Evaluación de diferentes simuladores computacionales y software en la estimación de dosis absorbida en terapia para pacientes de medicina nuclear
| dc.contributor.advisor | Ocampo Ramos, Juan Camilo | spa |
| dc.contributor.advisor | Veloza Salcedo, Luz Stella | spa |
| dc.contributor.author | Morales Salcedo, Angela Patricia | spa |
| dc.date.accessioned | 2020-11-05T22:51:12Z | spa |
| dc.date.available | 2020-11-05T22:51:12Z | spa |
| dc.date.issued | 2020-11-03 | spa |
| dc.description.abstract | En medicina nuclear se han implementado metodologías de cálculo que producen información importante para la cuantificación de la dosis recibida por los órganos y tejidos durante el diagnóstico y las terapias con radionúclidos, lo que ha llevado al desarrollo de simuladores y software para realizar cálculos de dosis de manera rápida usando esas metodologías como base. El principal inconveniente con estos software es que la mayoría de los usuarios los utilizan sin distinción y en algunos casos como cajas negras. Por esta razón, este trabajo tiene como objetivo analizar las diferencias encontradas entre los principales software y simuladores computacionales basados en la metodología ICRP y la metodología MIRD empleados para el cálculo de dosis absorbida, esto con el fin de evaluar la influencia de los diferentes modelos anatómicos y los factores de conversión de dosis en el calculo de dosis absorbida en pacientes de medicina nuclear. Este estudio usó información biocinética conocida de terapias y diagnóstico mediante los radionúclidos 177Lu y 131I. En las diferencias obtenidas por los diferentes software y simuladores computacionales se observó la influencia de los simuladores anatómicos y los factores de conversión de dosis en el calculo de dosis absorbida en pacientes de medicina nuclear, así mismo se concluyó que el conocimiento de los modelos puede influir en la aplicación de correcciones que permitan el cálculo de dosis más aproximada a los pacientes en estudio. | spa |
| dc.description.abstract | In nuclear medicine, calculation methodologies have been implemented that produce important information for the quantification of the dose received by organs and tissues during diagnostic and therapies with radionuclides, which has led to the development of simulators and software to perform rapid dose calculations using these methodologies as a basis. The main drawback with these software is that most users use them without distinction and in some cases as black boxes. For this reason, this work aims to analyze the differences found between the main software and computer simulators based on the ICRP methodology and the MIRD methodology used for the calculation of absorbed dose, in order to evaluate the influence of different anatomical models and dose conversion factors in the calculation of absorbed dose in nuclear medicine patients. This study used known biokinetic information of therapies and diagnosis by means of the radionuclides 177Lu and 131I. In the differences obtained by the different software and computational simulators, it was observed the influence of the anatomical simulators and the dose conversion factors in the calculation of absorbed dose in nuclear medicine patients. It was also concluded that the knowledge of the models can influence the application of corrections that allow the calculation of more approximate dose to the patients under study. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 132 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78590 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Física | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
| dc.relation.references | OMS, «Organización mundial de la salud,» 12 Septiembre 2018. [En línea]. Available: https://www.who.int/news-room/fact-sheets/detail/cancer. [Último acceso: 30 Mayo 2019]. | spa |
| dc.relation.references | B. W. Stewart, «Informe Mundial sobre el Cáncer 2014,» OMS, Lyon, France, 2014. | spa |
| dc.relation.references | S. V. Gudkov, N. Y. Shilyagina, V. A. Vodeneev y A. V. Zvyagin, «Targeted Radionuclide Therapy of Human Tumors,» vol. 17, 2016. | spa |
| dc.relation.references | R. M. Sharkey, H. Karacay, T. M. Cardillo, C.-H. Chang, W. J. McBride, E. A. Rossi, I. D. Horak y D. M. Goldenberg, «Improving the Delivery of Radionuclides for Imaging and Therapy of Cancer Using Pretargeting Methods.,» vol. 11, nº 19, 2005. | spa |
| dc.relation.references | P. B. Zanzonico, «Internal Radionuclide Radiation Dosimetry: A Review of Basic Concepts and Recent Developments. Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center,,» vol. 41, nº 2, 2000. | spa |
| dc.relation.references | J. C. Ocampo Ramos, Evaluación de dosis por incorporación de radionucleídos: propuesta de base de datos y de un software para medicina nuclear. Tesis Doctoral, Medellín, Colombia: Universidad Nacional de Colombia, 2016. | spa |
| dc.relation.references | ICRP, Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances, ICRP Publication 128, 2014. | spa |
| dc.relation.references | R. e. a. Loevinger, «A Formalism for Calculation of Absorbed Dose from Radionuclides,» vol. 13, nº 2, 1968. | spa |
| dc.relation.references | W. Snyder, J. F. HL, MrFord y G. Warner, «Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom.,» vol. 3, 1969. | spa |
| dc.relation.references | ICRP, «Recommendations of the International Commission on Radiological,» 1977 | spa |
| dc.relation.references | ICRP, «Recommendations of the International Commission on Radiological,» 1991 | spa |
| dc.relation.references | ICRP, «Recommendations of the International Commission on Radiological,» 1987 | spa |
| dc.relation.references | ICRP, « ICRP publication 80: Radiation dose to patients from radiopharmaceuticals,» 1998. | spa |
| dc.relation.references | ICRP, «Radiation dose to patients from radiopharmaceuticals,» Elsevier, Oxford, UK, 2008b. | spa |
| dc.relation.references | ICRP, «Limits for intakes of radionuclides by workers,» Pergamon Press, Oxford, UK, 1979. | spa |
| dc.relation.references | W. Bolch y e. al, «MIRD Pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry - standardization of nomenclature,» vol. 50, nº 3, 2009. | spa |
| dc.relation.references | R. Loevinger y M. Berman, «MIRD Pamphlet No. 1. A Revised Schema for Calculating the Absorbed Dose from Biologically Distributed Radionuclides,» vol. 1976, nº 1. | spa |
| dc.relation.references | IDAC, «IDAC-Dose2.1,» 2019. [En línea]. Available: http://www.idac-dose.org/. [Último acceso: 30 Mayo 2019]. | spa |
| dc.relation.references | CSN, «Radiación y protección radiolígica,» Consejo de Seguridad Nuclear, Madrid, 2010. | spa |
| dc.relation.references | E. B. Podgorsak, Radiation physics for medical physicists, Montreal: Springer-Verlag Berlin Heidelberg , 2010 | spa |
| dc.relation.references | NCI, «National Cancer Institute,» National Cancer Institute, National Institute of health, [En línea]. Available: https://www.cancer.gov/espanol/publicaciones/diccionario/def/radionuclido. [Último acceso: 23 11 2019]. | spa |
| dc.relation.references | OMS, «RADIOPHARMACEUTICALS Final text for addition to The International Pharmacopoeia,» Word Health Organization , 2008. | spa |
| dc.relation.references | SEFM, Fundamentos de Física Médica V1., España: Sociedad Española de Física Médica - ADI. | spa |
| dc.relation.references | C. Consejo de seguridad Nuclear, «INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA,» de Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO, 2013. | spa |
| dc.relation.references | C. Ubeda, D. Nocetti, A. Inzulza, C. Oyarzún y R. Alarcón, «Quantities and units for dosimetry of occupationally exposed personnel in diagnostic and interventional radiology.,» Rev. chil. radiol, vol. 24, nº 1, 2018. | spa |
| dc.relation.references | D. L. Bailey, J. L. Humm, A. Tood-Pokropek y A. v. Aswegen, Nuclear Medicine Physics, A Handbook for Teachers and Students, Viena: International atomic energy agency -IAEA, 2014. | spa |
| dc.relation.references | W. E. Bolch, «MIRD Committee,» University of Florida, Gainesville, FL, USA. | spa |
| dc.relation.references | Universita di Bologna, Voxel dosimetry in Nuclear Medicine, [En línea]. Available: http://www.medphys.it. [Último acceso: 20 06 2020]. | spa |
| dc.relation.references | ICRP, «Computational Phantoms of children and pregnan females.,» Tokyo, 2016. | spa |
| dc.relation.references | ICRP, «ICRP Publication 130: Occupational Intakes of Radionuclides: Part 1,» 2015. | spa |
| dc.relation.references | ICRP, «ICRP Publication 133: The ICRP Computational Framework for Internal Dose Assessment for Reference Adults: Specific Absorbed Fractions,» 2016. | spa |
| dc.relation.references | W. Snyder, M. Ford y G. Warner, MIRD Pamphlet No. 5, 1969. | spa |
| dc.relation.references | ICRP, Report of the Task Group on Reference Man. Publication 23, 1975. | spa |
| dc.relation.references | W. S. Snyder, M. R. Ford y G. G. and Warner, «MIRD Pamphlet,» 1978. | spa |
| dc.relation.references | L. R., T. Budinger y E. Watson, MIRD primer for absorbed dose calculations, N. Medicine, ed. New York, NY: Society of Nuclear Medicine: New York, NY : Society of Nuclear Medicine, 1988. | spa |
| dc.relation.references | W. Snyder, R. Cloutier y C. Edwards, «Estimation of absorbed fraction of energy from photon sources in body organs.,» US Atomic Energy Commission, Division of, p. 33–49, 1970. | spa |
| dc.relation.references | M. G. Stabin, R. B. Sparks y E. Crowe, «OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine,» J Nucl Med , vol. 46, nº 6, pp. 1023-1027, 2005. | spa |
| dc.relation.references | S. George, «Dosimetry internal emitters,» The journal of nuclear medicine, vol. 46, nº 1. | spa |
| dc.relation.references | ICRP, «ICRP Publication 103. Recommendations of the International Commission on Radiological,» 2007. | spa |
| dc.relation.references | J. J. Bevelacqua, «Intrnal Dosimetry Primer,» Radiation Protection Management, vol. 22, nº 5, 2005. | spa |
| dc.relation.references | M. G. Stabin, « The OLINDA/EXM Personal Computer Code. doseinfo-radar.,» [En línea]. Available: http://www.doseinfo-radar.com/OLINDA.html.. [Último acceso: 30 Junio 2019]. | spa |
| dc.relation.references | M. Andersson, L. Johansson, K. Eckerman y S. Mattsson, «IDAC-Dose 2.1. an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms,» EJNMMI Research, 2017. | spa |
| dc.relation.references | J. C. Ocampo, N. Petoussi-Henss y M. Zankl., «A new voxel-phantom-based software for internal dose calculations. Poster Advanced School on “Ionizing Radiation and Protection of Man”.,» 2014. | spa |
| dc.relation.references | M. Zankl, H. Schlattl, N. Petoussi-Henss y C. Hoeschen, «Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms,» vol. 57, nº 14, 2012. | spa |
| dc.relation.references | J. C. Ocampo, N. Petoussi-Henss y M. Zankl, «Voxel-phantom-based software for internal dose assessment.X Regional congress of radiological and nuclear safety IRPA.,» 2015. | spa |
| dc.relation.references | W. Lehnert, K. Schmidt, S. Kimiaei, M. Bronzel y A. Kluge, «Comparative Investigation of Internal Dosimetry Methodologies,» Nucl Med, vol. 57, nº supplement 2 307, 2016. | spa |
| dc.relation.references | W. Snyder, M. Ford, G. Warner y S. Watson, «MIRD Pamphlet No.11. S, Absorbed dose per unit cumulated activity for selected radionuclides and organs,» Oak Ridge National Laboratory - MIRD , 1975. | spa |
| dc.relation.references | N. Konijnenberg, «Consequences of meta-stable (177m)Lu admixture in (177)Lu for patient dosimetry,» vol. 8, nº 2, 2015. | spa |
| dc.relation.references | Konijnenberg, Mark W., «Consequences of meta-stable 177mLu admixture in 177Lu for patient dosimetry,» Current Radiopharmaceuticals, vol. 8, nº 2, 2015. | spa |
| dc.relation.references | J. P. Esser, E. P. Krenning, J. J. M. Teunissen, P. P. M. Kooij, A. L. H. v. Gameren, W. H. Bakker y D. J. Kwekkeboom, «Comparison of [177Lu-Dota0,Tyr3]Octreotate and [177Lu-Dota0,Tyr3]Octreotide: which peptide is preferable for PRRT?,» vol. 33, nº 11, 2006. | spa |
| dc.relation.references | M. Correa, «Validación del programa ImageJ para cuantificación de imágenes en dosimetría interna para pacientes de terapia con,» Universidad Nacional de Colombia, Bogota, 2017. | spa |
| dc.relation.references | L. S. VelozaL, J. Rojas, M. G. Stabin, G. Garavito y A. E. Llamas, «Radioiodine Biokinetics and Dosimetry in Patients with Differentiated Thyroid Carcinoma and Renal Insufficiency,»Springer, World Congress on Medical Physics and Biomedical Engineering, vol. 25, nº 1, 2009. | spa |
| dc.relation.references | IAEA, «IAEA,» [En línea]. Available: https://www.iaea.org/topics/radionuclide-therapy. [Último acceso: 20 Junio 2020]. | spa |
| dc.relation.references | A. Dash, M. Raghavan, A. Pillai y F. F. Knapp, «Production of 177Lu for Targeted Radionuclide Therapy: Available Options,» Nucl Med Mol Imaging., vol. 49, nº 2, 2015. | spa |
| dc.relation.references | M. P. M. Stokkel, J. D. Handkiewicz, M. Lassmann, M. Dietlein y M. Luster, «EANM procedure guidelines for therapy of benign thyroid disease,» European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, nº 11, p. 2218–2228, 2010. | spa |
| dc.relation.references | U. Lee, M. J. Kim y H. R. Kim, «Radioactive iodine analysis in environmental samples around nuclear facilities and sewage treatment plants,» Nuclear Engineering and Technology, vol. 50, nº 8, 2018. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
| dc.subject.proposal | Medicina nuclear | spa |
| dc.subject.proposal | Nuclear physics | eng |
| dc.subject.proposal | Nuclear Medicine | eng |
| dc.subject.proposal | Dosimetría interna | spa |
| dc.subject.proposal | Dosis | spa |
| dc.subject.proposal | Dose | eng |
| dc.subject.proposal | Internal dosimetry | eng |
| dc.subject.proposal | Cáncer | spa |
| dc.subject.proposal | Cancer | eng |
| dc.title | Evaluación de diferentes simuladores computacionales y software en la estimación de dosis absorbida en terapia para pacientes de medicina nuclear | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

