Evaluación de diferentes simuladores computacionales y software en la estimación de dosis absorbida en terapia para pacientes de medicina nuclear

dc.contributor.advisorOcampo Ramos, Juan Camilospa
dc.contributor.advisorVeloza Salcedo, Luz Stellaspa
dc.contributor.authorMorales Salcedo, Angela Patriciaspa
dc.date.accessioned2020-11-05T22:51:12Zspa
dc.date.available2020-11-05T22:51:12Zspa
dc.date.issued2020-11-03spa
dc.description.abstractEn medicina nuclear se han implementado metodologías de cálculo que producen información importante para la cuantificación de la dosis recibida por los órganos y tejidos durante el diagnóstico y las terapias con radionúclidos, lo que ha llevado al desarrollo de simuladores y software para realizar cálculos de dosis de manera rápida usando esas metodologías como base. El principal inconveniente con estos software es que la mayoría de los usuarios los utilizan sin distinción y en algunos casos como cajas negras. Por esta razón, este trabajo tiene como objetivo analizar las diferencias encontradas entre los principales software y simuladores computacionales basados en la metodología ICRP y la metodología MIRD empleados para el cálculo de dosis absorbida, esto con el fin de evaluar la influencia de los diferentes modelos anatómicos y los factores de conversión de dosis en el calculo de dosis absorbida en pacientes de medicina nuclear. Este estudio usó información biocinética conocida de terapias y diagnóstico mediante los radionúclidos 177Lu y 131I. En las diferencias obtenidas por los diferentes software y simuladores computacionales se observó la influencia de los simuladores anatómicos y los factores de conversión de dosis en el calculo de dosis absorbida en pacientes de medicina nuclear, así mismo se concluyó que el conocimiento de los modelos puede influir en la aplicación de correcciones que permitan el cálculo de dosis más aproximada a los pacientes en estudio.spa
dc.description.abstractIn nuclear medicine, calculation methodologies have been implemented that produce important information for the quantification of the dose received by organs and tissues during diagnostic and therapies with radionuclides, which has led to the development of simulators and software to perform rapid dose calculations using these methodologies as a basis. The main drawback with these software is that most users use them without distinction and in some cases as black boxes. For this reason, this work aims to analyze the differences found between the main software and computer simulators based on the ICRP methodology and the MIRD methodology used for the calculation of absorbed dose, in order to evaluate the influence of different anatomical models and dose conversion factors in the calculation of absorbed dose in nuclear medicine patients. This study used known biokinetic information of therapies and diagnosis by means of the radionuclides 177Lu and 131I. In the differences obtained by the different software and computational simulators, it was observed the influence of the anatomical simulators and the dose conversion factors in the calculation of absorbed dose in nuclear medicine patients. It was also concluded that the knowledge of the models can influence the application of corrections that allow the calculation of more approximate dose to the patients under study.spa
dc.description.degreelevelMaestríaspa
dc.format.extent132spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78590
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesOMS, «Organización mundial de la salud,» 12 Septiembre 2018. [En línea]. Available: https://www.who.int/news-room/fact-sheets/detail/cancer. [Último acceso: 30 Mayo 2019].spa
dc.relation.referencesB. W. Stewart, «Informe Mundial sobre el Cáncer 2014,» OMS, Lyon, France, 2014.spa
dc.relation.referencesS. V. Gudkov, N. Y. Shilyagina, V. A. Vodeneev y A. V. Zvyagin, «Targeted Radionuclide Therapy of Human Tumors,» vol. 17, 2016.spa
dc.relation.referencesR. M. Sharkey, H. Karacay, T. M. Cardillo, C.-H. Chang, W. J. McBride, E. A. Rossi, I. D. Horak y D. M. Goldenberg, «Improving the Delivery of Radionuclides for Imaging and Therapy of Cancer Using Pretargeting Methods.,» vol. 11, nº 19, 2005.spa
dc.relation.referencesP. B. Zanzonico, «Internal Radionuclide Radiation Dosimetry: A Review of Basic Concepts and Recent Developments. Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center,,» vol. 41, nº 2, 2000.spa
dc.relation.referencesJ. C. Ocampo Ramos, Evaluación de dosis por incorporación de radionucleídos: propuesta de base de datos y de un software para medicina nuclear. Tesis Doctoral, Medellín, Colombia: Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesICRP, Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances, ICRP Publication 128, 2014.spa
dc.relation.referencesR. e. a. Loevinger, «A Formalism for Calculation of Absorbed Dose from Radionuclides,» vol. 13, nº 2, 1968.spa
dc.relation.referencesW. Snyder, J. F. HL, MrFord y G. Warner, «Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom.,» vol. 3, 1969.spa
dc.relation.referencesICRP, «Recommendations of the International Commission on Radiological,» 1977spa
dc.relation.referencesICRP, «Recommendations of the International Commission on Radiological,» 1991spa
dc.relation.referencesICRP, «Recommendations of the International Commission on Radiological,» 1987spa
dc.relation.referencesICRP, « ICRP publication 80: Radiation dose to patients from radiopharmaceuticals,» 1998.spa
dc.relation.referencesICRP, «Radiation dose to patients from radiopharmaceuticals,» Elsevier, Oxford, UK, 2008b.spa
dc.relation.referencesICRP, «Limits for intakes of radionuclides by workers,» Pergamon Press, Oxford, UK, 1979.spa
dc.relation.referencesW. Bolch y e. al, «MIRD Pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry - standardization of nomenclature,» vol. 50, nº 3, 2009.spa
dc.relation.referencesR. Loevinger y M. Berman, «MIRD Pamphlet No. 1. A Revised Schema for Calculating the Absorbed Dose from Biologically Distributed Radionuclides,» vol. 1976, nº 1.spa
dc.relation.referencesIDAC, «IDAC-Dose2.1,» 2019. [En línea]. Available: http://www.idac-dose.org/. [Último acceso: 30 Mayo 2019].spa
dc.relation.referencesCSN, «Radiación y protección radiolígica,» Consejo de Seguridad Nuclear, Madrid, 2010.spa
dc.relation.referencesE. B. Podgorsak, Radiation physics for medical physicists, Montreal: Springer-Verlag Berlin Heidelberg , 2010spa
dc.relation.referencesNCI, «National Cancer Institute,» National Cancer Institute, National Institute of health, [En línea]. Available: https://www.cancer.gov/espanol/publicaciones/diccionario/def/radionuclido. [Último acceso: 23 11 2019].spa
dc.relation.referencesOMS, «RADIOPHARMACEUTICALS Final text for addition to The International Pharmacopoeia,» Word Health Organization , 2008.spa
dc.relation.referencesSEFM, Fundamentos de Física Médica V1., España: Sociedad Española de Física Médica - ADI.spa
dc.relation.referencesC. Consejo de seguridad Nuclear, «INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA,» de Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO, 2013.spa
dc.relation.referencesC. Ubeda, D. Nocetti, A. Inzulza, C. Oyarzún y R. Alarcón, «Quantities and units for dosimetry of occupationally exposed personnel in diagnostic and interventional radiology.,» Rev. chil. radiol, vol. 24, nº 1, 2018.spa
dc.relation.referencesD. L. Bailey, J. L. Humm, A. Tood-Pokropek y A. v. Aswegen, Nuclear Medicine Physics, A Handbook for Teachers and Students, Viena: International atomic energy agency -IAEA, 2014.spa
dc.relation.referencesW. E. Bolch, «MIRD Committee,» University of Florida, Gainesville, FL, USA.spa
dc.relation.referencesUniversita di Bologna, Voxel dosimetry in Nuclear Medicine, [En línea]. Available: http://www.medphys.it. [Último acceso: 20 06 2020].spa
dc.relation.referencesICRP, «Computational Phantoms of children and pregnan females.,» Tokyo, 2016.spa
dc.relation.referencesICRP, «ICRP Publication 130: Occupational Intakes of Radionuclides: Part 1,» 2015.spa
dc.relation.referencesICRP, «ICRP Publication 133: The ICRP Computational Framework for Internal Dose Assessment for Reference Adults: Specific Absorbed Fractions,» 2016.spa
dc.relation.referencesW. Snyder, M. Ford y G. Warner, MIRD Pamphlet No. 5, 1969.spa
dc.relation.referencesICRP, Report of the Task Group on Reference Man. Publication 23, 1975.spa
dc.relation.referencesW. S. Snyder, M. R. Ford y G. G. and Warner, «MIRD Pamphlet,» 1978.spa
dc.relation.referencesL. R., T. Budinger y E. Watson, MIRD primer for absorbed dose calculations, N. Medicine, ed. New York, NY: Society of Nuclear Medicine: New York, NY : Society of Nuclear Medicine, 1988.spa
dc.relation.referencesW. Snyder, R. Cloutier y C. Edwards, «Estimation of absorbed fraction of energy from photon sources in body organs.,» US Atomic Energy Commission, Division of, p. 33–49, 1970.spa
dc.relation.referencesM. G. Stabin, R. B. Sparks y E. Crowe, «OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine,» J Nucl Med , vol. 46, nº 6, pp. 1023-1027, 2005.spa
dc.relation.referencesS. George, «Dosimetry internal emitters,» The journal of nuclear medicine, vol. 46, nº 1.spa
dc.relation.referencesICRP, «ICRP Publication 103. Recommendations of the International Commission on Radiological,» 2007.spa
dc.relation.referencesJ. J. Bevelacqua, «Intrnal Dosimetry Primer,» Radiation Protection Management, vol. 22, nº 5, 2005.spa
dc.relation.referencesM. G. Stabin, « The OLINDA/EXM Personal Computer Code. doseinfo-radar.,» [En línea]. Available: http://www.doseinfo-radar.com/OLINDA.html.. [Último acceso: 30 Junio 2019].spa
dc.relation.referencesM. Andersson, L. Johansson, K. Eckerman y S. Mattsson, «IDAC-Dose 2.1. an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms,» EJNMMI Research, 2017.spa
dc.relation.referencesJ. C. Ocampo, N. Petoussi-Henss y M. Zankl., «A new voxel-phantom-based software for internal dose calculations. Poster Advanced School on “Ionizing Radiation and Protection of Man”.,» 2014.spa
dc.relation.referencesM. Zankl, H. Schlattl, N. Petoussi-Henss y C. Hoeschen, «Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms,» vol. 57, nº 14, 2012.spa
dc.relation.referencesJ. C. Ocampo, N. Petoussi-Henss y M. Zankl, «Voxel-phantom-based software for internal dose assessment.X Regional congress of radiological and nuclear safety IRPA.,» 2015.spa
dc.relation.referencesW. Lehnert, K. Schmidt, S. Kimiaei, M. Bronzel y A. Kluge, «Comparative Investigation of Internal Dosimetry Methodologies,» Nucl Med, vol. 57, nº supplement 2 307, 2016.spa
dc.relation.referencesW. Snyder, M. Ford, G. Warner y S. Watson, «MIRD Pamphlet No.11. S, Absorbed dose per unit cumulated activity for selected radionuclides and organs,» Oak Ridge National Laboratory - MIRD , 1975.spa
dc.relation.referencesN. Konijnenberg, «Consequences of meta-stable (177m)Lu admixture in (177)Lu for patient dosimetry,» vol. 8, nº 2, 2015.spa
dc.relation.referencesKonijnenberg, Mark W., «Consequences of meta-stable 177mLu admixture in 177Lu for patient dosimetry,» Current Radiopharmaceuticals, vol. 8, nº 2, 2015.spa
dc.relation.referencesJ. P. Esser, E. P. Krenning, J. J. M. Teunissen, P. P. M. Kooij, A. L. H. v. Gameren, W. H. Bakker y D. J. Kwekkeboom, «Comparison of [177Lu-Dota0,Tyr3]Octreotate and [177Lu-Dota0,Tyr3]Octreotide: which peptide is preferable for PRRT?,» vol. 33, nº 11, 2006.spa
dc.relation.referencesM. Correa, «Validación del programa ImageJ para cuantificación de imágenes en dosimetría interna para pacientes de terapia con,» Universidad Nacional de Colombia, Bogota, 2017.spa
dc.relation.referencesL. S. VelozaL, J. Rojas, M. G. Stabin, G. Garavito y A. E. Llamas, «Radioiodine Biokinetics and Dosimetry in Patients with Differentiated Thyroid Carcinoma and Renal Insufficiency,»Springer, World Congress on Medical Physics and Biomedical Engineering, vol. 25, nº 1, 2009.spa
dc.relation.referencesIAEA, «IAEA,» [En línea]. Available: https://www.iaea.org/topics/radionuclide-therapy. [Último acceso: 20 Junio 2020].spa
dc.relation.referencesA. Dash, M. Raghavan, A. Pillai y F. F. Knapp, «Production of 177Lu for Targeted Radionuclide Therapy: Available Options,» Nucl Med Mol Imaging., vol. 49, nº 2, 2015.spa
dc.relation.referencesM. P. M. Stokkel, J. D. Handkiewicz, M. Lassmann, M. Dietlein y M. Luster, «EANM procedure guidelines for therapy of benign thyroid disease,» European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, nº 11, p. 2218–2228, 2010.spa
dc.relation.referencesU. Lee, M. J. Kim y H. R. Kim, «Radioactive iodine analysis in environmental samples around nuclear facilities and sewage treatment plants,» Nuclear Engineering and Technology, vol. 50, nº 8, 2018.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalMedicina nuclearspa
dc.subject.proposalNuclear physicseng
dc.subject.proposalNuclear Medicineeng
dc.subject.proposalDosimetría internaspa
dc.subject.proposalDosisspa
dc.subject.proposalDoseeng
dc.subject.proposalInternal dosimetryeng
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.titleEvaluación de diferentes simuladores computacionales y software en la estimación de dosis absorbida en terapia para pacientes de medicina nuclearspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094938315.2020.pdf
Tamaño:
1.65 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: