Estudio del efecto de la infección con virus de la rabia sobre la expresión de calbindina y parvoalbúmina en el cerebelo de ratones

dc.contributor.advisorTorres Fernandez, Orlandospa
dc.contributor.advisorDueñas Gómez, Zulmaspa
dc.contributor.authorNaizaque Gómez, Julián Ricardospa
dc.date.accessioned2020-03-06T12:27:51Zspa
dc.date.available2020-03-06T12:27:51Zspa
dc.date.issued2019-12-08spa
dc.description.abstractLa rabia es transmitida por la mordedura de un animal infectado, generalmente mamíferos carnívoros o quirópteros. Los signos clínicos y la evidencia experimental en modelos in vitro e in vivo sugieren una posible alteración de la neurotransmisión gabaérgica durante la infección con rabia. La Calbindina (CB) y la Parvoalbúmina (PV) son proteínas de enlace de calcio que regulan el efecto de este ion en el metabolismo intracelular. Son marcadores de células gabaérgicas y la infección con rabia causa la pérdida de la inmunorreactividad a CB, pero el incremento de PV, en las diferentes regiones del sistema nervioso central de ratón. Sin embargo, en un estudio reciente en el cerebelo de ratones infectados no se evidenció pérdida de inmunorreactividad a CB, apartándose de la tendencia observada. En este estudio se evaluó a mayor profundidad el efecto de la infección con el virus de la rabia en el cerebelo de ratones estableciendo su influencia sobre la expresión de CB y PV a nivel de transcritos y de proteínas, dada la importancia de estas proteínas en la fisiología de las poblaciones neuronales del cerebelo. Se inocularon ratones de 4 semanas, por vía intramuscular, en las extremidades posteriores, con virus fijo CVS (Challenge Virus Standard) y ratones controles con solución vehículo. Cuando los animales alcanzaron la fase final de la enfermedad, se dividieron en tres grupos de acuerdo con los procedimientos a llevar a cabo: Inmunohistoquímica (IHQ), western blot y RT-qPCR. La IHQ mostró marcación positiva para PV en las células de Purkinje y células estrelladas/en cesta y CB exclusivamente para las células de Purkinje. No hubo diferencias evidentes en la distribución e inmunorreactividad entre ratones infectados y control. Se observó una disminución en el nivel de transcritos para CB y PV, así como la disminución del nivel de proteínas para CB y PV en ratones infectados, aunque para este último no fue significativo. Estos resultados sugieren que la infección por el virus de la rabia promueve una alteración en la homeostasis del calcio en el cerebelo lo cual, además, puede afectar la neurotransmisión del GABA.spa
dc.description.abstractRabies virus (RABV) is frequently transmitted from a bite or scratch of an infected animal, mostly dogs. Clinical signs of rabies, in vitro and in vivo models suggest a possible involvement of the gabaergic system during rabies virus infection. Calbindin (CB) and Parvalbumin (PV) are calcium binding proteins which regulate the effect of calcium ions on intracellular metabolism, both are markers of gabaergic cells and rabies infection caused loss of immunostaining for CB but increase of inmunoreactivity of PV in different regions from central nervous system (CNS) in mice. However, in a recent study in cerebellum from infected mice, there were not changes in CB immunostaining compared with controls, this result disagree with previous studies. Here, we evaluated deeply the effect of rabies virus infection in mice cerebellum stablishing its influence in CB and PV expression at transcript and protein levels, due to the importance of both in cerebellum physiology. Four-week-old mice were inoculated intramuscularly in the hindlimb with rabies fixed virus CVS (Challenge Virus Strain) and other mice only with vehicle. When the mice reached the terminal state of illness, the groups were divided according to the procedures: immunohistochemistry (IHC), western blot, RT-qPCR. The IHC showed clear PV-stain for Purkinje cells, and stellate/basket cells and CB stain only in Purkinje cells. No evidence of differences between CB and PV distribution in infected and control mice was found. CB and PV transcript levels were decreased and CB and PV protein levels were decreased in infected mice as well, however non-significant for PV protein levels. These results suggest that RABV infection promotes alterations in calcium ion homeostasis which could affect GABA neurotransmission.spa
dc.description.additionalMagister en Neurociencias. Línea de Investigación: Vulnerabilidad selectiva neuronalspa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipCOLCIENCIASspa
dc.format.extent121spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75905
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesSchnell MJ, McGettigan JP, Wirblich C, Papaneri A. The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol. 2010;8(1):51–61.spa
dc.relation.referencesHemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013;12(5):498–513.spa
dc.relation.referencesDietzschold B, Li J, Faber M, Schnell M. Concepts in the pathogenesis of rabies. Future Virol. 2008;3(5):481–90.spa
dc.relation.referencesJackson AC. Update on rabies diagnosis and treatment. Curr Infect Dis Rep. 2009;11(4):296–301.spa
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JE, Pimienta HJ. Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice. Int J Neurosci. 2005 Oct 7;115(10):1375–82.spa
dc.relation.referencesMonroy-Gómez J, Torres-Fernández O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomédica. 2013;33(4):564–73.spa
dc.relation.referencesLamprea N, Torres-Fernández O. Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colomb Med. 2008;39(3 SUPPL.):7–13.spa
dc.relation.referencesTorres-Fernández O, Daza NA, Santamaría G, Hurtado AP, Monroy-Gómez J. Entry of Rabies Virus in the Olfactory Bulb of Mice and Effect of Infection on Cell Markers of Neurons and Astrocytes. Int J Morphol. 2018;36(2):670–6.spa
dc.relation.referencesRengifo AC. Inmunorreactividad de neuronas gabaergicas y glutamatergicas en la corteza y el cerebelo de ratones infectados con rabia. Universidad Nacional de Colombia; 2012.spa
dc.relation.referencesRengifo AC, Torres-Fernández O. Cambios en los sistemas de neurotransmisión excitador e inhibitorio en el cerebelo de ratones infectados con virus de la rabia. Biomedica. 2013;33 (Supl.2:80–1.spa
dc.relation.referencesRengifo AC, Torres-Fernández O. Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia. Biomedica. 2007;27(4):548–58.spa
dc.relation.referencesNaizaque JR, Torres-Fernández. O. La inmunorreactividad a calbindina en células de purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud. 2016 Dec 4;15(2):9–19.spa
dc.relation.referencesSchwaller B. Cytosolic Ca 2+ Buffers. Cold Spring Harb Perspect Biol. 2010;2(a004051):1–20.spa
dc.relation.referencesVigot R, Kado RT, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol. 2004 Feb;142(1):69–75.spa
dc.relation.referencesSchwaller B, Meyer M, Schiffmann S. “New” functions for “old” proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum. 2002;1:241–58.spa
dc.relation.referencesLadogana A, Bouzamondo E, Pocchiari M, Tsiang H. Modification of tritiated γ-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol. 1994;75(3):623–7.spa
dc.relation.referencesIsaacson RL. The neuronal and behavioural mechanism of aggression and their alteration by rabies and other viral infections. In: Thraenhart O, Koprowski H, Bogel HK SP, editor. Progress in rabies control. Rochester: Wells Medical; 1989. p. 17–23.spa
dc.relation.referencesKhizhniakova T, LP G, Promyslov M. The influence of rabies immunization of gamma-aminobutyric acid metbolism in the brains of animals. Biull EKSP Biol Med. 1976;81:184–5.spa
dc.relation.referencesFooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet. 2014;384(9951):1389–99.spa
dc.relation.referencesWHO | Rabies [Internet]. WHO. World Health Organization; 2016 [cited 2016 Mar 15]. Available from: http://www.who.int/mediacentre/factsheets/fs099/en/spa
dc.relation.referencesHampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the Global Burden of Endemic Canine Rabies. PLoS Negl Trop Dis. 2015;9(4):1–20.spa
dc.relation.referencesVigilato MAN, Clavijo A, Knobl T, Silva HMT, Cosivi O, Schneider MC, et al. Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean. Philos Trans R Soc Lond B Biol Sci [Internet]. 2013;368(1623):20120143. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23798691spa
dc.relation.referencesSchneider MC, Aguilera XP, da Silva Junior JB, Ault SK, Najera P, Martinez J, et al. Elimination of neglected diseases in Latin America and the Caribbean: A mapping of selected diseases. PLoS Negl Trop Dis. 2011;5(2).spa
dc.relation.referencesSchneider M, Belotto A, Adé M, Leanes L, Correa E, Tamayo H, et al. Situación epidemiológica de la rabia humana en America Latina en 2004. Bol Epidemiológico/OPS. 2005;26(1):1–16.spa
dc.relation.referencesSchneider MC, Romijn PC, Uieda W, Tamayo H, da Silva DF, Belotto A, et al. Rabies transmitted by vampire bats to humans: an emerging zoonotic disease in Latin America? Rev Panam Salud Publica. 2009 Mar;25(3):260–9.spa
dc.relation.referencesJackson AC. Rabies pathogenesis update. Rev Pan-Amazônica Saúde [Internet]. 2010;1(1):81–6. Available from: http://scielo.iec.pa.gov.br/scielo.php?script=sci_arttext&pid=S2176-62232010000100023&lng=pt&nrm=iso&tlng=esspa
dc.relation.referencesJackson AC. Rabies. Neurol Clin. 2008;26(3):717–26.spa
dc.relation.referencesWallace RM, Gilbert A, Slate D, Chipman R, Singh A, Cassie Wedd, et al. Right place, wrong species: a 20-year review of rabies virus cross species transmission among terrestrial mammals in the United States. Markotter W, editor. PLoS One. 2014 Oct 8;9(10):e107539.spa
dc.relation.referencesKaur M, Garg R, Singh S, Bhatnagar R. Rabies vaccines: where do we stand, where are we heading? Expert Rev Vaccines. 2014;13(2014):1–13.spa
dc.relation.referencesErtl HCJ. Novel vaccines to human rabies. PLoS Negl Trop Dis. 2009;3(9).spa
dc.relation.referencesJackson A. Update on rabies. Res Rep Trop Med [Internet]. 2011 Feb;2:31. Available from: http://www.dovepress.com/update-on-rabies-peer-reviewed-article-RRTMspa
dc.relation.referencesJackson AC. Advances in virus research 79: research advances in rabies. In: Jackson AC, editor. Advances in virus research 79: research advances in rabies [Internet]. 2011. p. 372. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1473309912701019spa
dc.relation.referencesHanlon CA, Orciari LA. Rabies Virus. In: Munir M, editor. Mononegaviruses of Veterinary Importance: Pathobiology and Molecular Diagnosis [Internet]. CAB intern. 2013. p. 209–23. Available from: http://www.els.netspa
dc.relation.referencesLafon M. Rabies virus receptors. J Neurovirol [Internet]. 2005 Feb;11(1):82–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15804965spa
dc.relation.referencesDavis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol [Internet]. 2015;2(1):451–71. Available from: http://www.annualreviews.org/doi/10.1146/annurev-virology-100114-055157spa
dc.relation.referencesFu ZF. Rabies and rabies research: past, present and future. Vaccine. 1997;15(96):s20–4.spa
dc.relation.referencesScott CA, Rossiter JP, Andrew RD, Jackson AC. Structural Abnormalities in Neurons Are Sufficient To Explain the Clinical Disease and Fatal Outcome of Experimental Rabies in Yellow Fluorescent Protein-Expressing Transgenic Mice. J Virol [Internet]. 2008;82(1):513–21. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.01677-07spa
dc.relation.referencesSuja MS, Mahadevan A, Madhusudana SN, Shankar SK. Role of Apoptosis in Rabies Viral Encephalitis: A Comparative Study in Mice, Canine, and Human Brain with a Review of Literature. Patholog Res Int [Internet]. 2011;2011:1–13. Available from: http://www.hindawi.com/journals/pri/2011/374286/spa
dc.relation.referencesFernandes ER, de Andrade HF, Lancellotti CLP, Quaresma JAS, Demachki S, da Costa Vasconcelos PF, et al. In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus. Virus Res [Internet]. 2011;156(1–2):121–6. Available from: http://dx.doi.org/10.1016/j.virusres.2011.01.006spa
dc.relation.referencesCeccaldi PE, Fillion MP, Ermine A, Tsiang H, Fillion G. Rabies virus selectively alters 5-HT1 receptors subtypes in rat brain. Eur J Pharmacol Mol Pharmacol. 1993;245(2):129–38.spa
dc.relation.referencesJackson AC. Cholinergic system in experimental rabies in mice. Acta Virol. 1993;37(6):502–8.spa
dc.relation.referencesJackson AC, Kammouni W, Zherebitskaya E, Fernyhough P. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol. 2010;84(9):4697–705.spa
dc.relation.referencesDhingra V, Li X, Liu Y, Fu ZF. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol. 2007;13(772651700):107–17.spa
dc.relation.referencesProsniak M, Hooper DC, Dietzschold B, Koprowski H. Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci U S A [Internet]. 2001 Feb 27;98(5):2758–63. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.051630298spa
dc.relation.referencesFarahtaj F, Zandi F, Khalaj V, Biglari P, Fayaz A, Vaziri B. Proteomics analysis of human brain tissue infected by street rabies virus. Mol Biol Rep. 2013;40(11):6443–50.spa
dc.relation.referencesThanomsridetchai N, Singhto N, Tepsumethanon V, Shuangshoti S, Wacharapluesadee S, Sinchaikul S, et al. Comprehensive proteome analysis of hippocampus, brainstem, and spinal cord from paralytic and furious dogs naturally infected with rabies. J Proteome Res. 2011;10(11):4911–24.spa
dc.relation.referencesAndressen C, Blmcke I, Celio MR. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res [Internet]. 1993 Feb;271(2):181–208. Available from: http://link.springer.com/10.1007/BF00318606spa
dc.relation.referencesSchwaller B. The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci. 2009;66(2):275–300.spa
dc.relation.referencesChin D, Means AR. Calmodulin : a prototypical calcium sensor. Trends Cell Biol. 2000;8924(00):322–8.spa
dc.relation.referencesSayer RJ. Intracellular Ca2+ handling. Adv Exp Med Biol [Internet]. 2002;513:183–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12575821spa
dc.relation.referencesHof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, et al. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental patterns. J Chem Neuroanat. 1999;16(2):77–116.spa
dc.relation.referencesScotti AL, Nitsch C. Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity. Anat Embryol (Berl). 1992;185(2):163–7.spa
dc.relation.referencesBastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum [Internet]. 2003;2(4):242–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14964684spa
dc.relation.referencesWasserman RH, Taylor A. N. W and A. N. Vitamin D3-Induced Calcium-Binding Protein in Chick Intestinal Mucosa. Science (80- ). 1966;152(3723):791–3.spa
dc.relation.referencesBaimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303–8.spa
dc.relation.referencesBaimbridge KG, Miller JJ, Parkes CO. Calcium-binding protein distribution in the rat brain. Brain Res [Internet]. 1982 May 13;239(2):519–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7093699spa
dc.relation.referencesBae EJ, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, et al. Comparison of immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the striatum between young, adult and aged mice, rats and gerbils. Neurochem Res [Internet]. 2015 Apr 13;40(4):864–72. Available from: http://link.springer.com/10.1007/s11064-015-1537-xspa
dc.relation.referencesIacopino AM, Rhoten WB, Christakos S. Calcium binding protein ( calbindin-D28k ) gene expression in the developing and aging mouse cerebellum. Mol Brain Res. 1990;8:283–90.spa
dc.relation.referencesFreund TF, Buzsáki G, Leon A, Baimbridge KG, Somogyi P. Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res. 1990;83(1):55–66.spa
dc.relation.referencesToyoshima T, Yamagami S, Ahmed BY, Jin L, Miyamoto O, Itano T, et al. Expression of calbindin-D28K by reactive astrocytes in gerbil hippocampus after ischaemia. Neuroreport [Internet]. 1996 Sep 2;7(13):2087–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8930964spa
dc.relation.referencesBerman NEJ, Yong C, Raghavan R, Raymond LA, Joag S V., Narayan O, et al. Neurovirulent simian immunodeficiency virus induces calbindin-D-28K in astrocytes. Mol Chem Neuropathol. 1998;34(1):25–38.spa
dc.relation.referencesHeizmann CW. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia [Internet]. 1984;40(9):910–21. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=6205895&retmode=ref&cmd=prlinks%5Cnfile:///Users/balarampooja/Library/Application Support/Papers2/Articles/1984/Heizmann/Experientia 1984 Heizmann.pdf%5Cnpapers2://publication/uuid/5spa
dc.relation.referencesMattson MP, Cheng B, Baldwin SA, Smith‐Swintosky VL, Keller J, Geddes JW, et al. Brain injury and tumor necrosis factors induce calbindin D‐28K in astrocytes: Evidence for a cytoprotective response. J Neurosci Res. 1995;42(3):357–70.spa
dc.relation.referencesRami A, Rabié A, Thomasset M, Krieglstein J. Calbindin-D 28K and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res [Internet]. 1992;31(1):89–95. Available from: http://doi.wiley.com/10.1002/jnr.490310113spa
dc.relation.referencesDeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat [Internet]. 1997 Dec;14(1):1–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9498163spa
dc.relation.referencesHashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The Number of Parvalbumin-Expressing Interneurons Is Decreased in the Medial Prefrontal Cortex in Autism. Cereb Cortex. 2017;27(3):1931–43.spa
dc.relation.referencesVoogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21(9):370–5.spa
dc.relation.referencesSultan F, Glickstein M. The cerebellum : Comparative and animal studies. 2007;168–76.spa
dc.relation.referencesGowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. 2007;(13):268–79.spa
dc.relation.referencesChami M, Oulès B, Paterlini-Bréchot P. Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta - Mol Cell Res. 2006;1763(11):1344–62.spa
dc.relation.referencesMasliah E, Ge N, Achim CL, Wiley CA. Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol [Internet]. 1995 May;54(3):350–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7745434spa
dc.relation.referencesEisenman LM, Brothers R, Tran MH, Kean RB, Dickson GM, Dietzschold B, et al. Neonatal Borna disease virus infection in the rat causes a loss of Purkinje cells in the cerebellum. J Neurovirol [Internet]. 1999;5(2):181–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10321982spa
dc.relation.referencesHeimrich B, Hesse DA, Wu YJ, Schmid S, Schwemmle M. Borna disease virus infection alters synaptic input of neurons in rat dentate gyrus. Cell Tissue Res [Internet]. 2009;338(2):179–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19806365spa
dc.relation.referencesJackson AC. Diabolical effects of rabies encephalitis. J Neurovirol [Internet]. 2016 Feb 21;22(1):8–13. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.01677-07spa
dc.relation.referencesSantamaría G, Rengifo AC, Torres-Fernández O. Expresión de glutamato en la coteza cerebral de ratones normales y ratones infectados con el virus de la rabia. Rev Cient Unincca. 2010;15(2):67–81.spa
dc.relation.referencesMonroy-Gómez J, Santamaría G, Torres-Fernández O. Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses. 2018;10(3).spa
dc.relation.referencesCaterine Rengifo A, Jazmin Umbarila V, Janeth Garzón M, Torres-Fernández O. Differential Effect of the Route of Inoculation of Rabies Virus on NeuN Immunoreactivity in the Cerebral Cortex of Mice Efecto Diferencial de la Vía de Inoculación del Virus de la Rabia sobre la Inmunorreactividad de NeuN en la Corteza Cerebral de Ratones. Int J Morphol. 2016;34(4):1362–8.spa
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JE. Alteraciones de la morfología dendrítica neuronal en la corteza cerebral de ratones infectados con rabia : un estudio con la técnica de Golgi. Biomédica. 2007;27(605):605–13.spa
dc.relation.referencesHurtado AP, Caterine Rengifo A, Torres-Fernández O. Immunohistochemical Overexpression of MAP-2 in the Cerebral Cortex of Rabies-Infected Mice. Int J Morphol. 2015;33(2):465–70.spa
dc.relation.referencesTorres-Fernández O, Monroy-Gómez JA, Sarmiento Lacera LE. Ultraestructura dendrítica en neuronas piramidales de ratones inoculados con virus de la rabia. Biosalud [Internet]. 2016;15(1):9–16. Available from: http://200.21.104.25/biosalud/downloads/Biosalud15(1)_2.pdfspa
dc.relation.referencesCelio MR. Parvalbumin in most gamma-aminobutyric acid- containing neurons of the rat cerebral cortex. Science (80- ). 1986;231(4741):995–7.spa
dc.relation.referencesKristensson K, Dasturt DK, Manghanit DK, Tsiangs H, Bentivoglio M. Review Rabies : interactions between neurons and viruses . A review of the history of Negri inclusion bodies. Neuropathol Appl Neurobiol. 1996;22:179–87.spa
dc.relation.referencesTangchai P. Central nervous system lesions in human rabies. A study of twenty- four cases. J Med Assoc Thail [Internet]. 1970;53(7):471–88. Available from: http://www.cabdirect.org/spa
dc.relation.referencesTsiang H. Pathophysiology of Rabies Virus Infection of the Nervous System. Adv Virus Res [Internet]. 1993;42:375–412. Available from: http://www.sciencedirect.com/science/article/pii/S0065352708600901spa
dc.relation.referencesMurphy FA. Rabies Pathogenesis. Arch Virol. 1977;297:279–97.spa
dc.relation.referencesLamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica [Internet]. 2010 Mar 1;30(1):146. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-77956124349&partnerID=tZOtx3y1spa
dc.relation.referencesRuiz-Villalba A, Mattiotti A, Gunst Q, Cano-Ballesteros S, Van Den Hoff M, Ruijter JM. Reference genes for gene expression studies in the mouse heart. Sci Rep. 2017;7(1):1–9.spa
dc.relation.referencesZeng H, Li D, Qin X, Chen P, Tan H, Zeng X, et al. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug Metab Dispos. 2016;44(3):337–42.spa
dc.relation.referencesZhang Y, Shen B, Zhang D, Wang Y, Tang Z, Ni N, et al. miR-29a regulates the proliferation and differentiation of retinal progenitors by targeting Rbm8a. Oncotarget. 2017;8(19):31993–2008.spa
dc.relation.referencesHellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. Open Access Method qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. 2007; Available from: http://genomebiology.com/2007/8/2/R19spa
dc.relation.referencesSchmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc [Internet]. 2008;3(6):1101–8. Available from: http://www.nature.com/doifinder/10.1038/nprot.2008.73spa
dc.relation.referencesRahman MM, Govindarajulu Z. A modification of the test of Shapiro and Wilk for normality. J Appl Stat [Internet]. 1997;24(2):219–36. Available from: http://www.tandfonline.com/doi/abs/10.1080/02664769723828spa
dc.relation.referencesHartinger J, Folz T, Institut P-E-. Klinische Endpunkte bei der Tollwutimpfstoffpriifung. ALTEX. 2001;18(1):37–40.spa
dc.relation.referencesPark CH, Kondo M, Inoue S, Noguchi A, Oyamada T, Yoshikawa H, et al. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J Vet Med Sci. 2006;68(6):589–95.spa
dc.relation.referencesKojima D, Park C, Tsujikawa S, Kohara K, Hatai H. Lesions of the Central Nervous System Induced by Intracerebral Inoculation of BALB / c Mice with Rabies Virus ( CVS-11 ). J Vet Med Sci. 2010;72(8):1011–1016.spa
dc.relation.referencesJackson a C, Reimer DL. Pathogenesis of experimental rabies in mice: an immunohistochemical study. Acta Neuropathol. 1989;78(2):159–65.spa
dc.relation.referencesRuigrok TJH, van Touw S, Coulon P. Caveats in Transneuronal Tracing with Unmodified Rabies Virus: An Evaluation of Aberrant Results Using a Nearly Perfect Tracing Technique. Front Neural Circuits. 2016;spa
dc.relation.referencesBentivoglio M. The organization of the direct cerbellospinal projections. Prog Brain Res. 1982;57:279–91.spa
dc.relation.referencesVerdes JM, de SantAna FJF, Sabalsagaray MJ, Okada K, Calliari A, Morana JA, et al. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural Rabies virus-infected cattle. J Vet Diagnostic Investig [Internet]. 2016; Available from: http://vdi.sagepub.com/lookup/doi/10.1177/1040638716644485spa
dc.relation.referencesJackson a C, Rossiter JP. Apoptosis plays an important role in experimental rabies virus infection. J Virol. 1997;71(7):5603–7.spa
dc.relation.referencesJackson AC, Randle E, Lawrance G, Rossiter JP. Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol. 2008;14(5):368–75.spa
dc.relation.referencesGe Y, Belcher SM, Pierce DR, Light KE. Detection of Purkinje cell loss following drug exposures to developing rat pups using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for calbindin-D28k mRNA expression. Toxicol Lett. 2004;150(3):325–34.spa
dc.relation.referencesIacopino a M, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A. 1990;87(11):4078–82.spa
dc.relation.referencesPei J-C, Liu C-M, Lai W-S. Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci. 2014;spa
dc.relation.referencesLee JC, Chung YH, Cho YJ, Kim J, Kim N, Cha CI, et al. Immunohistochemical study on the expre ssion of calcium binding proteins ( calbindin-D28k , calretinin , and parvalbumin ) in the cerebellum of the nNOS knock-out ( - / - ) mice. Anat Cell Biol. 2010;43:64–71.spa
dc.relation.referencesBäurle J, Hoshi M, Grüsser-Cornehls U. Dependence of Parvalbumin Expression on Purkinje Cell Input in the Deep Cerebellar Nuclei. J Comp Neurol. 1998;392(October 1997):499–514.spa
dc.relation.referencesKishimoto J, Tsuchiya T, Cox H, Emson PC, Nakayama Y. Age-related Changes of Calbindin-D28k , Calretinin , and Parvalbumin mRNAs in the Hamster Brain. 1998;19(1):77–82.spa
dc.relation.referencesDove LS, Nahm S, Murchison D, Abbott LC, Griffith WH, Leonard S, et al. Altered Calcium Homeostasis in Cerebellar Purkinje Cells of Leaner Mutant Mice. J Neurophysiol. 2000;84(1):513–24.spa
dc.relation.referencesArnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A. 1997;94(16):8842–7.spa
dc.relation.referencesSoghomonian J, Zhang K, Reprakash S, Blatt GJ. Decreased Parvalbumin mRNA Levels in Cerebellar Purkinje Cells in Autism. 2017;1–10.spa
dc.relation.referencesLanoue AC, Blatt GJ, Soghomonian J-J. Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson′s disease. Brain Res [Internet]. 2013 Sep;1531(4):37–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006899313010123spa
dc.relation.referencesZhang M, Xu Y, Duan M, Song Y, Sun L, Li Y, et al. Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol. 2012;spa
dc.relation.referencesEilers J, Garaschuk O. Ataxia and Altered Dendritic Calcium Signaling in Mice Carrying a Targeted Null mutation of the calbindin D28k gene. Proc Natl Acad. 1997;(May 2015).spa
dc.relation.referencesBarski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, et al. Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor Coordination. J Neurosci [Internet]. 2003;23(8):3469–77. Available from: http://www.jneurosci.org/content/23/8/3469%5Cnhttp://www.jneurosci.org/content/23/8/3469.full.pdf%5Cnhttp://www.jneurosci.org/content/23/8/3469.long%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/12716955spa
dc.relation.referencesUbol S, Kasisith J, Pitidhammabhorn D, Tepsumethanol V. Screening of Pro-Apoptotic Genes Upregulated in an Experimental Street Rabies Virus-Infected Neonatal Mouse Brain. 2005;49(5):423–31.spa
dc.relation.referencesGruol DL. Regulation of Calcium in the Cerebellum. In: Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann JD, Shen Y, editors. Essentials of Cerebellum and Cerebellar Disorders. Springer; 2016. p. 335–9.spa
dc.relation.referencesAiraksinen M, Eilers J, Garaschuk O, Thoenen H, Konnerth A MM. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad. 1997;94(February):1488–93.spa
dc.relation.referencesCollin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B, et al. Developmental Changes in Parvalbumin Regulate Presynaptic Ca 2 ϩ Signaling. J Neurosci. 2005;25(1):96–107.spa
dc.relation.referencesVreugdenhil M, Jefferys JGR, Celio MR, Schwaller B. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol. 2003;89(3):1414–22.spa
dc.relation.referencesFu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol. 2005;11(1):101–6.spa
dc.relation.referencesCaillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci U S A. 2000;97(24):13372–7.spa
dc.relation.referencesDove LS, Nahm S-S, Murchison D, Abbott LC, Griffith WH. Altered Calcium Homeostasis in Cerebellar Purkinje Cells of Leaner Mutant Mice. J Neurophysiol. 2017;84(1):513–24.spa
dc.relation.referencesKammouni W, Wood H, Saleh A, Appolinario CM, Fernyhough P, Jackson AC. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress. J Neurovirol. 2015;370–82.spa
dc.relation.referencesGholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, et al. Mitochondrial dysfunction in lyssavirus-induced apoptosis. J Virol. 2008;82(10):4774–84.spa
dc.relation.referencesTian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics. 2004;3(10):960–9.spa
dc.relation.referencesVogel C, De Sousa Abreu R, Ko D, Le SY, Shapiro BA, Burns SC, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol [Internet]. 2010;6(400):1–9. Available from: http://dx.doi.org/10.1038/msb.2010.59spa
dc.relation.referencesWilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature [Internet]. 2014;509(7502):582–7. Available from: http://dx.doi.org/10.1038/nature13319spa
dc.relation.referencesMata J, Marguerat S, Bähler J. Post-transcriptional control of gene expression: A genome-wide perspective. Trends Biochem Sci. 2005;30(9):506–14.spa
dc.relation.referencesHabel K. Habel test for potency. In: Meslin FX, Kaplan M KH, editor. Laboratory Techniques In Rabies [Internet]. 4th ed. 1996. p. 369–71. Available from: http://apps.who.int//iris/handle/10665/38286spa
dc.relation.referencesSpijker S. Chapter 2 Dissection of Rodent Brain Regions. In: Neuroproteomics. 2011. p. 13–26.spa
dc.relation.referencesKuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One. 2018;spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcMedicina y saludspa
dc.subject.proposalRabiaspa
dc.subject.proposalRabieseng
dc.subject.proposalCalbindineng
dc.subject.proposalCalbindinaspa
dc.subject.proposalParvalbumineng
dc.subject.proposalParvoalbúminaspa
dc.subject.proposalcerebelospa
dc.subject.proposalcerebellumeng
dc.subject.proposalcélula de Purkinjespa
dc.subject.proposalPurkinje celleng
dc.subject.proposalcélulas en cesta/estrelladas.spa
dc.subject.proposalstellate/basket cells.eng
dc.titleEstudio del efecto de la infección con virus de la rabia sobre la expresión de calbindina y parvoalbúmina en el cerebelo de ratonesspa
dc.title.alternativeEffect of rabies virus infection on the expression of calbindin and parvalbumin on mouse cerebellum: raising awareness to integrate neuroscience and virologyspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049628174.2019.pdf
Tamaño:
2.01 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: