Diseño y desarrollo de un sistema microparticular lipopolimérico para la administración de un péptido sintético modelo de naturaleza hidrofílica

dc.contributor.advisorRosas Pérez, Jaiver Eduardo
dc.contributor.authorVelandia Paris, María Angélica
dc.contributor.researchgroupSistemas para liberación controlada de moléculas biológicamente activas (SILICOMOBA)spa
dc.date.accessioned2022-02-03T15:42:48Z
dc.date.available2022-02-03T15:42:48Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEn los últimos años se ha despertado un gran interés por los sistemas para la entrega de fármacos (SEF) mediante liberación controlada, debido a que permiten superar ciertas limitaciones de algunos ingredientes farmacéuticos activos (IFAs). Entre estos IFAs, se destacan los péptidos que, a pesar de ser degradados rápidamente, son moléculas esenciales en la vida debido a la posibilidad que tienen de cumplir múltiples funciones en el organismo, lo que ha permitido que sean considerados como IFA de elección para tratar numerosas enfermedades. Se ha reportado que los SEF particulados son capaces de proteger a moléculas lábiles como los péptidos de agentes externos como las enzimas, haciendo que se prolongue su tiempo de vida media y por tanto mejorando su actividad. Teniendo en cuenta esto se han diseñado diferentes SEF, entre ellos los liposomas, las partículas poliméricas y las partículas sólidas lipídicas, siendo estos sistemas los que han mostrado de manera general los mejores resultados como transportadores de IFAs. Producto de estas investigaciones, se ha mostrado un gran interés en desarrollar un SEF que permita reunir las ventajas de las partículas poliméricas y las partículas sólidas lipídicas, planteándose de esta forma el diseño y desarrollo de los sistemas híbridos lipopoliméricos. Con el propósito de contribuir en el campo de la investigación de SEF, en el marco de este trabajo se planteó el desarrollo una metodología para la obtención de tres sistemas particulados: micropartículas poliméricas, partículas sólidas lipídicas y micropartículas lipopoliméricas, empleando como material polimérico PLGA 50:50 (Viscosidad inherente: 0,8dL/g) y como material lipídico una mezcla de mono, di y triglicéridos C12-C18. Todos los sistemas se obtuvieron vacíos y cargados con un péptido sintético modelo de naturaleza hidrofílica, mediante la metodología de doble emulsión – evaporación del solvente Todos los sistemas fueron caracterizados en cuanto a morfología, tamaño, potencial Z, eficiencia de encapsulación y perfil de liberación del péptido. Como resultado, se logró obtener partículas en su mayoría esféricas de tamaño micrométrico para los sistemas poliméricos (3,08-5,60 µm) y lipopoliméricos (3,22-3,93 µm), de tamaño nanométrico para el sistema sólido lipídico (135,8-162,9 nm) y con un potencial Z entre -18,5mV y -24,5mV para las micropartículas poliméricas, -15,5mV y -29,9mV para las partículas sólidas lipídicas, -20,0mV y -26,1mV para las micropartículas lipopoliméricas. En cuanto a la eficiencia de encapsulación se determinó que el mejor sistema fue el de las micropartículas poliméricas con una E.E. promedio del 57,42% seguido de las micropartículas lipopoliméricas cuya E.E. promedio fue de 43,15% y las partículas sólidas lipídicas con una E.E. promedio del 40,40%. En referencia al perfil de liberación, se observó que las micropartículas lipopoliméricas tienden a mostrar un comportamiento intermedio entre los observados en las micropartículas poliméricas y en las partículas lipídicas. En conclusión, en este trabajo se desarrolló una metodología para la obtención y caracterización de un sistema micropartícular lipopolimérico que permite la encapsulación de un péptido sintético modelo de naturaleza hidrofílica con características tanto de micropartículas poliméricas (Tamaño y morfología) como de partículas sólidas lipídicas (E.E. y perfil de liberación). (texto tomado de la fuente)spa
dc.description.abstractIn recent years, controlled release drug delivery systems (DDS) have had great interest due they make possible to overcome certain limitations of some active pharmaceutical ingredients (APIs), between these APIs stand out peptides that despite of fast degradation, are essential molecules in life due to the possibility to accomplish multiple functions in the body, this has allowed to be considerate as choice API to treat numerous diseases. Particulate DDS have been shown to be able to protect labile molecules such as peptides from external agents such as enzymes, prolonging their half-life and therefore improving their activity. Bearing this in mind, different DDS have been designed, including liposomes, polymeric particles, and solid lipid particles, these being the ones that in general have shown better results as APIs carriers. As product of these research a great interest has been shown in developing a DDS that allows to have advantages of polymeric particles and solid lipid particles, proposing in this way the design and development of hybrid lipopolymeric systems. With the purpose of contribute to research field of DDS, within the framework of this work, the development of a methodology for the obtention of three particulate systems: Polymeric microparticles, solid lipid particles and lipopolymeric particles was proposed, using as polymeric material PLGA 50:50 (Inherent Viscosity 0,8 dL/g) and as lipidic material a mixture of mono, di and triglycerides C12-C18. All systems were obtained empty and loaded with a model synthetic peptide of hydrophilic nature using a methodology of double emulsion – solvent evaporation. All systems obtained were characterized in terms of morphology, size, Z potential, encapsulation efficiency and release profile. As result, was achieved particles mostly spherical, of micrometrical size for polymeric systems (3,08-5,60 µm) and lipopolymeric (3,22-3,93 µm), nanometrical size for the solid lipid system (135,8-162,9 nm), with a Z potential between -18,5mV -and -24,5mV for the polymeric particles, -15,5mV and -29,9mV for the solid lipid particles and -20,0mV and -26,1mV for the lipopolymeric particles. Regarding encapsulation efficiency, it was observed that lipopolymeric particles tend to show an intermediate behavior between the behavior observed in polymeric particles and in lipid particles. In conclusion, in this work a method was developed to obtain and characterize a lipopolymeric microparticle system that allows the encapsulation of a model synthetic peptide of a hydrophilic nature with characteristics of both polymeric particles (size and morphology) and solid lipid particles (E.E. and release profile).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaTecnología Farmacéutica: Sistemas micro y nano particularesspa
dc.format.extentxiii, 146 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80864
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedLaReferenciaspa
dc.relation.references1. Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic Med Chem [Internet]. 2018;26(10):2700–7. Available from: https://doi.org/10.1016/j.bmc.2017.06.052spa
dc.relation.references2. Sachdeva S. Peptides as ‘ Drugs ’: The Journey so Far. Int J Pept Res Ther. 2016;(May).spa
dc.relation.references3. Peptides C. Derek N. Woolfson 1,2 1 2. 2009;94(1):118–27.spa
dc.relation.references4. Grant GA. Synthetic peptides : a user’s guide. 2nd ed. Grant GA, editor. New York: Oxford Univesity Press; 2002.spa
dc.relation.references5. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides : science and market. 2010;15(January).spa
dc.relation.references6. Zhang J, Desale SS, Bronich TK. Polymer-based vehicles for therapeutic peptide delivery. Ther Deliv. 2015;6(11):1279–96.spa
dc.relation.references7. Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10(2–3):141–62.spa
dc.relation.references8. Bruschi M. Modification of drug release. Strateg to Modify Drug Release from Pharm Syst. 2015;15–28.spa
dc.relation.references9. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in Medicine : Therapeutic Applications and Developments. 2008;83(5):761–9.spa
dc.relation.references10. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics : an emerging treatment modality for cancer. 2008;7(SEPTEMbER):771–82spa
dc.relation.references11. Devrim B, Kara A, Vural İ, Bozkır A. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation. Drug Dev Ind Pharm. 2016;42(11):1865–76.spa
dc.relation.references12. Zhang L, Granick S. How to Stabilize Phospholipid Liposomes ( Using Nanoparticles ). 2006;0–4.spa
dc.relation.references13. Zhang L, Zhang LF. Lipid–Polymer Hybrid Nanoparticles: Synthesis,Characterization and Applications. Nano Life. 2010;01(01n02):163–73.spa
dc.relation.references14. Garud A, Singh D, Garud N. Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. Int Curr Pharm J. 2012;1(11):384–93.spa
dc.relation.references15. Ansari MJ, Anwer MK, Jamil S, Al-Shdefat R, Ali BE, Ahmad MM, et al. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv [Internet]. 2016;23(6):1972–9. Available from: http://dx.doi.org/10.3109/10717544.2015.1039666spa
dc.relation.references16. Chan JM, Zhang L, Yuet KP, Liao G, Rhee J, Langer R, et al. Biomaterials PLGA – lecithin – PEG core – shell nanoparticles for controlled drug delivery. Biomaterials [Internet]. 2009;30(8):1627–34. Available from: http://dx.doi.org/10.1016/j.biomaterials.2008.12.013spa
dc.relation.references17. Thevenot J, Troutier A, David L, Delair T, Pascal B. Steric Stabilization of Lipid / Polymer Particle Assemblies by Poly ( ethylene glycol ) -Lipids. 2007;3651–60.spa
dc.relation.references18. Grigoras AG. Polymer-lipid hybrid systems used as carriers for insulin delivery. Nanomedicine Nanotechnology, Biol Med [Internet]. 2017;13(8):2425–37. Available from: https://doi.org/10.1016/j.nano.2017.08.005spa
dc.relation.references19. Walton HF. General considerations. Ligand Exch Chromatogr. 2018;7–30.spa
dc.relation.references20. Ito Y. Drug delivery systems. Photochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy. 2018. 231–275 pspa
dc.relation.references21. Nastruzzi C. Lipospheres in drug targets and delivery. 2005.spa
dc.relation.references22. Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol [Internet]. 2005;27(2):127. Available from: http://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summary_pr?p_J ournalId=6&p_RefId=876286&p_IsPs=Nspa
dc.relation.references23. Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, et al. Lipid-based nanoformulations for peptide delivery. Int J Pharm [Internet]. 2016;502(1–2):80–97. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.02.019spa
dc.relation.references24. Shukla T, Upmanyu N, Pandey SP, Gosh D. Chapter 1. Lipid nanocarriers [Internet]. Lipid Nanocarriers for Drug Targeting. Elsevier Inc.; 2018. 1–48 p. Available from: http://dx.doi.org/10.1016/B978-0-12-813687-4.00001-3spa
dc.relation.references25. Rawal SU, Patel MM. Chapter 2. Lipid nanoparticulate systems: Modern versatile drug carriers [Internet]. Lipid Nanocarriers for Drug Targeting. Elsevier Inc.; 2018. 49–138 p. Available from: http://dx.doi.org/10.1016/B978-0-12-813687-4.00002-5spa
dc.relation.references26. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: Synthesis, applications, and properties. Vol. 9, Nanoscale Research Letters. Springer New York LLC; 2014. p. 1–10.spa
dc.relation.references27. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. 2010;27(3):187–97spa
dc.relation.references28. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1–2):1–18.spa
dc.relation.references29. Zhang F, Fan J bing, Wang S. Interfacial Polymerization: From Chemistry to Functional Materials. Angew Chemie - Int Ed. 2020;59(49):21840–56.spa
dc.relation.references30. Kwak H-S. Nano- and Microencapsulation. 2014.spa
dc.relation.references31. JONG; H. G. BDHRK. Coacervation (Partial miscibility in colloid systems). (Preliminary Communication). 1929; Available from: https://www.dwc.knaw.nl/DL/publications/PU00015781.pdfspa
dc.relation.references32. Ghosh SK. Functional Coatings and Microencapsulation: A General Perspective. Funct Coatings By Polym Microencapsul. 2006;1–28spa
dc.relation.references33. Zuidam NJ, Nedović VA. Encapsulation technologies for active food ingredients and food processing. Encapsulation Technol Act Food Ingredients Food Process. 2010;1–400.spa
dc.relation.references34. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release [Internet]. 2005 Feb;102(2):313–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365904004845spa
dc.relation.references35. Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells, Nanomedicine Biotechnol. 2016;44(1):334–49.spa
dc.relation.references36. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur J Pharm Biopharm [Internet]. 2013;85(3 PART A):427–43. Available from: http://dx.doi.org/10.1016/j.ejpb.2013.07.002spa
dc.relation.references37. Dong W, Wang X, Liu C, Zhang X, Zhang X, Chen X, et al. Chitosan based polymerlipid hybrid nanoparticles for oral delivery of enoxaparin. Int J Pharm [Internet]. 2018;547(1–2):499–505. Available from: https://doi.org/10.1016/j.ijpharm.2018.05.076spa
dc.relation.references38. Sengel-Turk CT, Gumustas M, Uslu B, Ozkan SA. A novel approach for drug targeting: Core-shell type lipid-polymer hybrid nanocarriers. Core-shell type lipidpolymer hybrid nanocarriers. [Internet]. Design of Nanostructures for Theranostics Applications. Elsevier Inc.; 2018. 69–107 p. Available from: http://dx.doi.org/10.1016/B978-0-12-813669-0.00003-8spa
dc.relation.references39. Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and Protein Delivery Using New Drug Delivery Systems. Crit Rev Ther Drug Carrier Syst. 2013;30(4):293–329.spa
dc.relation.references40. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv Colloid Interface Sci [Internet]. 2018;253(2017):1–22. Available from: https://doi.org/10.1016/j.cis.2018.02.002spa
dc.relation.references41. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine Nanotechnology, Biol Med. 2006;2(2):53–65.spa
dc.relation.references42. Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J. Novel Delivery Systems for Improving the Clinical Use of Peptides. 2015;(July):541–61.spa
dc.relation.references43. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, Martínez A, et al. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature. 1988;328(6131):629–32.spa
dc.relation.references44. Lozano JM, Patarroyo ME. A rational strategy for a malarial vaccine development. Microbes Infect. 2007;9(6):751–60.spa
dc.relation.references45. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv Colloid Interface Sci [Internet]. 2018 Mar 1 [cited 2020 Mar 20];253:1–22. Available from: https://www.sciencedirect.com/science/article/pii/S0001868617305171spa
dc.relation.references46. Bolhassani A. Improvements in chemical carriers of proteins and peptides. 2019;43:437–52spa
dc.relation.references47. Gasco AR. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. 2001;19:4445–51.spa
dc.relation.references48. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V. Lipid-polymer hybrid nanoparticles : Synthesis strategies and biomedical applications. J Microbiol Methods [Internet]. 2019;160(March):130–42. Available from: https://doi.org/10.1016/j.mimet.2019.03.017spa
dc.relation.references49. Samad A, Tariq M, Alam MI, Akhter MS. Microsphere: A novel drug delivery system. Colloids Drug Deliv. 2016;11(4):455–78spa
dc.relation.references50. Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell M V. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev [Internet]. 2017;46(21):6553–69. Available from: http://dx.doi.org/10.1039/C7CS00536Aspa
dc.relation.references51. Blasi P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview. J Pharm Investig [Internet]. 2019;49(4):337–46. Available from: https://doi.org/10.1007/s40005-019-00453-zspa
dc.relation.references52. Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances. J Biomed Mater Res - Part A. 2018;106(9):2540–51.spa
dc.relation.references53. Qi F, Wu J, Li H, Ma G. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects. Front Chem Sci Eng. 2019;13(1):14–27.spa
dc.relation.references54. Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cuttingedge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J Pharm Investig [Internet]. 2019;49(4):381–404. Available from: https://doi.org/10.1007/s40005-019-00446-yspa
dc.relation.references55. Zhong H, Chan G, Hu Y, Hu H, Ouyang D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10(4):1–19.spa
dc.relation.references56. Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W. Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev [Internet]. 2016;107:213–27. Available from: http://dx.doi.org/10.1016/j.addr.2016.07.002spa
dc.relation.references57. Igartua M, Hernández RM, Rosas JE, Patarroyo ME, Pedraz JL. γ-Irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm [Internet]. 2008 Jun 1 [cited 2020 Jan 23];69(2):519– 26. Available from: https://www.sciencedirect.com/science/article/pii/S0939641107004201?via%3Dihu bspa
dc.relation.references58. Carcaboso A., Hernández R., Igartua M, Rosas J., Patarroyo M., Pedraz J. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine [Internet]. 2004 Mar 29 [cited 2020 Jan 23];22(11–12):1423–32. Available from: https://www.sciencedirect.com/science/article/pii/S0264410X03007679?via%3Dihu bspa
dc.relation.references59. Yang YY, Chung TS, Ping Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.spa
dc.relation.references60. D’Souza SS, Faraj JA, DeLuca PP. A Model-dependent Approach to Correlate Accelerated With Real-Time Release From Biodegradable Microspheres. AAPS PharmSciTech. 2005;6(4):553–64.spa
dc.relation.references61. Martinez NY, Andrade PF, Durán N, Cavalitto S. Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids Surfaces B Biointerfaces [Internet]. 2017;158:190–6. Available from: http://dx.doi.org/10.1016/j.colsurfb.2017.06.033spa
dc.relation.references62. Agrawal A, Rellegadla S, Jain S. Biomedical applications of PLGA particles [Internet]. Materials for Biomedical Engineering: Nanomaterials-based Drug Delivery. Elsevier Inc.; 2019. 87–129 p. Available from: http://dx.doi.org/10.1016/B978-0-12-816913-1.00004-0spa
dc.relation.references63. Note T. Measuring Zeta Potential – Laser Doppler Electrophoresis. Malvern Guid. 2015;1–2.spa
dc.relation.references64. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J Control Release [Internet]. 2016 Aug 10 [cited 2020 Apr 7];235:337–51. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0168365916303832?via%3 Dihubspa
dc.relation.references65. Agrawal A, Rellegadla S, Jain S. Biomedical applications of PLGA particles. Mater Biomed Eng [Internet]. 2019 Jan 1 [cited 2020 Mar 20];87–129. Available from: https://www.sciencedirect.com/science/article/pii/B9780128169131000040spa
dc.relation.references66. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-coglycolide) and its derivatives. J Control Release. 2008;125(3):193–209.spa
dc.relation.references67. Saez, Vivian; Hernández, José R; Peniche C. Microspheres as delivery systems for the controlled release of peptides and proteins. Biotecnol Apl. 2007;24(2):108–16.spa
dc.relation.references68. Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. Int J Pharm [Internet]. 2018;536(1):360–9. Available from: http://dx.doi.org/10.1016/j.ijpharm.2017.12.006spa
dc.relation.references69. Giteau A, Venier-julienne MC, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles ? 2008;350:14–26.spa
dc.relation.references70. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly ( lactic-co-glycolic acid ) -based drug delivery systems — A review. Int J Pharm [Internet]. 2011;415(1–2):34–52. Available from: http://dx.doi.org/10.1016/j.ijpharm.2011.05.049spa
dc.relation.references71. Gohla S, Ma K, Mu RH. Solid lipid nanoparticles ( SLN ) for controlled drug delivery ± a review of the state of the art. 2000;50.spa
dc.relation.references72. Gallarate M, Battaglia L, Peira E, Trotta M. Peptide-loaded solid lipid nanoparticles prepared through coacervation technique. Int J Chem Eng. 2011;2011.spa
dc.relation.references73. Battaglia L, Trotta M, Gallarate M, Carlotti ME, Zara GP, Bargoni A. Solid lipid nanoparticles formed by solvent-in-water emulsion-diffusion technique: Development and influence on insulin stability. J Microencapsul. 2007;24(7):672–84.spa
dc.relation.references74. Bakliwal A, Bedse S, Talele S, Chaudhari G. LIPOSPHERES: A NOVEL APPROACH FOR DRUG DELIVERY. Int J Res Pharm Nano Sci. 2015;4(5):298– 306.spa
dc.relation.references75. Cortesi R, Esposito E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials. 2002;23(11):2283–94.spa
dc.relation.references76. Patil P, Harak K, Saudagar R. Solid Lipid Nanoparticles : A Review. 2019;9(3):525– 30.spa
dc.relation.references77. Mishra H, Mishra D, Mishra PK, Nahar M, Dubey V, Jain NK. Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis b surface antigen for vaccination using subcutaneous route. J Pharm Pharm Sci. 2010;13(4):495–509.spa
dc.relation.references78. Reithmeier H, Herrmann J, Göpferich A. Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int J Pharm. 2001;218(1–2):133– 43.spa
dc.relation.references79. KH R, SA S, SN D. Solid lipid nanoparticles- A review. Int J Appl Pharm. 2013;5(2):8– 18.spa
dc.relation.references80. Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci. 2012;77(1):8–13.spa
dc.relation.references81. Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control [Internet]. 2012;24(1–2):184–90. Available from: http://dx.doi.org/10.1016/j.foodcont.2011.09.025spa
dc.relation.references82. Pinho S. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid. Int J Food Stud. 2013;2(1):48–59.spa
dc.relation.references83. Health N and. Novata® BD PH: Product data sheet [Internet]. [cited 2020 Apr 16]. Available from: https://e-applications.basf-ag.de/data/basf-pcan/pds2/pds2- web.nsf/CA7971BA2D4E244AC12573B100597C04/$File/NOVATA_r__BD_PH_E. pdfspa
dc.relation.references84. Reithmeier H, Herrmann J, Gopferich A. Lipid microparticles as a parenteral controlled release device for peptides. 2001;73:339–50.spa
dc.relation.references85. Qi C, Chen Y, Huang J, Jin Q. Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. 2012;(February 2011):787–93.spa
dc.relation.references86. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59(6):478–90.spa
dc.relation.references87. Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev [Internet]. 2012;64(SUPPL.):83–101. Available from: http://dx.doi.org/10.1016/j.addr.2012.09.021spa
dc.relation.references88. Gordillo-Galeano A, Ponce A, Mora-Huertas CE. Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. J Drug Deliv Sci Technol [Internet]. 2021;62(January):102345. Available from: https://doi.org/10.1016/j.jddst.2021.102345spa
dc.relation.references89. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of Poly(ethylene oxide)- Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules. 1994;27(9):2414–25.spa
dc.relation.references90. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, et al. Core – shell-type lipid – polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine Nanotechnology, Biol Med [Internet]. 2013;9(4):474–91. Available from: http://dx.doi.org/10.1016/j.nano.2012.11.010spa
dc.relation.references91. Garg NK, Singh B, Kushwah V, Tyagi RK, Sharma R, Jain S, et al. The ligand (s) anchored lipobrid nanoconstruct mediated delivery of methotrexate: An effective approach in breast cancer therapeutics. Nanomedicine Nanotechnology, Biol Med [Internet]. 2016;12(7):2043–60. Available from: http://dx.doi.org/10.1016/j.nano.2016.05.008spa
dc.relation.references92. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipidpolymer hybrid nanoparticles as a nextgeneration drug delivery platform: State of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937– 52.spa
dc.relation.references93. Chaudhary Z, Ahmed N, .ur.Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: A review. Int J Polym Mater Polym Biomater [Internet]. 2018;67(2):86–100. Available from: https://doi.org/10.1080/00914037.2017.1300900spa
dc.relation.references94. Garg NK, Tandel N, Jadon RS, Tyagi RK, Katare OP. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: current status and future directions. Drug Discov Today [Internet]. 2018;23(9):1610–21. Available from: https://doi.org/10.1016/j.drudis.2018.05.033spa
dc.relation.references95. Beija M, Salvayre R, Viguerie NL, Marty J. Colloidal systems for drug delivery : from design to therapy. Trends Biotechnol [Internet]. 2012;30(9):485–96. Available from: http://dx.doi.org/10.1016/j.tibtech.2012.04.008spa
dc.relation.references96. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. Research Paper A New Polymer Y Lipid Hybrid Nanoparticle System Increases Cytotoxicity of Doxorubicin Against Multidrug-Resistant Human Breast Cancer Cells. 2006;23(7):1574–85.spa
dc.relation.references97. Wong HL, Bendayan R, Mike A, Yu X. Simultaneous delivery of doxorubicin and GG918 ( Elacridar ) by new Polymer-Lipid Hybrid Nanoparticles ( PLN ) for enhanced treatment of multidrug-resistant breast cancer. 2006;116:275–84.spa
dc.relation.references98. Li Y, Lun H, Shuhendler AJ, Rauth AM, Yu X. Molecular interactions , internal structure and drug release kinetics of rationally developed polymer – lipid hybrid nanoparticles. 2008;128:60–70.spa
dc.relation.references99. Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci [Internet]. 2016;81:162–71. Available from: http://dx.doi.org/10.1016/j.ejps.2015.10.021spa
dc.relation.references100. Devrim B, Kara A, Vural İ, Bozkır A. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation. Drug Dev Ind Pharm. 2016;42(11):1865–76.spa
dc.relation.references101. Wu C, Baldursdottir S, Yang M, Mu H. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Deliv Sci Technol [Internet]. 2018;43:65–72. Available from: https://doi.org/10.1016/j.jddst.2017.09.006spa
dc.relation.references102. Bose RJC, Lee SH, Park H. Lipid polymer hybrid nanospheres encapsulating antiproliferative agents for stent applications. J Ind Eng Chem [Internet]. 2016;36:284–92. Available from: http://dx.doi.org/10.1016/j.jiec.2016.02.015spa
dc.relation.references103. Li H, Teng Y, Sun J, Liu J. Inhibition of hemangioma growth using polymer–lipid hybrid nanoparticles for delivery of rapamycin. Biomed Pharmacother [Internet]. 2017;95:875–84. Available from: https://doi.org/10.1016/j.biopha.2017.08.035spa
dc.relation.references104. K.S. J, Snigdha SS, Kalarikkal N, Pothen LA, Thomas S. Gelatin modified lipid nanoparticles for anti- viral drug delivery. Chem Phys Lipids [Internet]. 2017;207:24– 37. Available from: http://dx.doi.org/10.1016/j.chemphyslip.2017.07.002spa
dc.relation.references105. Rose F, Wern JE, Gavins F, Andersen P, Follmann F, Foged C. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release [Internet]. 2018;271(December 2017):88–97. Available from: https://doi.org/10.1016/j.jconrel.2017.12.003spa
dc.relation.references106. Li J, Ma YJ, Wang Y, Chen BZ, Guo XD, Zhang CY. Dual redox/pH-responsive hybrid polymer-lipid composites: Synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem Eng J [Internet]. 2018;341(November 2017):450–61. Available from: https://doi.org/10.1016/j.cej.2018.02.055spa
dc.relation.references107. Toragall V, Jayapala N, Vallikannan B. Chitosan-oleic acid-sodium alginate a hybrid nanocarrier as an efficient delivery system for enhancement of lutein stability and bioavailability. Int J Biol Macromol [Internet]. 2020;150:578–94. Available from: https://doi.org/10.1016/j.ijbiomac.2020.02.104spa
dc.relation.references108. Patel G, Thakur NS, Kushwah V, Patil MD, Nile SH, Jain S, et al. Mycophenolate coadministration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine Nanotechnology, Biol Med [Internet]. 2020;24:102147. Available from: https://doi.org/10.1016/j.nano.2019.102147spa
dc.relation.references109. Thanki K, van Eetvelde D, Geyer A, Fraire J, Hendrix R, Van Eygen H, et al. Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration. J Control Release [Internet]. 2019;310(August):82–93. Available from: https://doi.org/10.1016/j.jconrel.2019.08.004spa
dc.relation.references110. Leng D, Thanki K, Fattal E, Foged C, Yang M. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach. Int J Pharm [Internet]. 2018;548(2):740–6. Available from: https://doi.org/10.1016/j.ijpharm.2017.08.094spa
dc.relation.references111. Bachhav SS, Dighe VD, Kotak D, Devarajan P V. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm [Internet]. 2017;532(1):612–22. Available from: http://dx.doi.org/10.1016/j.ijpharm.2017.09.040spa
dc.relation.references112. Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, et al. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm [Internet]. 2017;533(1):156–68. Available from: http://dx.doi.org/10.1016/j.ijpharm.2017.09.061spa
dc.relation.references113. Belletti D, Grabrucker AM, Pederzoli F, Menerath I, Vandelli MA, Tosi G, et al. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. Int J Pharm. 2018;543(1–2):300–10.spa
dc.relation.references114. Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm [Internet]. 2018;548(1):255–62. Available from: https://doi.org/10.1016/j.ijpharm.2018.06.063spa
dc.relation.references115. Li C, Ge X, Wang L. Construction and comparison of different nanocarriers for codelivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother [Internet]. 2017;86(27):628–36. Available from: http://dx.doi.org/10.1016/j.biopha.2016.12.042spa
dc.relation.references116. Zhang Y, Zhang P, Zhu T. Ovarian carcinoma biological nanotherapy: Comparison of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for cisplatin delivery. Biomed Pharmacother [Internet]. 2019;109(1):475–83. Available from: https://doi.org/10.1016/j.biopha.2018.10.158spa
dc.relation.references117. Ma P, Li T, Xing H, Wang S, Sun Y, Sheng X, et al. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation. Biomed Pharmacother [Internet]. 2017;89(October 2011):689–95. Available from: http://dx.doi.org/10.1016/j.biopha.2017.01.175spa
dc.relation.references18. Qiu J, Cai G, Liu X, Ma D. αvβ3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother [Internet]. 2017;96(89):1418–26. Available from: https://doi.org/10.1016/j.biopha.2017.10.086spa
dc.relation.references119. Song Z, Shi Y, Han Q, Dai G. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed Pharmacother [Internet]. 2018;105(28):18–26. Available from: https://doi.org/10.1016/j.biopha.2018.05.095spa
dc.relation.references120. Yugui F, Wang H, Sun D, Zhang X. Nasopharyngeal cancer combination chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 coloaded, core-shell structured lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2019;114(27):0–6.spa
dc.relation.references121. Wang J, Su G, Yin X, Luo J, Gu R, Wang S, et al. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor—Afatinib: In vitro and in vivo evaluation. Biomed Pharmacother [Internet]. 2019;120(September):109493. Available from: https://doi.org/10.1016/j.biopha.2019.109493spa
dc.relation.references122. Pang J, Xing H, Sun Y, Feng S, Wang S. Non-small cell lung cancer combination therapy: Hyaluronic acid modified, epidermal growth factor receptor targeted, pH sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus bevacizumab. Biomed Pharmacother [Internet]. 2020;125(December 2019):109861. Available from: https://doi.org/10.1016/j.biopha.2020.109861spa
dc.relation.references123. Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M, et al. Coencapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid-polymer hybrid nanoparticles: In vitro and in silico studies. Mater Sci Eng C [Internet]. 2016;61:616–30. Available from: http://dx.doi.org/10.1016/j.msec.2015.12.053spa
dc.relation.references124. Xue HY, Tran N, Wong HL. A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. Eur J Pharm Biopharm [Internet]. 2016;108:68–75. Available from: http://dx.doi.org/10.1016/j.ejpb.2016.08.014spa
dc.relation.references125. Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ, et al. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm [Internet]. 2018;130(June):39–47. Available from: https://doi.org/10.1016/j.ejpb.2018.06.020spa
dc.relation.references126. Jansen MAA, Klausen LH, Thanki K, Lyngsø J, Skov Pedersen J, Franzyk H, et al. Lipidoid-polymer hybrid nanoparticles loaded with TNF siRNA suppress inflammation after intra-articular administration in a murine experimental arthritis model. Eur J Pharm Biopharm [Internet]. 2019;142(November 2018):38–48. Available from: https://doi.org/10.1016/j.ejpb.2019.06.009spa
dc.relation.references127. Wu C, Luo X, Baldursdottir SG, Yang M, Sun X, Mu H. In vivo evaluation of solid lipid microparticles and hybrid polymer-lipid microparticles for sustained delivery of leuprolide. Eur J Pharm Biopharm [Internet]. 2019;142(July):315–21. Available from: https://doi.org/10.1016/j.ejpb.2019.07.010spa
dc.relation.references128. Zhang J, Hu J, Chan HF, Skibba M, Liang G, Chen M. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomedicine Nanotechnology, Biol Med [Internet]. 2016;12(5):1303–11. Available from: http://dx.doi.org/10.1016/j.nano.2016.01.017spa
dc.relation.references129. Liu Y, Jiang Z, Hou X, Xie X, Shi J, Shen J, et al. Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport. Nanomedicine Nanotechnology, Biol Med [Internet]. 2019;21:102075. Available from: https://doi.org/10.1016/j.nano.2019.102075spa
dc.relation.references130. Boushra M, Tous S, Fetih G, Xue HY, Wong HL. Development of bi-polymer lipid hybrid nanocarrier (BLN) to improve the entrapment and stability of insulin for efficient oral delivery. J Drug Deliv Sci Technol [Internet]. 2019;49(July 2018):632– 41. Available from: https://doi.org/10.1016/j.jddst.2019.01.007spa
dc.relation.references131. Meraj Anjum M, Kanoujia J, Parashar P, Arya M, K. Yadav A, A. Saraf S. Evaluation of a Polymer-Lipid-Polymer System Utilising Hybrid Nanoparticles of Dapsone as a Novel Antiacne Agent. Curr Drug ther. 2016;11(2):86–100spa
dc.relation.references132. Arya RKK, Juyal V. Polymer -Lipid Hybrid Nanoparticles for Brain Targeting Through Intranasal Delivery. J Drug Deliv Ther. 2017;7(4):129–36.spa
dc.relation.references133. Tahir N, Madni A, Kashif PM, Rehman M, Raza A, Khan MI, et al. Formulation and compatibility assessment of PLGA/lecithin based lipid-polymer hybrid nanoparticles containing doxorubicin. Acta Pol Pharm - Drug Res. 2017;74(5):1563–72.spa
dc.relation.references134. Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, et al. Lipidpolymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019;14:4961–74.spa
dc.relation.references135. Zhao W, Zhang C, Li B, Zhang X, Luo X, Zeng C, et al. Lipid Polymer Hybrid Nanomaterials for mRNA Delivery. Cell Mol Bioeng. 2018;11(5):397–406.spa
dc.relation.references136. Gu J, Chen Y, Tong L, Wang X, Yu D, Wu H. Astaxanthin-loaded polymer-lipid hybrid nanoparticles (ATX-LPN): Assessment of potential otoprotective effects. J Nanobiotechnology [Internet]. 2020;18(1):1–17. Available from: https://doi.org/10.1186/s12951-020-00600-xspa
dc.relation.references137. Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, et al. Core shell lipidpolymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep. 2017;7(1):1–8.spa
dc.relation.references138. Abdou EM, Fayed MAA, Helal D, Ahmed KA. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Sci Rep [Internet]. 2019;9(1):1–14. Available from: http://dx.doi.org/10.1038/s41598-019- 56320-2spa
dc.relation.references139. Cao S, Slack SD, Levy CN, Hughes SM, Jiang Y, Yogodzinski C, et al. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4 + T cell activation and HIV-1 latency reversal. Sci Adv. 2019;5(3):1–13.spa
dc.relation.references140. Garg NK, Tyagi RK, Sharma G, Jain A, Singh B, Jain S, et al. Functionalized LipidPolymer Hybrid Nanoparticles Mediated Codelivery of Methotrexate and Aceclofenac: A Synergistic Effect in Breast Cancer with Improved Pharmacokinetics Attributes. Mol Pharm. 2017;14(6):1883–97.spa
dc.relation.references141. Wang J, Zhang L, Chi H, Wang S. An alternative choice of lidocaine-loaded liposomes: lidocaine-loaded lipid–polymer hybrid nanoparticles for local anesthetic therapy. Drug Deliv. 2016;23(4):1254–60.spa
dc.relation.references142. Chen W, Guo M, Wang S. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev Ind Pharm. 2016;42(12):1968–76.spa
dc.relation.references143. Küçüktürkmen B, Devrim B, Saka OM, Yilmaz Ş, Arsoy T, Bozkir A. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm. 2017;43(1):12–21spa
dc.relation.references144. Shao Y, Luo W, Guo Q, Li X, Zhang Q, Li J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nanosystem for leukemia therapy. Drug Des Devel Ther. 2019;13:2043–55.spa
dc.relation.references145. Wang J. Combination treatment of cervical cancer using folate-decorated, phsensitive, carboplatin and paclitaxel co-loaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2020;14:823–32.spa
dc.relation.references146. Yu Z, Chen F, Qi X, Dong Y, Zhang Y, Ge Z, et al. Epidermal growth factor receptor aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Exp Ther Med. 2018;15(2):1247– 56.spa
dc.relation.references147. Gao F, Zhang J, Fu C, Xie X, Peng F, You J, et al. iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine. 2017;12:4147–62.spa
dc.relation.references148. Khan MM, Madni A, Torchilin V, Filipczak N, Pan J, Tahir N, et al. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv [Internet]. 2019;26(1):765–72. Available from: https://doi.org/10.1080/10717544.2019.1642420spa
dc.relation.references149. Sun S, Liang N, Yamamoto H, Kawashima Y, Cui F, Yan P. pH-sensitive poly(lactideco-glycolide) nanoparticle Composite Microcapsules for Oral Delivery of Insulin. Int J Nanomedicine. 2015;10:3489–98.spa
dc.relation.references150. Tng DJH, Song P, Lin G, Soehartono AM, Yang G, Yang C, et al. Synthesis and characterization of multifunctional hybrid-polymeric nanoparticles for drug delivery and multimodal imaging of cancer. Int J Nanomedicine. 2015;10:5771–86.spa
dc.relation.references151. Wu B, Lu ST, Deng K, Yu H, Cui C, Zhang Y, et al. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles. Int J Nanomedicine. 2017;12:6871–82.spa
dc.relation.references152. Li J, Xu W, Yuan X, Chen H, Song H, Wang B, et al. Polymer-lipid hybrid anti-HER 2 nanoparticles for targeted salinomycin delivery to HER 2-positive breast cancer stem cells and cancer cells. Int J Nanomedicine. 2017;12:6909–21.spa
dc.relation.references153. Wu B, Lu ST, Zhang LJ, Zhuo RX, Xu HB, Huang SW. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment. Int J Nanomedicine. 2017;12:1853–62.spa
dc.relation.references154. Men W, Zhu P, Dong S, Liu W, Zhou K, Bai Y, et al. Fabrication of dual pH/redoxresponsive lipid-polymer hybrid nanoparticles for anticancer drug delivery and controlled release. Int J Nanomedicine. 2019;14:8001–11.spa
dc.relation.references155. Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid–PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater [Internet]. 2015 Dec;28(1):149–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706115301252spa
dc.relation.references156. Hu Y, Zhao Z, Ehrich M, Fuhrman K, Zhang C. In vitro controlled release of antigen in dendritic cells using pH-sensitive liposome-polymeric hybrid nanoparticles. Polymer (Guildf). 2015;80:171–9.spa
dc.relation.references157. Dehaini D, Fang RH, Luk BT, Pang Z, Hu CMJ, Kroll A V., et al. Ultra-small lipidpolymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 2016;8(30):14411–9.spa
dc.relation.references158. Hu Y, Smith D, Frazier E, Hoerle R, Ehrich M, Zhang C. The next-generation nicotine vaccine: a novel and potent hybrid nanoparticle-based nicotine vaccine. Biomaterials [Internet]. 2016 Nov;106(12):228–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014296121630415Xspa
dc.relation.references159. Golan‐Paz S, Frizzell H, Woodrow KA. Cross‐Platform Comparison of Therapeutic Delivery from Multilamellar Lipid‐Coated Polymer Nanoparticles. Macromol Biosci [Internet]. 2019 Apr 27;19(4):1800362. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800362spa
dc.relation.references160. Wei J, Sun J, Liu Y. Enhanced targeting of prostate cancer-initiating cells by salinomycin-encapsulated lipid-PLGA nanoparticles linked with CD44 antibodies. Oncol Lett. 2019;17(4):4024–33.spa
dc.relation.references161. Bhardwaj A, Mehta S, Yadav S, Singh SK, Grobler A, Goyal AK, et al. Pulmonary delivery of antitubercular drugs using spray-dried lipid–polymer hybrid nanoparticles. Artif Cells, Nanomedicine Biotechnol. 2016;44(6):1544–55.spa
dc.relation.references162. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnology [Internet]. 2018;16(1):1–12. Available from: https://doi.org/10.1186/s12951-018-0391-9spa
dc.relation.references163. Yasar H, Biehl A, De Rossi C, Koch M, Murgia X, Loretz B, et al. Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles. J Nanobiotechnology [Internet]. 2018;16(1):1–19. Available from: https://doi.org/10.1186/s12951-018-0401-yspa
dc.relation.references164. Jin Z, Lv Y, Cao H, Yao J, Zhou J, He W, et al. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Nat Publ Gr [Internet]. 2016;(February):1–10. Available from: http://dx.doi.org/10.1038/srep27559spa
dc.relation.references165. Ishak RAH, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): Optimization, characterization and biodistribution. Drug Deliv [Internet]. 2017;24(1):1874–90. Available from: https://doi.org/10.1080/10717544.2017.1410263spa
dc.relation.references166. Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H. Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid–polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv. 2016;23(5):1757–62.spa
dc.relation.references167. Tawfik MA, Tadros MI, Mohamed MI. Lipomers (Lipid-polymer Hybrid Particles) of Vardenafil Hydrochloride: a Promising Dual Platform for Modifying the Drug Release Rate and Enhancing Its Oral Bioavailability. AAPS PharmSciTech. 2018;19(8):3650– 60.spa
dc.relation.references168. Thakur K, Sharma G, Singh B, Chhibber S, Katare OP. Nano-engineered lipidpolymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model. Drug Deliv Transl Res. 2019;9(4):748–63.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalSistemas particuladosspa
dc.subject.proposalPolímerospa
dc.subject.proposalLípidospa
dc.subject.proposalPéptido sintéticospa
dc.subject.proposalDoble emulsiónspa
dc.subject.proposalEvaporación del solventespa
dc.subject.proposalHíbridosspa
dc.subject.proposalLipopoliméricosspa
dc.subject.proposalParticulate systemseng
dc.subject.proposalPolymereng
dc.subject.proposalLipideng
dc.subject.proposalSynthetic peptideeng
dc.subject.proposalDouble emulsioneng
dc.subject.proposalSolvent evaporationeng
dc.subject.proposalHybridseng
dc.subject.proposalLipopolymericseng
dc.subject.unescoPolímero
dc.subject.unescoPolymers
dc.subject.unescoCompuesto orgánico
dc.titleDiseño y desarrollo de un sistema microparticular lipopolimérico para la administración de un péptido sintético modelo de naturaleza hidrofílicaspa
dc.title.translatedDesign and development of a lipopolymeric microparticular system for the administration od a synthetic peptide of hydrophilic natureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032480023.2021 - Maria Angelica Velandia Paris.pdf
Tamaño:
4.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: