Efectos de la quema en la composición y función de las comunidades microbianas del suelo en la sabana de pastizal de Arauca, Arauca, Colombia

dc.contributor.advisorCaro Quintero, Alejandrospa
dc.contributor.authorBriñez Perales, Diana Carolinaspa
dc.coverage.countryColombiaspa
dc.coverage.regionAraucaspa
dc.coverage.regionAraucaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1023706
dc.date.accessioned2025-04-01T19:41:37Z
dc.date.available2025-04-01T19:41:37Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEl suelo es una matriz mineral y biológica compleja. En él habitan diferentes grupos de microorganismos, los cuales cumplen funciones específicas en el ciclo de los nutrientes (e.g., carbono y nitrógeno) e interactúan dinámicamente entre sí. Perturbaciones físicas, biológicas y químicas pueden afectar estas interacciones, generando disminución en la calidad del suelo. Entre estas se encuentran las quemas y los incendios forestales, cuyos efectos en los microorganismos del suelo han sido estudiados durante estos últimos años, evidenciando cambios en la riqueza y abundancia de especies. Entre los sistemas propensos a quemas o incendios forestales encontramos las sabanas de Arauca, ubicadas en la región de la Orinoquia de Colombia. Este ecosistema es susceptible a quemas debido a su vegetación (e.g. herbáceas y gramíneas), climatología (régimen unimodal) y actividades agrícolas (e.g. ganadería extensiva). El presente trabajo evaluó el efecto de las quemas en los microorganismos del suelo de pastizal del Municipio de Arauca, Arauca, Colombia; para ello se realizó un experimento in situ que consistió en quemas de baja intensidad, registrando la composición microbiana mediante metataxonómia y técnicas bioinformáticas, y sus grupos funcionales a través de cultivos selectivos en diferentes tiempos (antes de la quema y a las 24 horas, 30 días y 4 meses posteriores a la quema). Inicialmente, no se encontró diferencias significativas entres los suelos quemados y de control antes de la quema y 24 horas después, con relación a los cultivos e identificación de las comunidades microbianas cultivables. Los efectos significativos sobre las comunidades bacterianas fueron obtenidos a los 30 días posteriores a la quema, donde los filos Proteobacterias y Bacteroidota presentaron abundancia diferencial en las parcelas quemadas, Sin embargo, esta distinción disminuye a los 4 meses del experimento. Paralelamente, para los microorganismos relacionados con la fijación del nitrógeno y la solubilización de fosfatos se encontró un incremento significativo de la población debido a la quema solo a los 4 meses. Por otro lado, se registró un incremento significativo de la población de los microorganismos celulolíticos a los 30 días y 4 meses en las parcelas quemadas en comparación con los controles. Los resultados muestran que la quema de baja intensidad genera efectos transitorios sobre las comunidades microbianas; sin embargo, factores ambientales como el inicio de la temporada de lluvia podrían haber favorecido la recuperación del microbioma del suelo. (Texto tomado de la fuente).spa
dc.description.abstractSoil is a complex mineral and biological matrix, formed by parent material located in the Earth's crust. Different groups of microorganisms inhabit it, each performing specific functions in the nutrient cycle (e.g., carbon and nitrogen) and interacting dynamically with each other. Physical, biological, and chemical disturbances can affect these interactions, leading to a decrease in soil quality. Among these disturbances are burns and wildfires, whose effects on soil microorganisms have been studied in recent years, showing changes in species richness and abundance. Within the systems prone to burns or wildfires are the savannas of Arauca, located in the Orinoquia region of Colombia. This ecosystem is susceptible to burns due to its vegetation (e.g., herbs and grasses), climatology (unimodal regime), and agricultural activities (e.g., extensive livestock farming). The present study evaluated the effect of burning on soil microorganisms in the grasslands of the Municipality of Arauca, Arauca, Colombia. An in situ experiment was conducted, which involved low-intensity burns, recording microbial composition with meta-taxonomy and bioinformatics techniques, and functional groups through selective cultures at different times (before the burn and at 24 hours, 30 days, and 4 months post-burn). Initially, no significant differences were found between the burned and control soils before the burn and 24 hours after, regarding the cultures and identification of cultivable microbial communities. Significant effects on bacterial communities were observed 30 days post-burn, with the phylum Proteobacteria and Bacteroidota differential abundance in the burned plots. Nevertheless, this distinction decreased 4 months into the experiment. Additionally, for microorganisms related to nitrogen fixation and phosphate solubilization, a significant population increase due to the burn was found only at 4 months. Also, a significant increase in the population of cellulolytic microorganisms was recorded at 30 days and 4 months in the burned plots compared to the controls. The results show that low-intensity burning generates transient effects on microbial communities;However, environmental factors such as the onset of the rainy season could have favored the recovery of the soil microbiome.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaMicrobiología ambientalspa
dc.format.extent120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87805
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAanderud, Z. T., Bahr, J., Robinson, D. M., Belnap, J., Campbell, T. P., Gill, R. A., McMillian, B., & St. Clair, S. (2019). The Burning of Biocrusts Facilitates the Emergence of a Bare Soil Community of Poorly-Connected Chemoheterotrophic Bacteria With Depressed Ecosystem Services. Frontiers in Ecology and Evolution, 7. https://doi.org/10.3389/fevo.2019.00467spa
dc.relation.referencesAcea, M. J., & Carballas, T. (1996). Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiology Ecology, 20(1), 33-39. https://doi.org/10.1111/j.1574-6941.1996.tb00302.xspa
dc.relation.referencesAlcañiz, M., Outeiro, L., Francos, M., & Úbeda, X. (2018). Effects of prescribed fires on soil properties: A review. Science of The Total Environment, 613-614, 944-957. https://doi.org/10.1016/j.scitotenv.2017.09.144spa
dc.relation.referencesAmurrio Ordoñez, P., & Poma Sajama, V. (2015). Propiedades fidicoquímicas y variación estacional de los suelos, en un transecto altitudinal en la localidad de lluto, La Paz, Boivia. Revista Boliviana de Química, 32(4), 74-81spa
dc.relation.referencesAnaya, J. (2009). Estimación mensual de emisiones por biomasa quemada para Colombia basado en imágenes de satélite. https://ebuah.uah.es/dspace/handle/10017/4272spa
dc.relation.referencesAndersson, M., Michelsen, A., Jensen, M., & Kjøller, A. (2004). Tropical savannah woodland: Effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology and Biochemistry, 36(5), 849-858. https://doi.org/10.1016/j.soilbio.2004.01.015spa
dc.relation.referencesArboleda, A., Carrascal, M., Álvarez, J., Páez, V., & Cordero, J. (2021, octubre 6). Recomendaciones para la toma de muestras para analisis del laboratorio nacional de suelos. IGAC; COPIA NO CONTROLADA. https://www.igac.gov.co/sites/igac.gov.co/files/listadomaestro/in-agr-pc01-13_recomendaciones_para_la_toma_de_muestras_para_analisis_en_el_lns1.pdfspa
dc.relation.referencesArmenteras, D., González, T. M., Vargas, J. O., Elizalde, M. C. M., & Oliveras, I. (2020). Incendios en ecosistemas del norte de Suramérica: Avances en la ecología del fuego tropical en Colombia, Ecuador y Perú. Caldasia, 42(1), Article 1. https://doi.org/10.15446/caldasia.v42n1.77353spa
dc.relation.referencesArunrat, N., Sereenonchai, S., Sansupa, C., Kongsurakan, P., & Hatano, R. (2023). Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand. Biology, 12(4), Article 4. https://doi.org/10.3390/biology12040501spa
dc.relation.referencesAshby, S. F. (1907). Some Observations on the Assimilation of Atmospheric Nitrogen by a Free Living Soil Organism.—Azotobacter Chroococcum of Beijerinck. The Journal of Agricultural Science, 2(1), 35-51. https://doi.org/10.1017/S0021859600000988spa
dc.relation.referencesBanning, N. C., & Murphy, D. V. (2008). Effect of heat-induced disturbance on microbial biomass and activity in forest soil and the relationship between disturbance effects and microbial community structure. Applied Soil Ecology, 40(1), 109-119. https://doi.org/10.1016/j.apsoil.2008.03.011spa
dc.relation.referencesBárcenas-Moreno, G., & Díaz-Raviña, M. (2013). Efectos del fuego sobre los microorganismos del suelo. Red Temática Nacional Efectos de los Incendios Forestales sobre los Suelos (FUEGORED). FUEGORED. http://fuegored.weebly.com/uploads/2/2/2/8/22283836/fgr2013_07.pdfspa
dc.relation.referencesBarraclough, A. D., & Olsson, P. A. (2018). Slash-and-Burn Practices Decrease Arbuscular Mycorrhizal Fungi Abundance in Soil and the Roots of Didierea madagascariensis in the Dry Tropical Forest of Madagascar. Fire, 1(3), Article 3. https://doi.org/10.3390/fire1030037spa
dc.relation.referencesBarreiro, A., & Díaz-Raviña, M. (2021). Fire impacts on soil microorganisms: Mass, activity, and diversity. Current Opinion in Environmental Science & Health, 22, 100264. https://doi.org/10.1016/j.coesh.2021.100264spa
dc.relation.referencesBautista Cruz, A., Etchevers Barra, J., del Castillo, R. F., & Gutiérrez, C. (2004). La calidad del suelo y sus indicadores: Ecosistemas, 13(2). https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/572spa
dc.relation.referencesBeltrán, M., & Lizarazo-Forero, L. M. (2013). Grupos Funcionales de Microorganismos en Suelos de Páramo Perturbados por Incendios Forestales. Revista de Ciencias, 17(2), Article 2. https://doi.org/10.25100/rc.v17i2.490spa
dc.relation.referencesBeltrán Pineda, M. E. (2014). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Ciencia y Tecnología Agropecuaria, 15(1), Article 1. https://doi.org/10.21930/rcta.vol15_num1_art:401spa
dc.relation.referencesBernal, L., Coello, P., Martínez-Barajas, J. E., Bernal, L., Coello, P., & Martínez-Barajas, J. E. (2022). Regulación de la degradación del almidón en las hojas. Revista fitotecnia mexicana, 45(4), 503-507. https://doi.org/10.35196/rfm.2022.4.503spa
dc.relation.referencesBetts, W. B., Dart, R. K., Ball, A. S., & Pedlar, S. L. (1991). Biosynthesis and Structure of Lignocellulose. En W. B. Betts (Ed.), Biodegradation (pp. 139-155). Springer London. https://doi.org/10.1007/978-1-4471-3470-1_7spa
dc.relation.referencesBlair, J. M. (1997). FIRE, N AVAILABILITY, AND PLANT RESPONSE IN GRASSLANDS: A TEST OF THE TRANSIENT MAXIMA HYPOTHESIS. Ecology, 78(8), 2359-2368. https://doi.org/10.1890/0012-9658(1997)078[2359:FNAAPR]2.0.CO;2spa
dc.relation.referencesBokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 90. https://doi.org/10.1186/s40168-018-0470-zspa
dc.relation.referencesBond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(2), 525-538.https://doi.org/10.1111/j.1469-8137.2004.01252.xspa
dc.relation.referencesBrevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of SOIL. SOIL, 1(1), 117-129. https://doi.org/10.5194/soil-1-117-2015spa
dc.relation.referencesBreza-Boruta, B., & Paluszak, Z. (2006). Occurrence of amylolytic microorganisms in soil depending on the type of cultivation. Ecohydrology & Hydrobiology, 6(1), 175-180. https://doi.org/10.1016/S1642-3593(06)70140-9spa
dc.relation.referencesBukar, M., Sodipo, O., Dawkins, K., Ramirez, R., Kaldapa, J. T., Tarfa, M., & Esiobu, N. (2019). Microbiomes of Top and Sub-Layers of Semi-Arid Soils in North-Eastern Nigeria Are Rich in Firmicutes and Proteobacteria with Surprisingly High Diversity of Rare Species. Advances in Microbiology, 9(1), Article 1. https://doi.org/10.4236/aim.2019.91008spa
dc.relation.referencesBuriticá, N. (2016). Sabanas Inundables de la Orinoquía Colombiana. Instituto de Investigación de Recursos Biológicos Alexander von Humbold. http://repository.humboldt.org.co/handle/20.500.11761/9662spa
dc.relation.referencesBustamante, M., Medina, E., Asner, G., Nardoto, G., & Garcia-Montiel, D. (1970). Nitrogen cycling in tropical and temperate savannas. En Biogeochemistry (Vol. 79, pp. 209-237). https://doi.org/10.1007/978-1-4020-5517-1_10spa
dc.relation.referencesCabugao, K. G., Yaffar, D., Stenson, N., Childs, J., Phillips, J., Mayes, M. A., Yang, X., Weston, D. J., & Norby, R. J. (2021). Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution, 11(3), 1150-1164. https://doi.org/10.1002/ece3.7036spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869spa
dc.relation.referencesCaporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4516-4522. https://doi.org/10.1073/pnas.100008010spa
dc.relation.referencesCarroll, K. C., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., McKerrow, J. H., & Sakanari, J. A. (2016). Bacilos gramnegativos entéricos (Enterobacteriaceae). En Microbiología médica, 27e (1-Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1129191949spa
dc.relation.referencesCarson, C. M., & Zeglin, L. H. (2018). Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biology and Biochemistry, 121, 231-239. https://doi.org/10.1016/j.soilbio.2018.03.023spa
dc.relation.referencesCertini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143(1), 1-10. https://doi.org/10.1007/s00442-004-1788-8spa
dc.relation.referencesChaudhary, D. K., & Kim, J. (2017). Massilia agri sp. Nov., isolated from reclaimed grassland soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2696-2703. https://doi.org/10.1099/ijsem.0.002002spa
dc.relation.referencesChen, W.-C., Ko, C.-H., Su, Y.-S., Lai, W.-A., & Shen, F.-T. (2021). Metabolic potential and community structure of bacteria in an organic tea plantation. Applied Soil Ecology, 157, 103762. https://doi.org/10.1016/j.apsoil.2020.103762spa
dc.relation.referencesCilliers, C. D., Botha, A., Esler, K. J., & Boucher, C. (2005). Effects of alien plant management, fire and soil chemistry on selected soil microbial populations in the Table Mountain National Park, South Africa. South African Journal of Botany, 71(2), 211-220. https://doi.org/10.1016/S0254-6299(15)30135-6spa
dc.relation.referencesClarke, K. R., & Ainsworth, M. (1993). A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series, 92(3), 205-219.spa
dc.relation.referencesCorrales Ramírez, L. C., Arévalo Galvez, Z. Y., & Moreno Burbano, V. E. (2014). Solubilización de fosfatos: Una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 68-79.spa
dc.relation.referencesCruz-Martínez, K., Suttle, K. B., Brodie, E. L., Power, M. E., Andersen, G. L., & Banfield, J. F. (2009). Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. The ISME Journal, 3(6), 738-744. https://doi.org/10.1038/ismej.2009.16spa
dc.relation.referencesDatta, R. (2024). Enzymatic degradation of cellulose in soil: A review. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2024.e24022spa
dc.relation.referencesDe Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H., Whitman, W. B., & others. (2009). The firmicutes (Vol. 3). Springer New York, NY, USA:spa
dc.relation.referencesDepietri, Y., & Orenstein, D. E. (2019). Fire-Regulating Services and Disservices With an Application to the Haifa-Carmel Region in Israel. Frontiers in Environmental Science, 7, 107. https://doi.org/10.3389/fenvs.2019.00107spa
dc.relation.referencesDooley, S. R., & Treseder, K. K. (2012). The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry, 109(1-3), 49-61. https://doi.org/10.1007/s10533-011-9633-8spa
dc.relation.referencesDuncan, Z. M., Tajchman, A. J., Ramirez, M. P., Lemmon, J., Hollenbeck, W. R., Blasi, D. A., Fick, W. H., & Olson, K. C. (2021). Effects of prescribed fire timing on grazing performance of yearling beef cattle, forage biomass accumulation, and plant community characteristics on native tallgrass prairie in the Kansas Flint Hills. Translational Animal Science, 5(2), txab077. https://doi.org/10.1093/tas/txab077spa
dc.relation.referencesEivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9(3), 167-172. https://doi.org/10.1016/0038-0717(77)90070-0spa
dc.relation.referencesFauci, M. F., & Dick, R. P. (1994). Soil Microbial Dynamics: Short- and Long-Term Effects of Inorganic and Organic Nitrogen. Soil Science Society of America Journal, 58(3), 801-806. https://doi.org/10.2136/sssaj1994.03615995005800030023xspa
dc.relation.referencesFernández, J. A., Schroeder, M. A., Goldfarb, M. C., & Bernardis, A. C. (2011). Efecto de la frecuencia de quema prescripta sobre la composición mineral de los pastizales en el nordeste argentino. Ecología Aplicada, 10(1), Article 1-2.https://doi.org/10.21704/rea.v10i1-2.410spa
dc.relation.referencesFernández Martínez, M. Á. (2016). Colonización microbiana y sucesión primaria en suelos descubiertos tras el retroceso de glaciares en Tierra del Fuego, Chile [doctoralThesis]. https://repositorio.uam.es/handle/10486/676648spa
dc.relation.referencesFerrenberg, S., O’Neill, S. P., Knelman, J. E., Todd, B., Duggan, S., Bradley, D., Robinson, T., Schmidt, S. K., Townsend, A. R., Williams, M. W., Cleveland, C. C., Melbourne, B. A., Jiang, L., & Nemergut, D. R. (2013). Changes in assembly processes in soil bacterial communities following a wildfire disturbance. The ISME Journal, 7(6), 1102-1111. https://doi.org/10.1038/ismej.2013.11spa
dc.relation.referencesFierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an Ecological Classification of Soil Bacteria. Ecology, 88(6), 1354-1364. https://doi.org/10.1890/05-1839spa
dc.relation.referencesFilippidou, S., Junier, T., Wunderlin, T., Lo, C.-C., Li, P.-E., Chain, P. S., & Junier, P. (2015). Subdetección de Firmicutes formadores de endosporas en datos metagenómicos. Computational and Structural Biotechnology Journal, 13, 299-306. https://doi.org/10.1016/j.csbj.2015.04.002spa
dc.relation.referencesFischer, M. S., Patel, N. J., De Lorimier, P. J., & Traxler, M. F. (2023). Prescribed fire selects for a pyrophilous soil sub‐community in a northern California mixed conifer forest. Environmental Microbiology, 25(11), 2498-2515. https://doi.org/10.1111/1462-2920.16475spa
dc.relation.referencesFontúrbel, M. T., Barreiro, A., Vega, J. A., Martín, A., Jiménez, E., Carballas, T., Fernández, C., & Díaz-Raviña, M. (2012). Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma, 191, 51-60. https://doi.org/10.1016/j.geoderma.2012.01.037spa
dc.relation.referencesFontúrbel, T., Carrera, N., Vega, J. A., & Fernández, C. (2021). The Effect of Repeated Prescribed Burning on Soil Properties: A Review. Forests, 12(6), 767. https://doi.org/10.3390/f12060767spa
dc.relation.referencesFrioni, L. (2005). Microbiologia Basica, Ambiental y Agricola. Facultad de Agronomia,Universidad de la República Oriental del Urugua. https://www.ciaorganico.net/documypublic/382_infoagronomo.net_-_Microlobiologa_bsica_ambiental_y_agricola_lilian_friomi_2006.pdfspa
dc.relation.referencesFrost, P., & Robertson, F. (1987). The Ecological Effects of Fire in Savannas. En The Ecological efects of fire in Savannas (pp. 93-140). Professor Brian H. WalkerChief, Division of Wildlife andRangeland Research. https://www.academia.edu/1237689/The_Ecological_Effects_of_Fire_in_Savannasspa
dc.relation.referencesFuentes-Ramirez, A., Barrientos, M., Almonacid, L., Arriagada-Escamilla, C., & Salas-Eljatib, C. (2018). Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Applied Soil Ecology, 131, 99-106. https://doi.org/10.1016/j.apsoil.2018.08.010spa
dc.relation.referencesFultz, L. M., Moore-Kucera, J., Dathe, J., Davinic, M., Perry, G., Wester, D., Schwilk, D. W., & Rideout-Hanzak, S. (2016). Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest. Applied Soil Ecology, 99, 118-128. https://doi.org/10.1016/j.apsoil.2015.10.023spa
dc.relation.referencesGoberna, M., Garcia, C., Insam, H., Hernández, T., & Verdú, M. (2011). Burning Fire-Prone Mediterranean Shrublands: Immediate Changes in Soil Microbial Community Structure and Ecosystem Functions. Microbial ecology, 64, 242-255. https://doi.org/10.1007/s00248-011-9995-4spa
dc.relation.referencesGómez, J., & Luna, J. (2018). GRUPOS FUNCIONALES MICROBIANOS EN SUELOS CONTAMINADOS CON TOXAFENO EN EL DEPARTAMENTO DEL CESAR, COLOMBIA. Luna Azul, 47, 98-113. https://doi.org/10.17151/luaz.2019.47.6spa
dc.relation.referencesGómez, J., Montes, N., & Márin, E. (2023). Plancha 5–07 del Atlas Geológico de Colombia 2023 (Servicio Geológico Colombiano) [Map].spa
dc.relation.referencesGómez, Y., & Paolini, J. (2011). Variación en la actividad microbiana por cambio de uso en suelos en sabanas, Llanos Orientales, Venezuela. Revista de Biología Tropical, 59(1), 1-5.spa
dc.relation.referencesGómez, Y., Paolini, J., & Hernández, R. M. (2010). LA SUSTITUCIÓN DE LA SABANA NATIVA POR PLANTACIONES DE PINO Y LA VARIABILIDAD TEMPORAL EN LA BIOMASA MICROBIANA Y LA MINERALIZACIÓN DEL CARBONO Y NITRÓGENO EN EL SUELO. TERRA LATINOAMERICANA, 28(2), 155-163.spa
dc.relation.referencesGonçalves, O. S., & Santana, M. F. (2023). Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. Microbial Ecology, 86(4), 2687-2702. https://doi.org/10.1007/s00248-023-02275spa
dc.relation.referencesGonzález Blair, G. H., & Castellanos Domínguez, Ó. F. (2003). Alternativas de modificación del método de somogyi-nelson para la determinación de azúcares reductores a partir de sus posibilidades químicas. 52. https://repositorio.unal.edu.co/handle/unal/28644spa
dc.relation.referencesGonzález-Vila, F. J., & Almendros Martín, G. (2011). El controvertido efecto de los incendios. El fuego en el ciclo del carbono en los ecosistemas mediterráneos. https://digital.csic.es/handle/10261/54864spa
dc.relation.referencesGood, I. J. (1953). THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS. Biometrika, 40(3-4), 237-264. https://doi.org/10.1093/biomet/40.3-4.237spa
dc.relation.referencesGutiérrez Navarro, A. G., García Barrios, L. E. G., Parra Vázquez, M. P., & Rosset, P. (2017). De la supresión al manejo del fuego en la Reserva de la Biosfera La Sepultura, Chiapas: Perspectivas campesinas. Región y Sociedad, XXIX(70), 31-70.spa
dc.relation.referencesGutknecht, J. L. M., Henry, H. A. L., & Balser, T. C. (2010). Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia, 53(5), 283-293. https://doi.org/10.1016/j.pedobi.2010.02.001spa
dc.relation.referencesHart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D., & Boyle, S. I. (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220(1-3), 166-184. https://doi.org/10.1016/j.foreco.2005.08.012spa
dc.relation.referencesHayden, H. L., Mele, P. M., Bougoure, D. S., Allan, C. Y., Norng, S., Piceno, Y. M.,Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Williams, A. L., & Hovenden, M. J. (2012). Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 14(12), 3081-3096. https://doi.org/10.1111/j.1462-2920.2012.02855.xspa
dc.relation.referencesHer, J., Srinivasan, S., & Lee, S.-S. (2015). Tumebacillus luteolus sp. Nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_11), 4107-4112. https://doi.org/10.1099/ijsem.0.000549spa
dc.relation.referencesHernández, I., & López, D. (2002). Pérdida de nutrimentos por la quema de la vegetación en una sabana de Trachypogon. Revista de Biología Tropical, 50(3-4), 1013-1019.spa
dc.relation.referencesHernández-León, R., Velázquez, I., Orozco-Mosqueda, M., & Santoyo, G. (2010). Soil Metagenomics: New challenges and biotechnological opportunities. Phyton, 79(1), 133-139. https://doi.org/10.32604/phyton.2010.79.133spa
dc.relation.referencesHrelja, I., Šestak, I., & Bogunović, I. (2020). Wildfire impacts on soil physical and chemical properties—A short review of recent studies. Agriculturae Conspectus Scientificus, 85(4), 293-301. Scopus.spa
dc.relation.referencesHuertas Herrera, A., Baptiste Ballera, B. L. G., Toro Manríquez, M., Huertas Ramírez, H., (2019). MANEJO DE LA QUEMA DE PASTIZALES DE SABANA INUNDABLE: UNA MIRADA DEL PUEBLO ORIGINARIO SÁLIVA EN COLOMBIA. Chungará (Arica), 51(1), 167-176. https://doi.org/10.4067/S0717-73562018005002401spa
dc.relation.referencesIDEAM, Ministerio de Ambiente y Desarrollo Sostenible, MADS, Universidad de Ciencias Aplicadas y Ambientales, & U.D.C.A (Eds.). (2015). Estudio Nacional de la Degradación de Suelos por Erosión en Colombia 2015. IDEAM.spa
dc.relation.referencesIDEAM. (2023). 2023—CLIMATOLÓGICO MENSUAL - IDEAM [Tiempo y clima]. IDEAM. http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/125463657spa
dc.relation.referencesIGAC. (1986). Estudio general de suelos intendencia de Arauca. Instituto Geográfico Agustín Codazzi.spa
dc.relation.referencesIGAC. (2015). Suelos y tierras de Colombia subdireccion de Agrología: Vol. I (Instituto Geográfico Agustín Codazzi, Trad.).spa
dc.relation.referencesJahromi, A. B. (2013). Molecular-Based Methods to Detect Viable Bacterial Pathogens in Source Waters. https://api.semanticscholar.org/CorpusID:82161962spa
dc.relation.referencesJiang, Y.-B., Zhong, W.-H., Han, C., & Deng, H. (2016). Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01776spa
dc.relation.referencesKang, M., Chhetri, G., Kim, J., Kim, I., So, Y., & Seo, T. (2022). Tumebacillus amylolyticus sp. Nov., isolated from garden soil in Korea. International Journal of Systematic and Evolutionary Microbiology, 72(5), 005376. https://doi.org/10.1099/ijsem.0.005376spa
dc.relation.referencesKannaiah Goud, R., Sarkar, O., & Venkata Mohan, S. (2014). La regulación de la producción de biohidrógeno mediante pretratamiento de choque térmico facilita el enriquecimiento selectivo de Clostridium sp. International Journal of Hydrogen Energy, 39(14), 7572-7586. https://doi.org/10.1016/j.ijhydene.2013.10.046spa
dc.relation.referencesKavamura, V. N., Taketani, R. G., Lançoni, M. D., Andreote, F. D., Mendes, R., & Melo, I. S. de. (2013). Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome. PLOS ONE, 8(9), e73606. https://doi.org/10.1371/journal.pone.0073606spa
dc.relation.referencesKruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. https://doi.org/10.2307/2280779spa
dc.relation.referencesKuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184-199. https://doi.org/10.1016/j.soilbio.2015.01.025spa
dc.relation.referencesLasso, C. A., Rial, A., Colonnello, G., Machado-Allison, A., & Trujillo, F. (2014). XI. Humedales de la Orinoquia (Colombia-Venezuela). En Reponame:Repositorio Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://repository.humboldt.org.co/handle/20.500.11761/31361spa
dc.relation.referencesLauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9), 2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021spa
dc.relation.referencesLennon, J. T., & Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary implications of dormancy. Nature Reviews Microbiology, 9(2), 119-130. https://doi.org/10.1038/nrmicspa
dc.relation.referencesLevene, H. (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278-292.spa
dc.relation.referencesLi, W., Niu, S., Liu, X., & Wang, J. (2019). Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands. Scientific Reports, 9(1), 1148. https://doi.org/10.1038/s41598-019-38541-7spa
dc.relation.referencesLi, Y., Pan, J., Zhang, R., Wang, J., Tian, D., & Niu, S. (2022). Environmental factors, bacterial interactions and plant traits jointly regulate epiphytic bacterial community composition of two alpine grassland species. Science of The Total Environment, 836, 155665. https://doi.org/10.1016/j.scitotenv.2022.155665spa
dc.relation.referencesLombao, A., Barreiro, A., Fontúrbel, M. T., Martín, A., Carballas, T., & Díaz-Raviña, M. (2020). Key factors controlling microbial community responses after a fire: Importance of severity and recurrence. Science of The Total Environment, 741, 140363. https://doi.org/10.1016/j.scitotenv.2020.140363spa
dc.relation.referencesLópez Falcón, R., López Hernández, D., Hétier, J., Chargel, R., & Zinck, A. (Eds.). (2015). Tierras llaneras de Venezuela ... Tierras de buena esperanza (1.a ed.). Univerisda de Los Andes.spa
dc.relation.referencesLópez, J. (2015). Heurística, irracionalidad y planificación: Desde el pensar por juegos.Ágora de Heterodoxias, 1(1), 32-41. Directory of Open Access Journals.spa
dc.relation.referencesLópez-Hernández, D. (2015). PRODUCCIÓN PRIMARIA Y CICLOS BIOGEOQUÍMICOS DEL NITRÓGENO Y DEL FÓSFORO EN LAS SABANAS LLANERAS DE TRACHYPOGON. En TIERRAS LLANERAS DE VENEZUELA …tierras de buena esperanza (Primera, pp. 403-429). https://www.researchgate.net/profile/Maria-Ormeno-2/publication/305323705_Modalidades_de_Intervencion_del_Estado_en_el_Agro_Llanero/links/578877eb08ae95560407c0f3/Modalidades-de-Intervencion-del-Estado-en-el-Agro-Llanero.pdf#page=408spa
dc.relation.referencesLópez-Hernández, D., Hernandez - valencia, I., & Iraya, G. (2008). Cambios en parámetros físicos, químicos y biológicos en el suelo de una sabana protegida de quema y pastoreo durante veinticinco años. Bioagro. ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612008000300001&lng=es&tlng=esspa
dc.relation.referencesLópez-Hernández, D., Hernández-Hernández, R. M., & Brossard, M. (2005). Historia del uso reciente de tierras de las sabanas de américa del sur. Estudios de casos en sabanas del orinoco. Interciencia, 30(10), 623-630.spa
dc.relation.referencesLozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576-1585. https://doi.org/10.1128/AEM.01996-06spa
dc.relation.referencesLu, T., Xu, N., Lei, C., Zhang, Q., Zhang, Z., Sun, L., He, F., Zhou, N.-Y., Peñuelas, J., Zhu, Y.-G., & Qian, H. (2023). Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters, 5(4), 230172. https://doi.org/10.1007/s42832-023-0172-8spa
dc.relation.referencesLucas-Borja, M. E., Miralles, I., Ortega, R., Plaza-Álvarez, P. A., Gonzalez-Romero, J., Sagra, J., Soriano-Rodríguez, M., Certini, G., Moya, D., & Heras, J. (2019). Immediate fire-induced changes in soil microbial community composition in an outdoor experimental controlled system. Science of The Total Environment, 696, 134033. https://doi.org/10.1016/j.scitotenv.2019.134033spa
dc.relation.referencesLuláková, P., Perez-Mon, C., Šantrůčková, H., Ruethi, J., & Frey, B. (2019). High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00668spa
dc.relation.referencesMa, T., Xue, H., Piao, C., Jiang, N., & Li, Y. (2023). Los análisis basados en el genoma de la familia Oxalobacteraceae revelan la clasificación taxonómica. Research in Microbiology, 174(7), 104076. https://doi.org/10.1016/j.resmic.2023.104076spa
dc.relation.referencesMadigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Biologia de los microorganismos: Brock (14.a ed.). PEARSON EDUCACIÓN,.spa
dc.relation.referencesMartín, S. S., & A, P. (2021). Suelos del trópico: Características y manejo. Fundación Colegio de Postgraduados en Ciencias Agrícolas. https://repositorio.iica.int/handle/11324/22863spa
dc.relation.referencesMartínez H, E., Fuentes E, J. P., & Acevedo H, E. (2008). CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO. Revista de la ciencia del suelo y nutrición vegetal, 8(1), 68-96. https://doi.org/10.4067/S0718-27912008000100006spa
dc.relation.referencesMartínez Ortega, R. M., Tuya Pendás, L. C., Martínez Ortega, M., Pérez Abreu, A., & Cánovas, A. M. (2009). EL COEFICIENTE DE CORRELACION DE LOS RANGOS DE SPEARMAN CARACTERIZACION. Revista Habanera de Ciencias Médicas, 8(2), 0-0.spa
dc.relation.referencesMason, C. N., Shahar, S., Beals, K. K., Kelley, S. T., Lipson, D. A., Swingley, W. D., & Barber, N. A. (2023). Taxonomic and functional restoration of tallgrass prairie soil microbial communities in comparison to remnant and agricultural soils. FEMS Microbiology Ecology, 99(11), fiad120. https://doi.org/10.1093/femsec/fiad120spa
dc.relation.referencesMataix-Solera, J., García-Orenes, F., Bárcenas-Moreno, G., & Torres, M. (2009). Forest Fire Effects on Soil Microbiology. En Fire Effects on Soils and Restoration Strategies (Vol. 5, pp. 133-175). https://doi.org/10.1201/9781439843338-c5spa
dc.relation.referencesMcGrance, S. J., Cornell, H. J., & Rix, C. J. (1998). A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. Starch - Stärke, 50(4), 158-163. https://doi.org/10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7spa
dc.relation.referencesMelo, V. F., Barros, L. S., Silva, M. C. S., Veloso, T. G. R., Senwo, Z. N., Matos, K. S., & Nunes, T. K. O. (2021). Soil bacterial diversities and response to deforestation, land use and burning in North Amazon, Brazil. Applied Soil Ecology, 158, 103775. https://doi.org/10.1016/j.apsoil.2020.103775spa
dc.relation.referencesMinorta-Cely, V. (2020). La vegetación de la OrinoquÍa colombiana: Riqueza diversidad y conservación. https://repositorio.unal.edu.co/handle/unal/78181spa
dc.relation.referencesNeary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management, 122(1), 51-71. https://doi.org/10.1016/S0378-1127(99)00032-8spa
dc.relation.referencesNelson, A. R., Narrowe, A. B., Rhoades, C. C., Fegel, T. S., Daly, R. A., Roth, H. K., Chu, R. K., Amundson, K. K., Young, R. B., Steindorff, A. S., Mondo, S. J., Grigoriev, I. V., Salamov, A., Borch, T., & Wilkins, M. J. (2022). Wildfire-dependent changes in soil microbiome diversity and function. Nature Microbiology, 7(9), 1419-1430. https://doi.org/10.1038/s41564-022-01203-yspa
dc.relation.referencesOfek, M., Hadar, Y., & Minz, D. (2012). Ecology of Root Colonizing Massilia (Oxalobacteraceae). PLoS ONE, 7(7), e40117. https://doi.org/10.1371/journal.pone.0040117spa
dc.relation.referencesOlojugba, M., & Fatubarin, A. (2015). Effect of seasonal dynamics on the chemical properties of the soil of a Northern Guinea savanna ecosystem in Nigeria. Journal of soil science and environmental management, 6(5), 100-107.spa
dc.relation.referencesParada-Rojas, C., Rueda-Díaz, S., Carrero-Becerra, C., Quintero-Pacheco, N., & Cárdenas-Caro, D. (2016). Efecto de la quema en cultivos de hortalizas en Villa del Rosario, Norte de Santander, Colombia, sobre las micorrizas y propiedades del suelo. Bioagro, 28(3), 171-180.spa
dc.relation.referencesPaul, E. A., Harris, D., Klug, M., & Ruess, R. (1999). The determination of microbial biomass. Standard Soil Methods for Long-Term Ecological Research, 291-317.spa
dc.relation.referencesPeltier, G. L., Georgi, C. E., & Lindgren, L. f. (1959). Laboratory Manual for General Bacteriology (5.a ed.). Jonh Wiley Sons.spa
dc.relation.referencesPereira de Castro, A., Sartori da Silva, M. R. S., Quirino, B. F., da Cunha Bustamante, M. M., & Krüger, R. H. (2016). Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils. PLoS ONE, 11(2), e0148785. https://doi.org/10.1371/journal.pone.0148785spa
dc.relation.referencesPereira, P., Francos, M., Brevik, E. C., Ubeda, X., & Bogunovic, I. (2018). Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26-32. https://doi.org/10.1016/j.coesh.2018.04.002spa
dc.relation.referencesPérez-Valera, E., Goberna, M., & Verdú, M. (2019). Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biology and Biochemistry, 129, 80-89. https://doi.org/10.1016/j.soilbio.2018.11.007spa
dc.relation.referencesPielou, E. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. https://doi.org/10.1016/0022-5193(66)90013-0spa
dc.relation.referencesPinto, R., Ansola, G., Calvo, L., & Sáenz de Miera, L. E. (2023). High resilience of soil bacterial communities to large wildfires with an important stochastic component. Science of The Total Environment, 899, 165719. https://doi.org/10.1016/j.scitotenv.2023.165719spa
dc.relation.referencesPivello, V. R. (2011). The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecology, 7(1), 24-39. https://doi.org/10.4996/fireecology.0701024spa
dc.relation.referencesPizarro, E. A. (2000). Postencial forrajero del genero Paspalum. En Paturas Tropicales (Tropicalgrasslands, Vol. 22, pp. 38-46). http://ciat-library.ciat.cgiar.org/Articulos_CIAT/Vol_22_01_08.pdfspa
dc.relation.referencesPotthast, K., Meyer, S., Crecelius, A. C., Schubert, U. S., Tischer, A., & Michalzik, B. (2017). Land-use and fire drive temporal patterns of soil solution chemistry and nutrient fluxes. Science of The Total Environment, 605-606, 514-526. https://doi.org/10.1016/j.scitotenv.2017.06.182spa
dc.relation.referencesPrendergast-Miller, M. T., de Menezes, A. B., Macdonald, L. M., Toscas, P., Bissett, A., Baker, G., Farrell, M., Richardson, A. E., Wark, T., & Thrall, P. H. (2017). Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities. Soil Biology and Biochemistry, 109, 1-13. https://doi.org/10.1016/j.soilbio.2017.01.027spa
dc.relation.referencesPressler, Y., Moore, J. C., & Cotrufo, M. F. (2019). Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos, 128(3), 309-327. https://doi.org/10.1111/oik.05738spa
dc.relation.referencesPuri, A., Padda, K. P., & Chanway, C. P. (2020). Can naturally-occurring endophytic nitrogen-fixing bacteria of hybrid white spruce sustain boreal forest tree growth on extremely nutrient-poor soils? Soil Biology and Biochemistry, 140, 107642. https://doi.org/10.1016/j.soilbio.2019.107642spa
dc.relation.referencesQIIME2. (2024). Documentación de usuario de QIIME 2 2024.5.0 documentación. Quime2docs. https://docs.qiime2.org/2024.5/spa
dc.relation.referencesRafie, S. a. A., Blentlinger, L. R., Putt, A. D., Williams, D. E., Joyner, D. C., Campa, M. F., Schubert, M. J., Hoyt, K. P., Horn, S. P., Franklin, J. A., & Hazen, T. C. (2024). Impact of prescribed fire on soil microbial communities in a Southern Appalachian Forest clear-cut. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1322151spa
dc.relation.referencesRai, D., Silveira, M. L., Strauss, S. L., Meyer, J. L., Castellano-Hinojosa, A., Kohmann, M. M., Brandani, C. B., & Gerber, S. (2023). Short-term prescribed fire-induced changes in soil microbial communities and nutrients in native rangelands of Florida. Applied Soil Ecology, 189, 104914. https://doi.org/10.1016/j.apsoil.2023.104914spa
dc.relation.referencesRamos-Montaño, C., & García-Cond, M. R. (2015). Características Ecosistémicas asociadas a la actividad ganadera en Arauca (Colombia): Desafíos frente al cambio climático. Orinoquia, 1(20), 28.spa
dc.relation.referencesRangel, J., & Celis, L. (2019). SUELOS DEL TERRITORIO SABANAS Y HUMEDALES DE ARAUCA, COLOMBIA Soils of the savannas and wetlands territory of Arauca, Colombia (pp. 171-17).spa
dc.relation.referencesRao, W. V. B. S., & Sinha, M. K. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences, 33, 272-278.spa
dc.relation.referencesRincon Castillo, A., Ligarreto Moreno, G. A., & Garay, E. (2008). PRODUCCIÓN DE FORRAJE EN LOS PASTOS Brachiaria decumbens cv. AMARGO Y Brachiaria brizantha cv. TOLEDO, SOMETIDOS A TRES FRECUENCIAS Y A DOS INTENSIDADES DE DEFOLIACIÓN EN CONDICIONES DEL PIEDEMONTE LLANERO COLOMBIANO. Revista Facultad Nacional de Agronomía Medellín, 61(1), 4336-4346.spa
dc.relation.referencesRivera-Urbalejo, A. P., Vázquez, D., Vázquez, J. L. F., Enríquez, M. R., Cesa-Luna, C., Morales-García, Y. E., Rojas, J. M., & Hernández, V. Q. (2021). APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. Acta Biológica Colombiana, 26(3), Article 3. https://doi.org/10.15446/abc.v26n3.85760spa
dc.relation.referencesRobeson, M. S., O’Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster, J. T., & Bokulich, N. A. (2020). RESCRIPt: Reproducible sequence taxonomy reference database management for the masses (p. 2020.10.05.326504). bioRxiv. https://doi.org/10.1101/2020.10.05.326504spa
dc.relation.referencesRodríguez, J., González-Pérez, J. A., Turmero, A., Hernández, M., Ball, A. S., González-Vila, F. J., & Enriqueta Arias, M. (2017). Wildfire effects on the microbial activity and diversity in a Mediterranean forest soil. CATENA, 158, 82-88. https://doi.org/10.1016/j.catena.2017.06.018spa
dc.relation.referencesRodríguez, J., Nuñez, O., Herrera, F., Boucourt, R., Albelo, N., & Rodríguez, Z. (2006). Aislamiento y selección de microorganismos con capacidad de degradar el almidón. Revista Cubana de Ciencia Agrícola, 40(3), 349-354.spa
dc.relation.referencesRosero Cuesta, J., & Osorio Giraldo, I. (2013). Efectos de los incendios forestales en las propiedades del suelo. Estado del arte. Cuaderno Activa, 5, 59-67.spa
dc.relation.referencesRoss, D. J. (1966). A Survey of Activities of Enzymes Hydrolysing Sucrose and Starch in Soils Under Pasture. Journal of Soil Science, 17(1), 1-15. https://doi.org/10.1111/j.1365-2389.1966.tb01447.xspa
dc.relation.referencesSáenz de Miera, L. E., Pinto, R., Gutierrez-Gonzalez, J. J., Calvo, L., & Ansola, G. (2020). Wildfire effects on diversity and composition in soil bacterial communities. Science of The Total Environment, 726, 138636. https://doi.org/10.1016/j.scitotenv.2020.138636spa
dc.relation.referencesSánchez, F., & Armenteras, D. (2017). Changes in soil organic carbon after burning in a forest-savanna edge. Acta Agronómica, 66(4), 519-524. https://doi.org/10.15446/acag.v66n4.60524spa
dc.relation.referencesSánchez Ojeda, F. (2015). Efecto de borde post quema sobre el contenido de carbono orgánico del suelo en una interfase sabana-bosque de galería en el Vichada, Colombia. https://repositorio.unal.edu.co/handle/unal/56669spa
dc.relation.referencesSchinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996). Enzymes Involved in Carbon Metabolism. En F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Methods in Soil Biology (pp. 185-207). Springer. https://doi.org/10.1007/978-3-642-60966-4_12spa
dc.relation.referencesSchinner, F., & von Mersi, W. (1990). Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22(4), 511-515. https://doi.org/10.1016/0038-0717(90)90187-5spa
dc.relation.referencesSerra-Wittling, C., Houot, S., & Barriuso, E. (1995). Soil enzymatic response to addition of municipal solid-waste compost. Biology and Fertility of Soils, 20(4), 226-236. https://doi.org/10.1007/BF00336082spa
dc.relation.referencesShannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. The Bell System Technical Journal. https://doi.org/10.1002/j.1538-7305.1948.tb01338.xspa
dc.relation.referencesShapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52(3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591spa
dc.relation.referencesShi, Z., Chen, Y., Li, A., Hu, M., & Liu, W. (2024). Fire alters soil bacterial and fungal communities and intensifies seasonal variation in subtropical forest ecosystem. European Journal of Soil Biology, 123, 103677. https://doi.org/10.1016/j.ejsobi.2024.103677spa
dc.relation.referencesSimpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148), 688-688. https://doi.org/10.1038/163688a0spa
dc.relation.referencesSingh, A. K., Kushwaha, M., Rai, A., & Singh, N. (2017). Changes in soil microbial response across year following a wildfire in tropical dry forest. Forest Ecology and Management, 391, 458-468. https://doi.org/10.1016/j.foreco.2017.02.042spa
dc.relation.referencesSingh, J. S., Raghubanshi, A. S., Singh, R. S., & Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338(6215), 499-500. https://doi.org/10.1038/338499a0spa
dc.relation.referencesSingh, R. S., Srivastava, S. C., Raghubanshi, A. S., Singh, J. S., & Singh, S. P. (1991). Microbial C, N and P in Dry Tropical Savanna: Effects of Burning and Grazing. Journal of Applied Ecology, 28(3), 869-878. https://doi.org/10.2307/2404213spa
dc.relation.referencesSmith, N. R., Kishchuk, B. E., & Mohn, W. W. (2008). Effects of Wildfire and Harvest Disturbances on Forest Soil Bacterial Communities. Applied and Environmental Microbiology, 74(1), 216-224. https://doi.org/10.1128/AEM.01355-07spa
dc.relation.referencesSorenson, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content (Kongelige Danske Videnskabernes Selskab, Vol. 5). https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdfspa
dc.relation.referencesSpearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. https://doi.org/10.2307/1412159spa
dc.relation.referencesStavi, I. (2019). Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology. Water, 11(5), 1042. https://doi.org/10.3390/w11051042spa
dc.relation.referencesStock, J. B., Stock, A. M., & Mottonen, J. M. (1990). Signal transduction in bacteria. Nature, 344(6265), 395-400. https://doi.org/10.1038/34439spa
dc.relation.referencesStone, B. W., Li, J., Koch, B. J., Blazewicz, S. J., Dijkstra, P., Hayer, M., Hofmockel, K. S., Liu, X.-J. A., Mau, R. L., Morrissey, E. M., Pett-Ridge, J., Schwartz, E., & Hungate, B. A. (2021). Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nature Communications, 12(1), 3381. https://doi.org/10.1038/s41467-021-23676-xspa
dc.relation.referencesSuarez De C., F. (1957). Las quemas como práctica agrícola y sus efectos. https://biblioteca.cenicafe.org/handle/10778/747spa
dc.relation.referencesSugihara, S., Shibata, M., Mvondo Ze, A. D., Araki, S., & Funakawa, S. (2015). Effects of vegetation on soil microbial C, N, and P dynamics in a tropical forest and savanna of Central Africa. Applied Soil Ecology, 87, 91-98. https://doi.org/10.1016/j.apsoil.2014.11.002spa
dc.relation.referencesTabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. https://doi.org/10.1016/0038-0717(69)90012-1spa
dc.relation.referencesTeather, R., & Wood, P. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), 777-780. https://doi.org/10.1128/aem.43.4.777-780.1982spa
dc.relation.referencesThomas-Barry, G., St. Martin, C. C. G., Lynch, M. D. J., Ramsubhag, A., Rouse-Miller, J., & Charles, T. C. (2021). Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. Science of The Total Environment, 769, 145214. https://doi.org/10.1016/j.scitotenv.2021.145214spa
dc.relation.referencesTobin, T., & Janzen, C. (2008). Microbial Communities in Fire-Impacted Soils. En Soil Biology: Microbiology of Extreme Soils (Vol. 13, pp. 299-316). Patrice Dion and Chandra Shekhar Nautiya. https://susqu-researchmanagement.esploro.exlibrisgroup.com/esploro/outputs/bookChapter/Microbial-Communities-in-Fire-Impacted-Soils/991002248649805236?institution=01SUU_INSTspa
dc.relation.referencesVargas, O., Díaz, J., Reyes, S., & Gómez, P. (2012). Guías técnicas para la restauración ecológica de los ecosistemas de Colombia. Bogotá: Facultad de Ciencias, Departamento de Biología, Grupo de Restauración Ecológica-Universidad Nacional de Colombia. https://asogravas.org/wp-content/uploads/2017/05/Anexo_8_Guias_Tecnicas_Restauracion_Ecologica_2.pdfspa
dc.relation.referencesVega, J. A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., & Jiménez, E. (2013). Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 369(1), 73-91. https://doi.org/10.1007/s11104-012-1532-9spa
dc.relation.referencesVerma, S., & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the International Academy of Ecology and Environmental Sciences. http://www.iaees.org/publications/journals/piaees/articles/2012-2(3)/impact-of-forest-fire.pdfspa
dc.relation.referencesWalker, B. H. (1987). Determinants of tropical savannas: Presentations made by savanna researchers at a workshop in Harare, Zimbabwe, December 1985. Published by IRL Press on behalf of the ICSU Press for the International Union of Biological Sciencesspa
dc.relation.referencesWang, H., Lou, J., Gu, H., Luo, X., Yang, L., Wu, L., Liu, Y., Wu, J., & Xu, J. (2016). Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. Environmental Science and Pollution Research, 23(13), 13378-13388. https://doi.org/10.1007/s11356-016-6515-6spa
dc.relation.referencesWard, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., Xie, G., Haft, D. H., Sait, M., Badger, J., Barabote, R. D., Bradley, B., Brettin, T. S., Brinkac, L. M., Bruce, D., Creasy, T., Daugherty, S. C., Davidsen, T. M., DeBoy, R. T., … Kuske, C. R. (2009). Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils. Applied and Environmental Microbiology, 75(7), 2046-2056. https://doi.org/10.1128/AEM.02294-08spa
dc.relation.referencesWeber, C. F., Lockhart, J. S., Charaska, E., Aho, K., & Lohse, K. A. (2014). Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biology and Biochemistry, 69, 242-250. https://doi.org/10.1016/j.soilbio.2013.11.010spa
dc.relation.referencesWillems, A. (2014). The Family Comamonadaceae. En E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes (pp. 777-851). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_238spa
dc.relation.referencesYeager, C. M., Northup, D. E., Grow, C. C., Barns, S. M., & Kuske, C. R. (2005). Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire. Applied and Environmental Microbiology, 71(5). https://journals.asm.org/doi/abs/10.1128/AEM.71.5.2713-2722.2005spa
dc.relation.referencesZhang, G., Yu, X., Li, Y., Liu, Y., Zhang, H., Jia, Y., & Xia, S. (2019). Effects of Burning on Carbon Utilization of Soil Microorganisms and Plant Growth of Carex brevicuspis Communities at Lake Poyang Wetlands, China. Wetlands, 39(1),1-15. https://doi.org/10.1007/s13157-018-1007-8spa
dc.relation.referencesZhang, J., Gao, Y., Du, Z.-J., & Wang, M.-Y. (2023). Tumebacillus lacus sp. Nov., isolated from lake water. International Journal of Systematic and Evolutionary Microbiology, 73(11), 006153. https://doi.org/10.1099/ijsem.0.006153spa
dc.relation.referencesZhou, Y., Pang, Z., Yuan, Z., Fallah, N., Jia, H., & Ming, R. (2022). Sex-based metabolic and microbiota differences in roots and rhizosphere soils of dioecious papaya (Carica papaya L.). Frontiers in Plant Science, 13, 991114. https://doi.org/10.3389/fpls.2022.991114spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocQuema controladaspa
dc.subject.agrovoccontrolled burningeng
dc.subject.agrovocActividad biológica en el suelospa
dc.subject.agrovocbiological activity in soileng
dc.subject.agrovocMicrobiomaspa
dc.subject.agrovocmicrobiomeseng
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.proposalSuelosspa
dc.subject.proposalMicroorganismosspa
dc.subject.proposalFuegospa
dc.subject.proposalQuemasspa
dc.subject.proposalIncendiosspa
dc.subject.proposalCiclos Biogeoquímicosspa
dc.subject.proposalSoilseng
dc.subject.proposalSoil microorganismeng
dc.subject.proposalFireeng
dc.subject.proposalBurningeng
dc.subject.proposalGrassland savannaeng
dc.subject.proposalBiogeochemical cycleseng
dc.titleEfectos de la quema en la composición y función de las comunidades microbianas del suelo en la sabana de pastizal de Arauca, Arauca, Colombiaspa
dc.title.translatedEffects of burning on the composition and function of soil microbial communities in the grassland savanna of Arauca, Arauca, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1113685620.2024.pdf
Tamaño:
10.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: