescoVegetable oilseng
dc.subject.unescoQuímica orgánicaspa
dc.subject.unescoOrganic chemistryeng
dc.titleReacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOFspa
dc.title.translatedSoybean oil epoxidation catalyzed by dioxo-molybdenum (VI) centers incorporated in a metal-organic framework-MOFeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012403105.2021.pdf
Tamaño:
5.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: