Algoritmo cuántico para la reconstrucción de estados de espín un medio

dc.contributor.advisorFonseca Romero, Karen Milena
dc.contributor.authorGalvis Florez, Cristian Andrey
dc.contributor.researchgroupGrupo de Óptica E Información Cuánticaspa
dc.date.accessioned2022-11-09T14:33:05Z
dc.date.available2022-11-09T14:33:05Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa estimación de estados cuánticos es una tarea importante que se emplea en múltiples protocolos de información cuántica. En este trabajo se considera una familia de operadores unitarios de evolución dependientes de un parámetro (dos parámetros) que permiten la estimación de una componente del espín (todas las componentes del espín) de un sistema de dos niveles. La función de transferencia de tomografía cuántica (qTTF), que corresponde a la traza de la inversa de la matriz de información de Fisher, se usa para cuantificar el rendimiento del estimador. En este trabajo, se optimiza la qTTF para los dos estimadores. El mínimo de la qTTF del modelo de un parámetro se alcanza cuando el poder de entrelazamiento del operador unitario asociado es máximo. Los dos modelos son simulados en una unidad cuántica de procesamiento de IBM. Mientras que la implementación del modelo para estimación de una componente funciona satisfactoriamente, el modelo para la estimación total del espín muestra grandes errores debido a la profundidad del circuito asociado. (Texto tomado de la fuente)spa
dc.description.abstractQuantum state estimation is an important task of many quantum information protocols. We consider a one-parameter (resp. two-parameter) family of unitary evolution operators which allow the estimation of a single spin component (resp. all spin components) of a two-level system. The quantum tomographic transfer function (qTTF), the average of the trace of the inverse of the Fisher information matrix, is used a quantifier of tomographic performance. In this work, we optimize the qTTF of both estimation models. The minimum of the qTTF of the one-parameter model is attained when the entangling power of the associated unitary operator is maximum. Both models were run on an IBM quantum processing unit. While the implementation of the estimation of a single-spin component is quite satisfactory, the implementation of the whole spin estimation displays rather large errors due to the relatively large depth of the associated circuit.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.methodsSe contruye un modelo teórico para la estimación de una o más ocmponentes del espín de un qubit con la ayuda de qubits auxiliares. Se caracteriza el estimador por medio de la matriz de información de Fisher. Se define el estimador óptimo. Se contstruye el circuito cuántico equivalente al modelo. Se realizan simulaciones en hardware clásico y cuántico para comparar su rendimiento.spa
dc.description.researchareaComputación Cuánticaspa
dc.format.extentxiii, 54 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82668
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesArrazola, J. M. et al. (2021). «Quantum circuits with many photons on a programmable nanophotonic chip». Nature 591.7848, págs. 54-60. ISSN: 1476-4687. DOI: 10.1038/ s41586-021-03202-1. URL: https://doi.org/10.1038/s41586-021-03202-1.spa
dc.relation.referencesArute, Frank et al. (2019). «Quantum supremacy using a programmable superconducting processor». Nature 574.7779, págs. 505-510. ISSN: 1476-4687. DOI: 10 . 1038 / s41586-019-1666-5. URL: https://doi.org/10.1038/s41586-019-1666-5.spa
dc.relation.referencesAsfaw, Abraham et al. (2020). Learn Quantum Computation Using Qiskit. URL: http:// community.qiskit.org/textbook.spa
dc.relation.referencesBanaszek, K,MCramer y D Gross (2013). «Focus on quantum tomography». New Journal of Physics 15.12, pág. 125020. DOI: 10.1088/1367-2630/15/12/125020. URL: https: //doi.org/10.1088/1367-2630/15/12/125020.spa
dc.relation.referencesBarenco, Adriano et al. (1995). «Elementary gates for quantum computation». Phys. Rev. A 52 (5), págs. 3457-3467. DOI: 10.1103/PhysRevA.52.3457. URL: https://link. aps.org/doi/10.1103/PhysRevA.52.3457.spa
dc.relation.referencesBendersky, Ariel, Fernando Pastawski y Juan Pablo Paz (2009). «Selective and efficient quantum process tomography». Phys. Rev. A 80 (3), pág. 032116. DOI: 10 . 1103 / PhysRevA . 80 . 032116. URL: https : / / link . aps . org / doi / 10 . 1103 / PhysRevA . 80.032116.spa
dc.relation.referencesBenenti, Giuliano, Giulio Casati y Giuliano Strini (2004). Principles of Quantum Computation and Information. Vol. 2. WORLD SCIENTIFIC. DOI: 10 . 1142 / 5528. eprint: https : / / www . worldscientific . com / doi / pdf / 10 . 1142 / 5528. URL: https : / / www.worldscientific.com/doi/abs/10.1142/5528.spa
dc.relation.referencesBenioff, Paul (1980). «The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines». Journal of Statistical Physics 22 (5). DOI: https://doi.org/10.1007/BF01011339.spa
dc.relation.referencesBouwmeester, Dirk, Artur Ekert y Anton Zeilinger (2001). the Physics of Quantum Information, Quantum Cryptography, Quantum Teleportation and Quantum Computation. Springer-Verlag.spa
dc.relation.referencesChuang, Isaac L., Neil Gershenfeld y Mark Kubinec (1998). «Experimental Implementation of Fast Quantum Searching». Phys. Rev. Lett. 80 (15), págs. 3408-3411. DOI: 10.1103/PhysRevLett.80.3408. URL: https://link.aps.org/doi/10.1103/ PhysRevLett.80.3408.spa
dc.relation.referencesDiósi, Lajos (2007). A Short Course in Quantum Information Theory. Springerspa
dc.relation.referencesEintein, Albert, Borís Podolsky y Nathan Rosen (1935). «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?» Physycal Review 47, págs. 777-780.spa
dc.relation.referencesFerrie, Christopher (2014). «Self-Guided Quantum Tomography». Phys. Rev. Lett. 113 (19), pág. 190404. DOI: 10.1103/PhysRevLett.113.190404. URL: https://link.aps. org/doi/10.1103/PhysRevLett.113.190404.spa
dc.relation.referencesFeynman, Richard P. (1982). «Simulating physics with computers». International Journal of Theoretical Physics 21 (6). DOI: https://doi.org/10.1007/BF02650179.spa
dc.relation.referencesFeynman, Richard P. (1986). «Quantum mechanical computers». Foundations of Physics 16 (6). DOI: https://doi.org/10.1007/BF01886518.spa
dc.relation.referencesGaikwad, Akshay et al. (2022). «Implementing efficient selective quantum process tomography of superconducting quantum gates on IBM quantum experience». Scientific Reports 12.1, pág. 3688. ISSN: 2045-2322. DOI: 10.1038/s41598-022-07721-3. URL: https://doi.org/10.1038/s41598-022-07721-3.spa
dc.relation.referencesGalvis Florez, Cristian Andrey (2022). QBronze installation session. https://github.com/ cagalvisf/QBronze_installation.spa
dc.relation.referencesGrover, Lov K. (1996). «A Fast Quantum Mechanical Algorithm for Database Search». Proceedings of the Twenty-Eighth AnnualACMSymposium on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery, 212–219. ISBN: 0897917855. DOI: 10.1145/237814.237866. URL: https://doi.org/10.1145/ 237814.237866.spa
dc.relation.referencesGupta, Rishabh, Raphael D. Levine y Sabre Kais (2021). «Convergence of a Reconstructed Density Matrix to a Pure State Using the Maximal Entropy Approach». The Journal of Physical Chemistry A 125.34. PMID: 34410718, págs. 7588-7595. DOI: 10.1021/ acs.jpca.1c05884. eprint: https://doi.org/10.1021/acs.jpca.1c05884. URL: https://doi.org/10.1021/acs.jpca.1c05884.spa
dc.relation.referencesGupta, Rishabh et al. (2021). «Maximal Entropy Approach for Quantum State Tomography ». PRX Quantum 2 (1), pág. 010318. DOI: 10.1103/PRXQuantum.2.010318. URL: https://link.aps.org/doi/10.1103/PRXQuantum.2.010318.spa
dc.relation.referencesIBM (s.f.). IBM Quantum Experience. Accessed: 2022. URL: https://quantum-computing. ibm.com/.spa
dc.relation.referencesJames, Daniel F. V. et al. (2001). «Measurement of qubits». Phys. Rev. A 64 (5), pág. 052312. DOI: 10.1103/PhysRevA.64.052312. URL: https://link.aps.org/doi/10.1103/ PhysRevA.64.052312.spa
dc.relation.referencesJattana, Manpreet Singh et al. (2020). «General error mitigation for quantum circuits». Quantum Information Processing 19.11, pág. 414. ISSN: 1573-1332. DOI: 10.1007/s11128- 020-02913-0. URL: https://doi.org/10.1007/s11128-020-02913-0.spa
dc.relation.referencesJohnson, M. W. et al. (2011). «Quantum annealing with manufactured spins». Nature 473.7346, págs. 194-198. ISSN: 1476-4687. DOI: 10.1038/nature10012. URL: https: //doi.org/10.1038/nature10012.spa
dc.relation.referencesJohnstun, Scott y Jean-François Van Huele (2021). «Understanding and compensating for noise on IBM quantum computers». American Journal of Physics 89.10, págs. 935-942. DOI: 10.1119/10.0006204. eprint: https://doi.org/10.1119/10.0006204. URL: https://doi.org/10.1119/10.0006204.spa
dc.relation.referencesJones, Nicola (2013). «Google and NASA snap up quantum computer». Nature. ISSN: 1476-4687. DOI: 10.1038/nature.2013.12999. URL: https://doi.org/10.1038/ nature.2013.12999.spa
dc.relation.referencesKandala, Abhinav et al. (2017). «Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets». Nature 549.7671, págs. 242-246. ISSN: 1476- 4687. DOI: 10.1038/nature23879. URL: https://doi.org/10.1038/nature23879spa
dc.relation.referencesKay, Steven M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall PTR.spa
dc.relation.referencesKiktenko, Evgeniy O., Daria N. Kublikova y Aleksey K. Fedorov (2020). «Estimating the precision for quantum process tomography». Optical Engineering 59.6, págs. 1 -9. DOI: 10.1117/1.OE.59.6.061614. URL: https://doi.org/10.1117/1.OE.59.6.061614.spa
dc.relation.referencesKilloran, Nathan et al. (mar. de 2019). «Strawberry Fields: A Software Platform for Photonic Quantum Computing». Quantum 3, pág. 129. ISSN: 2521-327X. DOI: 10.22331/ q-2019-03-11-129. URL: https://doi.org/10.22331/q-2019-03-11-129.spa
dc.relation.referencesLehmann, E.L. y George Cassella (1998). Theory of Point Estimation. 2.a ed. Springer Verlag.spa
dc.relation.referencesLohani, Sanjaya et al. (2021). «On the Experimental Feasibility of Quantum State Reconstruction via Machine Learning». IEEE Transactions on Quantum Engineering 2, págs. 1-10. DOI: 10.1109/TQE.2021.3106958.spa
dc.relation.referencesMatteo Paris, Jaroslav Rehacek (2004). Quantum State Estimation. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/b98673. eprint: https://link.springer. com/book/10.1007/b98673. URL: https://link.springer.com/book/10.1007/ b98673.spa
dc.relation.referencesNielsen, Michael A. e Isaac L. Chuang (2011). Quantum Computation and Quantum Information: 10th Anniversary Edition. 10th. USA: Cambridge University Press. ISBN: 1107002176.spa
dc.relation.referencesPerarnau-Llobet, Martí y Theodorus Maria Nieuwenhuizen (2017). «Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model ». Phys. Rev. A 95 (5), pág. 052129. DOI: 10 . 1103 / PhysRevA . 95 . 052129. URL: https://link.aps.org/doi/10.1103/PhysRevA.95.052129.spa
dc.relation.referencesPeres, Asher (1986). «When is a quantum measurement?» American Journal of Physics 54.8, págs. 688-692. DOI: 10.1119/1.14505. eprint: https://doi.org/10.1119/1. 14505. URL: https://doi.org/10.1119/1.14505spa
dc.relation.referencesRezakhani, A. T. (2004). «Characterization of two-qubit perfect entanglers». Phys. Rev. A 70 (5), pág. 052313. DOI: 10.1103/PhysRevA.70.052313. URL: https://link.aps. org/doi/10.1103/PhysRevA.70.052313spa
dc.relation.referencesSaavedra, Daniel y K. M. Fonseca-Romero (2019). «Complete and incomplete state estimation via the simultaneous unsharp measurement of two incompatible qubit operators ». Phys. Rev. A 99 (4), pág. 042130. DOI: 10.1103/PhysRevA.99.042130. URL: https://link.aps.org/doi/10.1103/PhysRevA.99.042130.spa
dc.relation.referencesSakurai, J. John y Jim J. Napolitano (2014). Modern Quantum Mechanics. Pearson Education Limited.spa
dc.relation.referencesShor, P.W. (1994). «Algorithms for quantum computation: discrete logarithms and factoring ». Proceedings 35th Annual Symposium on Foundations of Computer Science, págs. 124-134. DOI: 10.1109/SFCS.1994.365700.spa
dc.relation.referencesTeo, Yong Siah (2015). Introduction to Quantum-State Estimation. WORLD SCIENTIFIC. DOI: 10.1142/9617. eprint: https://www.worldscientific.com/doi/pdf/10.1142/ 9617. URL: https://www.worldscientific.com/doi/abs/10.1142/9617.spa
dc.relation.referencesTilma, Todd y E C G Sudarshan (2002). «Generalized Euler angle parametrization for SU(N)». Journal of Physics A: Mathematical and General 35.48, págs. 10467-10501. DOI: 10.1088/0305-4470/35/48/316.spa
dc.relation.referencesTuring, A. M. (1938). «On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction». Proceedings of the London Mathematical Society s2-43.1, págs. 544-546. DOI: https://doi.org/10.1112/plms/s2-43.6.544.spa
dc.relation.referencesUnruh, W. G. (1995). «Maintaining coherence in quantum computers». Phys. Rev. A 51 (2), págs. 992-997. DOI: 10.1103/PhysRevA.51.992. URL: https://link.aps.org/ doi/10.1103/PhysRevA.51.992.spa
dc.relation.referencesVirtanen, Pauli et al. (2020). «SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python». Nature Methods 17, págs. 261-272. DOI: 10.1038/s41592-019-0686- 2.spa
dc.relation.referencesWatrous, John (2018). The Theory of Quantum Information. Cambridge University Press.spa
dc.relation.referencesWilde, Mark M (2013). Quantum Information Theory. Cambridge University Pressspa
dc.relation.referencesWootters, William K. (1998). «Entanglement of Formation of an Arbitrary State of Two Qubits». Phys. Rev. Lett. 80 (10), págs. 2245-2248. DOI: 10.1103/PhysRevLett.80. 2245. URL: https://link.aps.org/doi/10.1103/PhysRevLett.80.2245spa
dc.relation.referencesZanardi, Paolo, Christof Zalka y Lara Faoro (2000). «Entangling power of quantum evolutions ». Phys. Rev. A 62 (3), pág. 030301. DOI: 10.1103/PhysRevA.62.030301. URL: https://link.aps.org/doi/10.1103/PhysRevA.62.030301.spa
dc.relation.referencesŘeháček, Jaroslav, Yong Siah Teo y Zdeněk Hradil (2015). «Determining which quantum measurement performs better for state estimation». Phys. Rev. A 92 (1), pág. 012108. DOI: 10.1103/PhysRevA.92.012108. URL: https://link.aps.org/doi/10.1103/ PhysRevA.92.012108.spa
dc.relation.referencesŘeháček, Jaroslav et al. (2007). «Diluted maximum-likelihood algorithm for quantum tomography». Phys. Rev. A 75 (4), pág. 042108. DOI: 10.1103/PhysRevA.75.042108. URL: https://link.aps.org/doi/10.1103/PhysRevA.75.042108.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembFormas (matemáticas)spa
dc.subject.lembForms (mathematics)eng
dc.subject.lembEstadística cuánticaspa
dc.subject.lembQuantum statisticseng
dc.subject.lembFísica cuánticaspa
dc.subject.lembQuantum physicaleng
dc.subject.proposalQuantum tomographic transfer functioneng
dc.subject.proposalEstimación de estado cuánticospa
dc.subject.proposalFunción de transferencia de tomografía cuánticaspa
dc.subject.proposalComputación cuánticaspa
dc.subject.proposalIBM Quantum Experienceeng
dc.subject.proposalQuantum computingeng
dc.subject.proposalQuantum tomographic transfer functioneng
dc.titleAlgoritmo cuántico para la reconstrucción de estados de espín un mediospa
dc.title.translatedQuantum algorithm for state reconstruction of one-half spin particleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018495655.2022.pdf
Tamaño:
1.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: