Efectos de la quema en la composición y función de las comunidades microbianas del suelo en la sabana de pastizal de Arauca, Arauca, Colombia
dc.contributor.advisor | Caro Quintero, Alejandro | spa |
dc.contributor.author | Briñez Perales, Diana Carolina | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Arauca | spa |
dc.coverage.region | Arauca | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1023706 | |
dc.date.accessioned | 2025-04-01T19:41:37Z | |
dc.date.available | 2025-04-01T19:41:37Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, mapas | spa |
dc.description.abstract | El suelo es una matriz mineral y biológica compleja. En él habitan diferentes grupos de microorganismos, los cuales cumplen funciones específicas en el ciclo de los nutrientes (e.g., carbono y nitrógeno) e interactúan dinámicamente entre sí. Perturbaciones físicas, biológicas y químicas pueden afectar estas interacciones, generando disminución en la calidad del suelo. Entre estas se encuentran las quemas y los incendios forestales, cuyos efectos en los microorganismos del suelo han sido estudiados durante estos últimos años, evidenciando cambios en la riqueza y abundancia de especies. Entre los sistemas propensos a quemas o incendios forestales encontramos las sabanas de Arauca, ubicadas en la región de la Orinoquia de Colombia. Este ecosistema es susceptible a quemas debido a su vegetación (e.g. herbáceas y gramíneas), climatología (régimen unimodal) y actividades agrícolas (e.g. ganadería extensiva). El presente trabajo evaluó el efecto de las quemas en los microorganismos del suelo de pastizal del Municipio de Arauca, Arauca, Colombia; para ello se realizó un experimento in situ que consistió en quemas de baja intensidad, registrando la composición microbiana mediante metataxonómia y técnicas bioinformáticas, y sus grupos funcionales a través de cultivos selectivos en diferentes tiempos (antes de la quema y a las 24 horas, 30 días y 4 meses posteriores a la quema). Inicialmente, no se encontró diferencias significativas entres los suelos quemados y de control antes de la quema y 24 horas después, con relación a los cultivos e identificación de las comunidades microbianas cultivables. Los efectos significativos sobre las comunidades bacterianas fueron obtenidos a los 30 días posteriores a la quema, donde los filos Proteobacterias y Bacteroidota presentaron abundancia diferencial en las parcelas quemadas, Sin embargo, esta distinción disminuye a los 4 meses del experimento. Paralelamente, para los microorganismos relacionados con la fijación del nitrógeno y la solubilización de fosfatos se encontró un incremento significativo de la población debido a la quema solo a los 4 meses. Por otro lado, se registró un incremento significativo de la población de los microorganismos celulolíticos a los 30 días y 4 meses en las parcelas quemadas en comparación con los controles. Los resultados muestran que la quema de baja intensidad genera efectos transitorios sobre las comunidades microbianas; sin embargo, factores ambientales como el inicio de la temporada de lluvia podrían haber favorecido la recuperación del microbioma del suelo. (Texto tomado de la fuente). | spa |
dc.description.abstract | Soil is a complex mineral and biological matrix, formed by parent material located in the Earth's crust. Different groups of microorganisms inhabit it, each performing specific functions in the nutrient cycle (e.g., carbon and nitrogen) and interacting dynamically with each other. Physical, biological, and chemical disturbances can affect these interactions, leading to a decrease in soil quality. Among these disturbances are burns and wildfires, whose effects on soil microorganisms have been studied in recent years, showing changes in species richness and abundance. Within the systems prone to burns or wildfires are the savannas of Arauca, located in the Orinoquia region of Colombia. This ecosystem is susceptible to burns due to its vegetation (e.g., herbs and grasses), climatology (unimodal regime), and agricultural activities (e.g., extensive livestock farming). The present study evaluated the effect of burning on soil microorganisms in the grasslands of the Municipality of Arauca, Arauca, Colombia. An in situ experiment was conducted, which involved low-intensity burns, recording microbial composition with meta-taxonomy and bioinformatics techniques, and functional groups through selective cultures at different times (before the burn and at 24 hours, 30 days, and 4 months post-burn). Initially, no significant differences were found between the burned and control soils before the burn and 24 hours after, regarding the cultures and identification of cultivable microbial communities. Significant effects on bacterial communities were observed 30 days post-burn, with the phylum Proteobacteria and Bacteroidota differential abundance in the burned plots. Nevertheless, this distinction decreased 4 months into the experiment. Additionally, for microorganisms related to nitrogen fixation and phosphate solubilization, a significant population increase due to the burn was found only at 4 months. Also, a significant increase in the population of cellulolytic microorganisms was recorded at 30 days and 4 months in the burned plots compared to the controls. The results show that low-intensity burning generates transient effects on microbial communities;However, environmental factors such as the onset of the rainy season could have favored the recovery of the soil microbiome. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
dc.description.researcharea | Microbiología ambiental | spa |
dc.format.extent | 120 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87805 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Instituto de Biotecnología | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Aanderud, Z. T., Bahr, J., Robinson, D. M., Belnap, J., Campbell, T. P., Gill, R. A., McMillian, B., & St. Clair, S. (2019). The Burning of Biocrusts Facilitates the Emergence of a Bare Soil Community of Poorly-Connected Chemoheterotrophic Bacteria With Depressed Ecosystem Services. Frontiers in Ecology and Evolution, 7. https://doi.org/10.3389/fevo.2019.00467 | spa |
dc.relation.references | Acea, M. J., & Carballas, T. (1996). Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiology Ecology, 20(1), 33-39. https://doi.org/10.1111/j.1574-6941.1996.tb00302.x | spa |
dc.relation.references | Alcañiz, M., Outeiro, L., Francos, M., & Úbeda, X. (2018). Effects of prescribed fires on soil properties: A review. Science of The Total Environment, 613-614, 944-957. https://doi.org/10.1016/j.scitotenv.2017.09.144 | spa |
dc.relation.references | Amurrio Ordoñez, P., & Poma Sajama, V. (2015). Propiedades fidicoquímicas y variación estacional de los suelos, en un transecto altitudinal en la localidad de lluto, La Paz, Boivia. Revista Boliviana de Química, 32(4), 74-81 | spa |
dc.relation.references | Anaya, J. (2009). Estimación mensual de emisiones por biomasa quemada para Colombia basado en imágenes de satélite. https://ebuah.uah.es/dspace/handle/10017/4272 | spa |
dc.relation.references | Andersson, M., Michelsen, A., Jensen, M., & Kjøller, A. (2004). Tropical savannah woodland: Effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology and Biochemistry, 36(5), 849-858. https://doi.org/10.1016/j.soilbio.2004.01.015 | spa |
dc.relation.references | Arboleda, A., Carrascal, M., Álvarez, J., Páez, V., & Cordero, J. (2021, octubre 6). Recomendaciones para la toma de muestras para analisis del laboratorio nacional de suelos. IGAC; COPIA NO CONTROLADA. https://www.igac.gov.co/sites/igac.gov.co/files/listadomaestro/in-agr-pc01-13_recomendaciones_para_la_toma_de_muestras_para_analisis_en_el_lns1.pdf | spa |
dc.relation.references | Armenteras, D., González, T. M., Vargas, J. O., Elizalde, M. C. M., & Oliveras, I. (2020). Incendios en ecosistemas del norte de Suramérica: Avances en la ecología del fuego tropical en Colombia, Ecuador y Perú. Caldasia, 42(1), Article 1. https://doi.org/10.15446/caldasia.v42n1.77353 | spa |
dc.relation.references | Arunrat, N., Sereenonchai, S., Sansupa, C., Kongsurakan, P., & Hatano, R. (2023). Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand. Biology, 12(4), Article 4. https://doi.org/10.3390/biology12040501 | spa |
dc.relation.references | Ashby, S. F. (1907). Some Observations on the Assimilation of Atmospheric Nitrogen by a Free Living Soil Organism.—Azotobacter Chroococcum of Beijerinck. The Journal of Agricultural Science, 2(1), 35-51. https://doi.org/10.1017/S0021859600000988 | spa |
dc.relation.references | Banning, N. C., & Murphy, D. V. (2008). Effect of heat-induced disturbance on microbial biomass and activity in forest soil and the relationship between disturbance effects and microbial community structure. Applied Soil Ecology, 40(1), 109-119. https://doi.org/10.1016/j.apsoil.2008.03.011 | spa |
dc.relation.references | Bárcenas-Moreno, G., & Díaz-Raviña, M. (2013). Efectos del fuego sobre los microorganismos del suelo. Red Temática Nacional Efectos de los Incendios Forestales sobre los Suelos (FUEGORED). FUEGORED. http://fuegored.weebly.com/uploads/2/2/2/8/22283836/fgr2013_07.pdf | spa |
dc.relation.references | Barraclough, A. D., & Olsson, P. A. (2018). Slash-and-Burn Practices Decrease Arbuscular Mycorrhizal Fungi Abundance in Soil and the Roots of Didierea madagascariensis in the Dry Tropical Forest of Madagascar. Fire, 1(3), Article 3. https://doi.org/10.3390/fire1030037 | spa |
dc.relation.references | Barreiro, A., & Díaz-Raviña, M. (2021). Fire impacts on soil microorganisms: Mass, activity, and diversity. Current Opinion in Environmental Science & Health, 22, 100264. https://doi.org/10.1016/j.coesh.2021.100264 | spa |
dc.relation.references | Bautista Cruz, A., Etchevers Barra, J., del Castillo, R. F., & Gutiérrez, C. (2004). La calidad del suelo y sus indicadores: Ecosistemas, 13(2). https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/572 | spa |
dc.relation.references | Beltrán, M., & Lizarazo-Forero, L. M. (2013). Grupos Funcionales de Microorganismos en Suelos de Páramo Perturbados por Incendios Forestales. Revista de Ciencias, 17(2), Article 2. https://doi.org/10.25100/rc.v17i2.490 | spa |
dc.relation.references | Beltrán Pineda, M. E. (2014). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Ciencia y Tecnología Agropecuaria, 15(1), Article 1. https://doi.org/10.21930/rcta.vol15_num1_art:401 | spa |
dc.relation.references | Bernal, L., Coello, P., Martínez-Barajas, J. E., Bernal, L., Coello, P., & Martínez-Barajas, J. E. (2022). Regulación de la degradación del almidón en las hojas. Revista fitotecnia mexicana, 45(4), 503-507. https://doi.org/10.35196/rfm.2022.4.503 | spa |
dc.relation.references | Betts, W. B., Dart, R. K., Ball, A. S., & Pedlar, S. L. (1991). Biosynthesis and Structure of Lignocellulose. En W. B. Betts (Ed.), Biodegradation (pp. 139-155). Springer London. https://doi.org/10.1007/978-1-4471-3470-1_7 | spa |
dc.relation.references | Blair, J. M. (1997). FIRE, N AVAILABILITY, AND PLANT RESPONSE IN GRASSLANDS: A TEST OF THE TRANSIENT MAXIMA HYPOTHESIS. Ecology, 78(8), 2359-2368. https://doi.org/10.1890/0012-9658(1997)078[2359:FNAAPR]2.0.CO;2 | spa |
dc.relation.references | Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z | spa |
dc.relation.references | Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(2), 525-538.https://doi.org/10.1111/j.1469-8137.2004.01252.x | spa |
dc.relation.references | Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of SOIL. SOIL, 1(1), 117-129. https://doi.org/10.5194/soil-1-117-2015 | spa |
dc.relation.references | Breza-Boruta, B., & Paluszak, Z. (2006). Occurrence of amylolytic microorganisms in soil depending on the type of cultivation. Ecohydrology & Hydrobiology, 6(1), 175-180. https://doi.org/10.1016/S1642-3593(06)70140-9 | spa |
dc.relation.references | Bukar, M., Sodipo, O., Dawkins, K., Ramirez, R., Kaldapa, J. T., Tarfa, M., & Esiobu, N. (2019). Microbiomes of Top and Sub-Layers of Semi-Arid Soils in North-Eastern Nigeria Are Rich in Firmicutes and Proteobacteria with Surprisingly High Diversity of Rare Species. Advances in Microbiology, 9(1), Article 1. https://doi.org/10.4236/aim.2019.91008 | spa |
dc.relation.references | Buriticá, N. (2016). Sabanas Inundables de la Orinoquía Colombiana. Instituto de Investigación de Recursos Biológicos Alexander von Humbold. http://repository.humboldt.org.co/handle/20.500.11761/9662 | spa |
dc.relation.references | Bustamante, M., Medina, E., Asner, G., Nardoto, G., & Garcia-Montiel, D. (1970). Nitrogen cycling in tropical and temperate savannas. En Biogeochemistry (Vol. 79, pp. 209-237). https://doi.org/10.1007/978-1-4020-5517-1_10 | spa |
dc.relation.references | Cabugao, K. G., Yaffar, D., Stenson, N., Childs, J., Phillips, J., Mayes, M. A., Yang, X., Weston, D. J., & Norby, R. J. (2021). Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution, 11(3), 1150-1164. https://doi.org/10.1002/ece3.7036 | spa |
dc.relation.references | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869 | spa |
dc.relation.references | Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4516-4522. https://doi.org/10.1073/pnas.100008010 | spa |
dc.relation.references | Carroll, K. C., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., McKerrow, J. H., & Sakanari, J. A. (2016). Bacilos gramnegativos entéricos (Enterobacteriaceae). En Microbiología médica, 27e (1-Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1129191949 | spa |
dc.relation.references | Carson, C. M., & Zeglin, L. H. (2018). Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biology and Biochemistry, 121, 231-239. https://doi.org/10.1016/j.soilbio.2018.03.023 | spa |
dc.relation.references | Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143(1), 1-10. https://doi.org/10.1007/s00442-004-1788-8 | spa |
dc.relation.references | Chaudhary, D. K., & Kim, J. (2017). Massilia agri sp. Nov., isolated from reclaimed grassland soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2696-2703. https://doi.org/10.1099/ijsem.0.002002 | spa |
dc.relation.references | Chen, W.-C., Ko, C.-H., Su, Y.-S., Lai, W.-A., & Shen, F.-T. (2021). Metabolic potential and community structure of bacteria in an organic tea plantation. Applied Soil Ecology, 157, 103762. https://doi.org/10.1016/j.apsoil.2020.103762 | spa |
dc.relation.references | Cilliers, C. D., Botha, A., Esler, K. J., & Boucher, C. (2005). Effects of alien plant management, fire and soil chemistry on selected soil microbial populations in the Table Mountain National Park, South Africa. South African Journal of Botany, 71(2), 211-220. https://doi.org/10.1016/S0254-6299(15)30135-6 | spa |
dc.relation.references | Clarke, K. R., & Ainsworth, M. (1993). A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series, 92(3), 205-219. | spa |
dc.relation.references | Corrales Ramírez, L. C., Arévalo Galvez, Z. Y., & Moreno Burbano, V. E. (2014). Solubilización de fosfatos: Una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 68-79. | spa |
dc.relation.references | Cruz-Martínez, K., Suttle, K. B., Brodie, E. L., Power, M. E., Andersen, G. L., & Banfield, J. F. (2009). Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. The ISME Journal, 3(6), 738-744. https://doi.org/10.1038/ismej.2009.16 | spa |
dc.relation.references | Datta, R. (2024). Enzymatic degradation of cellulose in soil: A review. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2024.e24022 | spa |
dc.relation.references | De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H., Whitman, W. B., & others. (2009). The firmicutes (Vol. 3). Springer New York, NY, USA: | spa |
dc.relation.references | Depietri, Y., & Orenstein, D. E. (2019). Fire-Regulating Services and Disservices With an Application to the Haifa-Carmel Region in Israel. Frontiers in Environmental Science, 7, 107. https://doi.org/10.3389/fenvs.2019.00107 | spa |
dc.relation.references | Dooley, S. R., & Treseder, K. K. (2012). The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry, 109(1-3), 49-61. https://doi.org/10.1007/s10533-011-9633-8 | spa |
dc.relation.references | Duncan, Z. M., Tajchman, A. J., Ramirez, M. P., Lemmon, J., Hollenbeck, W. R., Blasi, D. A., Fick, W. H., & Olson, K. C. (2021). Effects of prescribed fire timing on grazing performance of yearling beef cattle, forage biomass accumulation, and plant community characteristics on native tallgrass prairie in the Kansas Flint Hills. Translational Animal Science, 5(2), txab077. https://doi.org/10.1093/tas/txab077 | spa |
dc.relation.references | Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9(3), 167-172. https://doi.org/10.1016/0038-0717(77)90070-0 | spa |
dc.relation.references | Fauci, M. F., & Dick, R. P. (1994). Soil Microbial Dynamics: Short- and Long-Term Effects of Inorganic and Organic Nitrogen. Soil Science Society of America Journal, 58(3), 801-806. https://doi.org/10.2136/sssaj1994.03615995005800030023x | spa |
dc.relation.references | Fernández, J. A., Schroeder, M. A., Goldfarb, M. C., & Bernardis, A. C. (2011). Efecto de la frecuencia de quema prescripta sobre la composición mineral de los pastizales en el nordeste argentino. Ecología Aplicada, 10(1), Article 1-2.https://doi.org/10.21704/rea.v10i1-2.410 | spa |
dc.relation.references | Fernández Martínez, M. Á. (2016). Colonización microbiana y sucesión primaria en suelos descubiertos tras el retroceso de glaciares en Tierra del Fuego, Chile [doctoralThesis]. https://repositorio.uam.es/handle/10486/676648 | spa |
dc.relation.references | Ferrenberg, S., O’Neill, S. P., Knelman, J. E., Todd, B., Duggan, S., Bradley, D., Robinson, T., Schmidt, S. K., Townsend, A. R., Williams, M. W., Cleveland, C. C., Melbourne, B. A., Jiang, L., & Nemergut, D. R. (2013). Changes in assembly processes in soil bacterial communities following a wildfire disturbance. The ISME Journal, 7(6), 1102-1111. https://doi.org/10.1038/ismej.2013.11 | spa |
dc.relation.references | Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an Ecological Classification of Soil Bacteria. Ecology, 88(6), 1354-1364. https://doi.org/10.1890/05-1839 | spa |
dc.relation.references | Filippidou, S., Junier, T., Wunderlin, T., Lo, C.-C., Li, P.-E., Chain, P. S., & Junier, P. (2015). Subdetección de Firmicutes formadores de endosporas en datos metagenómicos. Computational and Structural Biotechnology Journal, 13, 299-306. https://doi.org/10.1016/j.csbj.2015.04.002 | spa |
dc.relation.references | Fischer, M. S., Patel, N. J., De Lorimier, P. J., & Traxler, M. F. (2023). Prescribed fire selects for a pyrophilous soil sub‐community in a northern California mixed conifer forest. Environmental Microbiology, 25(11), 2498-2515. https://doi.org/10.1111/1462-2920.16475 | spa |
dc.relation.references | Fontúrbel, M. T., Barreiro, A., Vega, J. A., Martín, A., Jiménez, E., Carballas, T., Fernández, C., & Díaz-Raviña, M. (2012). Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma, 191, 51-60. https://doi.org/10.1016/j.geoderma.2012.01.037 | spa |
dc.relation.references | Fontúrbel, T., Carrera, N., Vega, J. A., & Fernández, C. (2021). The Effect of Repeated Prescribed Burning on Soil Properties: A Review. Forests, 12(6), 767. https://doi.org/10.3390/f12060767 | spa |
dc.relation.references | Frioni, L. (2005). Microbiologia Basica, Ambiental y Agricola. Facultad de Agronomia,Universidad de la República Oriental del Urugua. https://www.ciaorganico.net/documypublic/382_infoagronomo.net_-_Microlobiologa_bsica_ambiental_y_agricola_lilian_friomi_2006.pdf | spa |
dc.relation.references | Frost, P., & Robertson, F. (1987). The Ecological Effects of Fire in Savannas. En The Ecological efects of fire in Savannas (pp. 93-140). Professor Brian H. WalkerChief, Division of Wildlife andRangeland Research. https://www.academia.edu/1237689/The_Ecological_Effects_of_Fire_in_Savannas | spa |
dc.relation.references | Fuentes-Ramirez, A., Barrientos, M., Almonacid, L., Arriagada-Escamilla, C., & Salas-Eljatib, C. (2018). Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Applied Soil Ecology, 131, 99-106. https://doi.org/10.1016/j.apsoil.2018.08.010 | spa |
dc.relation.references | Fultz, L. M., Moore-Kucera, J., Dathe, J., Davinic, M., Perry, G., Wester, D., Schwilk, D. W., & Rideout-Hanzak, S. (2016). Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest. Applied Soil Ecology, 99, 118-128. https://doi.org/10.1016/j.apsoil.2015.10.023 | spa |
dc.relation.references | Goberna, M., Garcia, C., Insam, H., Hernández, T., & Verdú, M. (2011). Burning Fire-Prone Mediterranean Shrublands: Immediate Changes in Soil Microbial Community Structure and Ecosystem Functions. Microbial ecology, 64, 242-255. https://doi.org/10.1007/s00248-011-9995-4 | spa |
dc.relation.references | Gómez, J., & Luna, J. (2018). GRUPOS FUNCIONALES MICROBIANOS EN SUELOS CONTAMINADOS CON TOXAFENO EN EL DEPARTAMENTO DEL CESAR, COLOMBIA. Luna Azul, 47, 98-113. https://doi.org/10.17151/luaz.2019.47.6 | spa |
dc.relation.references | Gómez, J., Montes, N., & Márin, E. (2023). Plancha 5–07 del Atlas Geológico de Colombia 2023 (Servicio Geológico Colombiano) [Map]. | spa |
dc.relation.references | Gómez, Y., & Paolini, J. (2011). Variación en la actividad microbiana por cambio de uso en suelos en sabanas, Llanos Orientales, Venezuela. Revista de Biología Tropical, 59(1), 1-5. | spa |
dc.relation.references | Gómez, Y., Paolini, J., & Hernández, R. M. (2010). LA SUSTITUCIÓN DE LA SABANA NATIVA POR PLANTACIONES DE PINO Y LA VARIABILIDAD TEMPORAL EN LA BIOMASA MICROBIANA Y LA MINERALIZACIÓN DEL CARBONO Y NITRÓGENO EN EL SUELO. TERRA LATINOAMERICANA, 28(2), 155-163. | spa |
dc.relation.references | Gonçalves, O. S., & Santana, M. F. (2023). Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. Microbial Ecology, 86(4), 2687-2702. https://doi.org/10.1007/s00248-023-02275 | spa |
dc.relation.references | González Blair, G. H., & Castellanos Domínguez, Ó. F. (2003). Alternativas de modificación del método de somogyi-nelson para la determinación de azúcares reductores a partir de sus posibilidades químicas. 52. https://repositorio.unal.edu.co/handle/unal/28644 | spa |
dc.relation.references | González-Vila, F. J., & Almendros Martín, G. (2011). El controvertido efecto de los incendios. El fuego en el ciclo del carbono en los ecosistemas mediterráneos. https://digital.csic.es/handle/10261/54864 | spa |
dc.relation.references | Good, I. J. (1953). THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS. Biometrika, 40(3-4), 237-264. https://doi.org/10.1093/biomet/40.3-4.237 | spa |
dc.relation.references | Gutiérrez Navarro, A. G., García Barrios, L. E. G., Parra Vázquez, M. P., & Rosset, P. (2017). De la supresión al manejo del fuego en la Reserva de la Biosfera La Sepultura, Chiapas: Perspectivas campesinas. Región y Sociedad, XXIX(70), 31-70. | spa |
dc.relation.references | Gutknecht, J. L. M., Henry, H. A. L., & Balser, T. C. (2010). Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia, 53(5), 283-293. https://doi.org/10.1016/j.pedobi.2010.02.001 | spa |
dc.relation.references | Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D., & Boyle, S. I. (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220(1-3), 166-184. https://doi.org/10.1016/j.foreco.2005.08.012 | spa |
dc.relation.references | Hayden, H. L., Mele, P. M., Bougoure, D. S., Allan, C. Y., Norng, S., Piceno, Y. M.,Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Williams, A. L., & Hovenden, M. J. (2012). Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 14(12), 3081-3096. https://doi.org/10.1111/j.1462-2920.2012.02855.x | spa |
dc.relation.references | Her, J., Srinivasan, S., & Lee, S.-S. (2015). Tumebacillus luteolus sp. Nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_11), 4107-4112. https://doi.org/10.1099/ijsem.0.000549 | spa |
dc.relation.references | Hernández, I., & López, D. (2002). Pérdida de nutrimentos por la quema de la vegetación en una sabana de Trachypogon. Revista de Biología Tropical, 50(3-4), 1013-1019. | spa |
dc.relation.references | Hernández-León, R., Velázquez, I., Orozco-Mosqueda, M., & Santoyo, G. (2010). Soil Metagenomics: New challenges and biotechnological opportunities. Phyton, 79(1), 133-139. https://doi.org/10.32604/phyton.2010.79.133 | spa |
dc.relation.references | Hrelja, I., Šestak, I., & Bogunović, I. (2020). Wildfire impacts on soil physical and chemical properties—A short review of recent studies. Agriculturae Conspectus Scientificus, 85(4), 293-301. Scopus. | spa |
dc.relation.references | Huertas Herrera, A., Baptiste Ballera, B. L. G., Toro Manríquez, M., Huertas Ramírez, H., (2019). MANEJO DE LA QUEMA DE PASTIZALES DE SABANA INUNDABLE: UNA MIRADA DEL PUEBLO ORIGINARIO SÁLIVA EN COLOMBIA. Chungará (Arica), 51(1), 167-176. https://doi.org/10.4067/S0717-73562018005002401 | spa |
dc.relation.references | IDEAM, Ministerio de Ambiente y Desarrollo Sostenible, MADS, Universidad de Ciencias Aplicadas y Ambientales, & U.D.C.A (Eds.). (2015). Estudio Nacional de la Degradación de Suelos por Erosión en Colombia 2015. IDEAM. | spa |
dc.relation.references | IDEAM. (2023). 2023—CLIMATOLÓGICO MENSUAL - IDEAM [Tiempo y clima]. IDEAM. http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/125463657 | spa |
dc.relation.references | IGAC. (1986). Estudio general de suelos intendencia de Arauca. Instituto Geográfico Agustín Codazzi. | spa |
dc.relation.references | IGAC. (2015). Suelos y tierras de Colombia subdireccion de Agrología: Vol. I (Instituto Geográfico Agustín Codazzi, Trad.). | spa |
dc.relation.references | Jahromi, A. B. (2013). Molecular-Based Methods to Detect Viable Bacterial Pathogens in Source Waters. https://api.semanticscholar.org/CorpusID:82161962 | spa |
dc.relation.references | Jiang, Y.-B., Zhong, W.-H., Han, C., & Deng, H. (2016). Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01776 | spa |
dc.relation.references | Kang, M., Chhetri, G., Kim, J., Kim, I., So, Y., & Seo, T. (2022). Tumebacillus amylolyticus sp. Nov., isolated from garden soil in Korea. International Journal of Systematic and Evolutionary Microbiology, 72(5), 005376. https://doi.org/10.1099/ijsem.0.005376 | spa |
dc.relation.references | Kannaiah Goud, R., Sarkar, O., & Venkata Mohan, S. (2014). La regulación de la producción de biohidrógeno mediante pretratamiento de choque térmico facilita el enriquecimiento selectivo de Clostridium sp. International Journal of Hydrogen Energy, 39(14), 7572-7586. https://doi.org/10.1016/j.ijhydene.2013.10.046 | spa |
dc.relation.references | Kavamura, V. N., Taketani, R. G., Lançoni, M. D., Andreote, F. D., Mendes, R., & Melo, I. S. de. (2013). Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome. PLOS ONE, 8(9), e73606. https://doi.org/10.1371/journal.pone.0073606 | spa |
dc.relation.references | Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. https://doi.org/10.2307/2280779 | spa |
dc.relation.references | Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184-199. https://doi.org/10.1016/j.soilbio.2015.01.025 | spa |
dc.relation.references | Lasso, C. A., Rial, A., Colonnello, G., Machado-Allison, A., & Trujillo, F. (2014). XI. Humedales de la Orinoquia (Colombia-Venezuela). En Reponame:Repositorio Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://repository.humboldt.org.co/handle/20.500.11761/31361 | spa |
dc.relation.references | Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9), 2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021 | spa |
dc.relation.references | Lennon, J. T., & Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary implications of dormancy. Nature Reviews Microbiology, 9(2), 119-130. https://doi.org/10.1038/nrmic | spa |
dc.relation.references | Levene, H. (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278-292. | spa |
dc.relation.references | Li, W., Niu, S., Liu, X., & Wang, J. (2019). Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands. Scientific Reports, 9(1), 1148. https://doi.org/10.1038/s41598-019-38541-7 | spa |
dc.relation.references | Li, Y., Pan, J., Zhang, R., Wang, J., Tian, D., & Niu, S. (2022). Environmental factors, bacterial interactions and plant traits jointly regulate epiphytic bacterial community composition of two alpine grassland species. Science of The Total Environment, 836, 155665. https://doi.org/10.1016/j.scitotenv.2022.155665 | spa |
dc.relation.references | Lombao, A., Barreiro, A., Fontúrbel, M. T., Martín, A., Carballas, T., & Díaz-Raviña, M. (2020). Key factors controlling microbial community responses after a fire: Importance of severity and recurrence. Science of The Total Environment, 741, 140363. https://doi.org/10.1016/j.scitotenv.2020.140363 | spa |
dc.relation.references | López Falcón, R., López Hernández, D., Hétier, J., Chargel, R., & Zinck, A. (Eds.). (2015). Tierras llaneras de Venezuela ... Tierras de buena esperanza (1.a ed.). Univerisda de Los Andes. | spa |
dc.relation.references | López, J. (2015). Heurística, irracionalidad y planificación: Desde el pensar por juegos.Ágora de Heterodoxias, 1(1), 32-41. Directory of Open Access Journals. | spa |
dc.relation.references | López-Hernández, D. (2015). PRODUCCIÓN PRIMARIA Y CICLOS BIOGEOQUÍMICOS DEL NITRÓGENO Y DEL FÓSFORO EN LAS SABANAS LLANERAS DE TRACHYPOGON. En TIERRAS LLANERAS DE VENEZUELA …tierras de buena esperanza (Primera, pp. 403-429). https://www.researchgate.net/profile/Maria-Ormeno-2/publication/305323705_Modalidades_de_Intervencion_del_Estado_en_el_Agro_Llanero/links/578877eb08ae95560407c0f3/Modalidades-de-Intervencion-del-Estado-en-el-Agro-Llanero.pdf#page=408 | spa |
dc.relation.references | López-Hernández, D., Hernandez - valencia, I., & Iraya, G. (2008). Cambios en parámetros físicos, químicos y biológicos en el suelo de una sabana protegida de quema y pastoreo durante veinticinco años. Bioagro. ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612008000300001&lng=es&tlng=es | spa |
dc.relation.references | López-Hernández, D., Hernández-Hernández, R. M., & Brossard, M. (2005). Historia del uso reciente de tierras de las sabanas de américa del sur. Estudios de casos en sabanas del orinoco. Interciencia, 30(10), 623-630. | spa |
dc.relation.references | Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576-1585. https://doi.org/10.1128/AEM.01996-06 | spa |
dc.relation.references | Lu, T., Xu, N., Lei, C., Zhang, Q., Zhang, Z., Sun, L., He, F., Zhou, N.-Y., Peñuelas, J., Zhu, Y.-G., & Qian, H. (2023). Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters, 5(4), 230172. https://doi.org/10.1007/s42832-023-0172-8 | spa |
dc.relation.references | Lucas-Borja, M. E., Miralles, I., Ortega, R., Plaza-Álvarez, P. A., Gonzalez-Romero, J., Sagra, J., Soriano-Rodríguez, M., Certini, G., Moya, D., & Heras, J. (2019). Immediate fire-induced changes in soil microbial community composition in an outdoor experimental controlled system. Science of The Total Environment, 696, 134033. https://doi.org/10.1016/j.scitotenv.2019.134033 | spa |
dc.relation.references | Luláková, P., Perez-Mon, C., Šantrůčková, H., Ruethi, J., & Frey, B. (2019). High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00668 | spa |
dc.relation.references | Ma, T., Xue, H., Piao, C., Jiang, N., & Li, Y. (2023). Los análisis basados en el genoma de la familia Oxalobacteraceae revelan la clasificación taxonómica. Research in Microbiology, 174(7), 104076. https://doi.org/10.1016/j.resmic.2023.104076 | spa |
dc.relation.references | Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Biologia de los microorganismos: Brock (14.a ed.). PEARSON EDUCACIÓN,. | spa |
dc.relation.references | Martín, S. S., & A, P. (2021). Suelos del trópico: Características y manejo. Fundación Colegio de Postgraduados en Ciencias Agrícolas. https://repositorio.iica.int/handle/11324/22863 | spa |
dc.relation.references | Martínez H, E., Fuentes E, J. P., & Acevedo H, E. (2008). CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO. Revista de la ciencia del suelo y nutrición vegetal, 8(1), 68-96. https://doi.org/10.4067/S0718-27912008000100006 | spa |
dc.relation.references | Martínez Ortega, R. M., Tuya Pendás, L. C., Martínez Ortega, M., Pérez Abreu, A., & Cánovas, A. M. (2009). EL COEFICIENTE DE CORRELACION DE LOS RANGOS DE SPEARMAN CARACTERIZACION. Revista Habanera de Ciencias Médicas, 8(2), 0-0. | spa |
dc.relation.references | Mason, C. N., Shahar, S., Beals, K. K., Kelley, S. T., Lipson, D. A., Swingley, W. D., & Barber, N. A. (2023). Taxonomic and functional restoration of tallgrass prairie soil microbial communities in comparison to remnant and agricultural soils. FEMS Microbiology Ecology, 99(11), fiad120. https://doi.org/10.1093/femsec/fiad120 | spa |
dc.relation.references | Mataix-Solera, J., García-Orenes, F., Bárcenas-Moreno, G., & Torres, M. (2009). Forest Fire Effects on Soil Microbiology. En Fire Effects on Soils and Restoration Strategies (Vol. 5, pp. 133-175). https://doi.org/10.1201/9781439843338-c5 | spa |
dc.relation.references | McGrance, S. J., Cornell, H. J., & Rix, C. J. (1998). A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. Starch - Stärke, 50(4), 158-163. https://doi.org/10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7 | spa |
dc.relation.references | Melo, V. F., Barros, L. S., Silva, M. C. S., Veloso, T. G. R., Senwo, Z. N., Matos, K. S., & Nunes, T. K. O. (2021). Soil bacterial diversities and response to deforestation, land use and burning in North Amazon, Brazil. Applied Soil Ecology, 158, 103775. https://doi.org/10.1016/j.apsoil.2020.103775 | spa |
dc.relation.references | Minorta-Cely, V. (2020). La vegetación de la OrinoquÍa colombiana: Riqueza diversidad y conservación. https://repositorio.unal.edu.co/handle/unal/78181 | spa |
dc.relation.references | Neary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management, 122(1), 51-71. https://doi.org/10.1016/S0378-1127(99)00032-8 | spa |
dc.relation.references | Nelson, A. R., Narrowe, A. B., Rhoades, C. C., Fegel, T. S., Daly, R. A., Roth, H. K., Chu, R. K., Amundson, K. K., Young, R. B., Steindorff, A. S., Mondo, S. J., Grigoriev, I. V., Salamov, A., Borch, T., & Wilkins, M. J. (2022). Wildfire-dependent changes in soil microbiome diversity and function. Nature Microbiology, 7(9), 1419-1430. https://doi.org/10.1038/s41564-022-01203-y | spa |
dc.relation.references | Ofek, M., Hadar, Y., & Minz, D. (2012). Ecology of Root Colonizing Massilia (Oxalobacteraceae). PLoS ONE, 7(7), e40117. https://doi.org/10.1371/journal.pone.0040117 | spa |
dc.relation.references | Olojugba, M., & Fatubarin, A. (2015). Effect of seasonal dynamics on the chemical properties of the soil of a Northern Guinea savanna ecosystem in Nigeria. Journal of soil science and environmental management, 6(5), 100-107. | spa |
dc.relation.references | Parada-Rojas, C., Rueda-Díaz, S., Carrero-Becerra, C., Quintero-Pacheco, N., & Cárdenas-Caro, D. (2016). Efecto de la quema en cultivos de hortalizas en Villa del Rosario, Norte de Santander, Colombia, sobre las micorrizas y propiedades del suelo. Bioagro, 28(3), 171-180. | spa |
dc.relation.references | Paul, E. A., Harris, D., Klug, M., & Ruess, R. (1999). The determination of microbial biomass. Standard Soil Methods for Long-Term Ecological Research, 291-317. | spa |
dc.relation.references | Peltier, G. L., Georgi, C. E., & Lindgren, L. f. (1959). Laboratory Manual for General Bacteriology (5.a ed.). Jonh Wiley Sons. | spa |
dc.relation.references | Pereira de Castro, A., Sartori da Silva, M. R. S., Quirino, B. F., da Cunha Bustamante, M. M., & Krüger, R. H. (2016). Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils. PLoS ONE, 11(2), e0148785. https://doi.org/10.1371/journal.pone.0148785 | spa |
dc.relation.references | Pereira, P., Francos, M., Brevik, E. C., Ubeda, X., & Bogunovic, I. (2018). Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26-32. https://doi.org/10.1016/j.coesh.2018.04.002 | spa |
dc.relation.references | Pérez-Valera, E., Goberna, M., & Verdú, M. (2019). Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biology and Biochemistry, 129, 80-89. https://doi.org/10.1016/j.soilbio.2018.11.007 | spa |
dc.relation.references | Pielou, E. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. https://doi.org/10.1016/0022-5193(66)90013-0 | spa |
dc.relation.references | Pinto, R., Ansola, G., Calvo, L., & Sáenz de Miera, L. E. (2023). High resilience of soil bacterial communities to large wildfires with an important stochastic component. Science of The Total Environment, 899, 165719. https://doi.org/10.1016/j.scitotenv.2023.165719 | spa |
dc.relation.references | Pivello, V. R. (2011). The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecology, 7(1), 24-39. https://doi.org/10.4996/fireecology.0701024 | spa |
dc.relation.references | Pizarro, E. A. (2000). Postencial forrajero del genero Paspalum. En Paturas Tropicales (Tropicalgrasslands, Vol. 22, pp. 38-46). http://ciat-library.ciat.cgiar.org/Articulos_CIAT/Vol_22_01_08.pdf | spa |
dc.relation.references | Potthast, K., Meyer, S., Crecelius, A. C., Schubert, U. S., Tischer, A., & Michalzik, B. (2017). Land-use and fire drive temporal patterns of soil solution chemistry and nutrient fluxes. Science of The Total Environment, 605-606, 514-526. https://doi.org/10.1016/j.scitotenv.2017.06.182 | spa |
dc.relation.references | Prendergast-Miller, M. T., de Menezes, A. B., Macdonald, L. M., Toscas, P., Bissett, A., Baker, G., Farrell, M., Richardson, A. E., Wark, T., & Thrall, P. H. (2017). Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities. Soil Biology and Biochemistry, 109, 1-13. https://doi.org/10.1016/j.soilbio.2017.01.027 | spa |
dc.relation.references | Pressler, Y., Moore, J. C., & Cotrufo, M. F. (2019). Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos, 128(3), 309-327. https://doi.org/10.1111/oik.05738 | spa |
dc.relation.references | Puri, A., Padda, K. P., & Chanway, C. P. (2020). Can naturally-occurring endophytic nitrogen-fixing bacteria of hybrid white spruce sustain boreal forest tree growth on extremely nutrient-poor soils? Soil Biology and Biochemistry, 140, 107642. https://doi.org/10.1016/j.soilbio.2019.107642 | spa |
dc.relation.references | QIIME2. (2024). Documentación de usuario de QIIME 2 2024.5.0 documentación. Quime2docs. https://docs.qiime2.org/2024.5/ | spa |
dc.relation.references | Rafie, S. a. A., Blentlinger, L. R., Putt, A. D., Williams, D. E., Joyner, D. C., Campa, M. F., Schubert, M. J., Hoyt, K. P., Horn, S. P., Franklin, J. A., & Hazen, T. C. (2024). Impact of prescribed fire on soil microbial communities in a Southern Appalachian Forest clear-cut. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1322151 | spa |
dc.relation.references | Rai, D., Silveira, M. L., Strauss, S. L., Meyer, J. L., Castellano-Hinojosa, A., Kohmann, M. M., Brandani, C. B., & Gerber, S. (2023). Short-term prescribed fire-induced changes in soil microbial communities and nutrients in native rangelands of Florida. Applied Soil Ecology, 189, 104914. https://doi.org/10.1016/j.apsoil.2023.104914 | spa |
dc.relation.references | Ramos-Montaño, C., & García-Cond, M. R. (2015). Características Ecosistémicas asociadas a la actividad ganadera en Arauca (Colombia): Desafíos frente al cambio climático. Orinoquia, 1(20), 28. | spa |
dc.relation.references | Rangel, J., & Celis, L. (2019). SUELOS DEL TERRITORIO SABANAS Y HUMEDALES DE ARAUCA, COLOMBIA Soils of the savannas and wetlands territory of Arauca, Colombia (pp. 171-17). | spa |
dc.relation.references | Rao, W. V. B. S., & Sinha, M. K. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences, 33, 272-278. | spa |
dc.relation.references | Rincon Castillo, A., Ligarreto Moreno, G. A., & Garay, E. (2008). PRODUCCIÓN DE FORRAJE EN LOS PASTOS Brachiaria decumbens cv. AMARGO Y Brachiaria brizantha cv. TOLEDO, SOMETIDOS A TRES FRECUENCIAS Y A DOS INTENSIDADES DE DEFOLIACIÓN EN CONDICIONES DEL PIEDEMONTE LLANERO COLOMBIANO. Revista Facultad Nacional de Agronomía Medellín, 61(1), 4336-4346. | spa |
dc.relation.references | Rivera-Urbalejo, A. P., Vázquez, D., Vázquez, J. L. F., Enríquez, M. R., Cesa-Luna, C., Morales-García, Y. E., Rojas, J. M., & Hernández, V. Q. (2021). APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. Acta Biológica Colombiana, 26(3), Article 3. https://doi.org/10.15446/abc.v26n3.85760 | spa |
dc.relation.references | Robeson, M. S., O’Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster, J. T., & Bokulich, N. A. (2020). RESCRIPt: Reproducible sequence taxonomy reference database management for the masses (p. 2020.10.05.326504). bioRxiv. https://doi.org/10.1101/2020.10.05.326504 | spa |
dc.relation.references | Rodríguez, J., González-Pérez, J. A., Turmero, A., Hernández, M., Ball, A. S., González-Vila, F. J., & Enriqueta Arias, M. (2017). Wildfire effects on the microbial activity and diversity in a Mediterranean forest soil. CATENA, 158, 82-88. https://doi.org/10.1016/j.catena.2017.06.018 | spa |
dc.relation.references | Rodríguez, J., Nuñez, O., Herrera, F., Boucourt, R., Albelo, N., & Rodríguez, Z. (2006). Aislamiento y selección de microorganismos con capacidad de degradar el almidón. Revista Cubana de Ciencia Agrícola, 40(3), 349-354. | spa |
dc.relation.references | Rosero Cuesta, J., & Osorio Giraldo, I. (2013). Efectos de los incendios forestales en las propiedades del suelo. Estado del arte. Cuaderno Activa, 5, 59-67. | spa |
dc.relation.references | Ross, D. J. (1966). A Survey of Activities of Enzymes Hydrolysing Sucrose and Starch in Soils Under Pasture. Journal of Soil Science, 17(1), 1-15. https://doi.org/10.1111/j.1365-2389.1966.tb01447.x | spa |
dc.relation.references | Sáenz de Miera, L. E., Pinto, R., Gutierrez-Gonzalez, J. J., Calvo, L., & Ansola, G. (2020). Wildfire effects on diversity and composition in soil bacterial communities. Science of The Total Environment, 726, 138636. https://doi.org/10.1016/j.scitotenv.2020.138636 | spa |
dc.relation.references | Sánchez, F., & Armenteras, D. (2017). Changes in soil organic carbon after burning in a forest-savanna edge. Acta Agronómica, 66(4), 519-524. https://doi.org/10.15446/acag.v66n4.60524 | spa |
dc.relation.references | Sánchez Ojeda, F. (2015). Efecto de borde post quema sobre el contenido de carbono orgánico del suelo en una interfase sabana-bosque de galería en el Vichada, Colombia. https://repositorio.unal.edu.co/handle/unal/56669 | spa |
dc.relation.references | Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996). Enzymes Involved in Carbon Metabolism. En F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Methods in Soil Biology (pp. 185-207). Springer. https://doi.org/10.1007/978-3-642-60966-4_12 | spa |
dc.relation.references | Schinner, F., & von Mersi, W. (1990). Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22(4), 511-515. https://doi.org/10.1016/0038-0717(90)90187-5 | spa |
dc.relation.references | Serra-Wittling, C., Houot, S., & Barriuso, E. (1995). Soil enzymatic response to addition of municipal solid-waste compost. Biology and Fertility of Soils, 20(4), 226-236. https://doi.org/10.1007/BF00336082 | spa |
dc.relation.references | Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. The Bell System Technical Journal. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | spa |
dc.relation.references | Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52(3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591 | spa |
dc.relation.references | Shi, Z., Chen, Y., Li, A., Hu, M., & Liu, W. (2024). Fire alters soil bacterial and fungal communities and intensifies seasonal variation in subtropical forest ecosystem. European Journal of Soil Biology, 123, 103677. https://doi.org/10.1016/j.ejsobi.2024.103677 | spa |
dc.relation.references | Simpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148), 688-688. https://doi.org/10.1038/163688a0 | spa |
dc.relation.references | Singh, A. K., Kushwaha, M., Rai, A., & Singh, N. (2017). Changes in soil microbial response across year following a wildfire in tropical dry forest. Forest Ecology and Management, 391, 458-468. https://doi.org/10.1016/j.foreco.2017.02.042 | spa |
dc.relation.references | Singh, J. S., Raghubanshi, A. S., Singh, R. S., & Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338(6215), 499-500. https://doi.org/10.1038/338499a0 | spa |
dc.relation.references | Singh, R. S., Srivastava, S. C., Raghubanshi, A. S., Singh, J. S., & Singh, S. P. (1991). Microbial C, N and P in Dry Tropical Savanna: Effects of Burning and Grazing. Journal of Applied Ecology, 28(3), 869-878. https://doi.org/10.2307/2404213 | spa |
dc.relation.references | Smith, N. R., Kishchuk, B. E., & Mohn, W. W. (2008). Effects of Wildfire and Harvest Disturbances on Forest Soil Bacterial Communities. Applied and Environmental Microbiology, 74(1), 216-224. https://doi.org/10.1128/AEM.01355-07 | spa |
dc.relation.references | Sorenson, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content (Kongelige Danske Videnskabernes Selskab, Vol. 5). https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf | spa |
dc.relation.references | Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. https://doi.org/10.2307/1412159 | spa |
dc.relation.references | Stavi, I. (2019). Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology. Water, 11(5), 1042. https://doi.org/10.3390/w11051042 | spa |
dc.relation.references | Stock, J. B., Stock, A. M., & Mottonen, J. M. (1990). Signal transduction in bacteria. Nature, 344(6265), 395-400. https://doi.org/10.1038/34439 | spa |
dc.relation.references | Stone, B. W., Li, J., Koch, B. J., Blazewicz, S. J., Dijkstra, P., Hayer, M., Hofmockel, K. S., Liu, X.-J. A., Mau, R. L., Morrissey, E. M., Pett-Ridge, J., Schwartz, E., & Hungate, B. A. (2021). Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nature Communications, 12(1), 3381. https://doi.org/10.1038/s41467-021-23676-x | spa |
dc.relation.references | Suarez De C., F. (1957). Las quemas como práctica agrícola y sus efectos. https://biblioteca.cenicafe.org/handle/10778/747 | spa |
dc.relation.references | Sugihara, S., Shibata, M., Mvondo Ze, A. D., Araki, S., & Funakawa, S. (2015). Effects of vegetation on soil microbial C, N, and P dynamics in a tropical forest and savanna of Central Africa. Applied Soil Ecology, 87, 91-98. https://doi.org/10.1016/j.apsoil.2014.11.002 | spa |
dc.relation.references | Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. https://doi.org/10.1016/0038-0717(69)90012-1 | spa |
dc.relation.references | Teather, R., & Wood, P. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), 777-780. https://doi.org/10.1128/aem.43.4.777-780.1982 | spa |
dc.relation.references | Thomas-Barry, G., St. Martin, C. C. G., Lynch, M. D. J., Ramsubhag, A., Rouse-Miller, J., & Charles, T. C. (2021). Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. Science of The Total Environment, 769, 145214. https://doi.org/10.1016/j.scitotenv.2021.145214 | spa |
dc.relation.references | Tobin, T., & Janzen, C. (2008). Microbial Communities in Fire-Impacted Soils. En Soil Biology: Microbiology of Extreme Soils (Vol. 13, pp. 299-316). Patrice Dion and Chandra Shekhar Nautiya. https://susqu-researchmanagement.esploro.exlibrisgroup.com/esploro/outputs/bookChapter/Microbial-Communities-in-Fire-Impacted-Soils/991002248649805236?institution=01SUU_INST | spa |
dc.relation.references | Vargas, O., Díaz, J., Reyes, S., & Gómez, P. (2012). Guías técnicas para la restauración ecológica de los ecosistemas de Colombia. Bogotá: Facultad de Ciencias, Departamento de Biología, Grupo de Restauración Ecológica-Universidad Nacional de Colombia. https://asogravas.org/wp-content/uploads/2017/05/Anexo_8_Guias_Tecnicas_Restauracion_Ecologica_2.pdf | spa |
dc.relation.references | Vega, J. A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., & Jiménez, E. (2013). Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 369(1), 73-91. https://doi.org/10.1007/s11104-012-1532-9 | spa |
dc.relation.references | Verma, S., & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the International Academy of Ecology and Environmental Sciences. http://www.iaees.org/publications/journals/piaees/articles/2012-2(3)/impact-of-forest-fire.pdf | spa |
dc.relation.references | Walker, B. H. (1987). Determinants of tropical savannas: Presentations made by savanna researchers at a workshop in Harare, Zimbabwe, December 1985. Published by IRL Press on behalf of the ICSU Press for the International Union of Biological Sciences | spa |
dc.relation.references | Wang, H., Lou, J., Gu, H., Luo, X., Yang, L., Wu, L., Liu, Y., Wu, J., & Xu, J. (2016). Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. Environmental Science and Pollution Research, 23(13), 13378-13388. https://doi.org/10.1007/s11356-016-6515-6 | spa |
dc.relation.references | Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., Xie, G., Haft, D. H., Sait, M., Badger, J., Barabote, R. D., Bradley, B., Brettin, T. S., Brinkac, L. M., Bruce, D., Creasy, T., Daugherty, S. C., Davidsen, T. M., DeBoy, R. T., … Kuske, C. R. (2009). Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils. Applied and Environmental Microbiology, 75(7), 2046-2056. https://doi.org/10.1128/AEM.02294-08 | spa |
dc.relation.references | Weber, C. F., Lockhart, J. S., Charaska, E., Aho, K., & Lohse, K. A. (2014). Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biology and Biochemistry, 69, 242-250. https://doi.org/10.1016/j.soilbio.2013.11.010 | spa |
dc.relation.references | Willems, A. (2014). The Family Comamonadaceae. En E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes (pp. 777-851). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_238 | spa |
dc.relation.references | Yeager, C. M., Northup, D. E., Grow, C. C., Barns, S. M., & Kuske, C. R. (2005). Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire. Applied and Environmental Microbiology, 71(5). https://journals.asm.org/doi/abs/10.1128/AEM.71.5.2713-2722.2005 | spa |
dc.relation.references | Zhang, G., Yu, X., Li, Y., Liu, Y., Zhang, H., Jia, Y., & Xia, S. (2019). Effects of Burning on Carbon Utilization of Soil Microorganisms and Plant Growth of Carex brevicuspis Communities at Lake Poyang Wetlands, China. Wetlands, 39(1),1-15. https://doi.org/10.1007/s13157-018-1007-8 | spa |
dc.relation.references | Zhang, J., Gao, Y., Du, Z.-J., & Wang, M.-Y. (2023). Tumebacillus lacus sp. Nov., isolated from lake water. International Journal of Systematic and Evolutionary Microbiology, 73(11), 006153. https://doi.org/10.1099/ijsem.0.006153 | spa |
dc.relation.references | Zhou, Y., Pang, Z., Yuan, Z., Fallah, N., Jia, H., & Ming, R. (2022). Sex-based metabolic and microbiota differences in roots and rhizosphere soils of dioecious papaya (Carica papaya L.). Frontiers in Plant Science, 13, 991114. https://doi.org/10.3389/fpls.2022.991114 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Quema controlada | spa |
dc.subject.agrovoc | controlled burning | eng |
dc.subject.agrovoc | Actividad biológica en el suelo | spa |
dc.subject.agrovoc | biological activity in soil | eng |
dc.subject.agrovoc | Microbioma | spa |
dc.subject.agrovoc | microbiomes | eng |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.proposal | Suelos | spa |
dc.subject.proposal | Microorganismos | spa |
dc.subject.proposal | Fuego | spa |
dc.subject.proposal | Quemas | spa |
dc.subject.proposal | Incendios | spa |
dc.subject.proposal | Ciclos Biogeoquímicos | spa |
dc.subject.proposal | Soils | eng |
dc.subject.proposal | Soil microorganism | eng |
dc.subject.proposal | Fire | eng |
dc.subject.proposal | Burning | eng |
dc.subject.proposal | Grassland savanna | eng |
dc.subject.proposal | Biogeochemical cycles | eng |
dc.title | Efectos de la quema en la composición y función de las comunidades microbianas del suelo en la sabana de pastizal de Arauca, Arauca, Colombia | spa |
dc.title.translated | Effects of burning on the composition and function of soil microbial communities in the grassland savanna of Arauca, Arauca, Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1113685620.2024.pdf
- Tamaño:
- 10.31 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: