Evaluación del potencial de valorización de residuos de papa como sustrato para la producción de biobutanol: una revisión crítica
dc.contributor.advisor | Guerrero Fajardo, Carlos Alberto | spa |
dc.contributor.author | Serrano Echeverry, Víctor Alejandro | spa |
dc.contributor.orcid | Serrano Echeverry, Víctor [0009000408095478] | spa |
dc.contributor.researchgroup | Aprovechamiento de los Recursos Naturales | spa |
dc.date.accessioned | 2024-10-18T14:41:57Z | |
dc.date.available | 2024-10-18T14:41:57Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | Este proyecto de tesis tuvo como objetivo evaluar la potencialidad de aprovechamiento de residuos de papa como materia prima para la producción de biobutanol, específicamente de los tubérculos que no pueden comercializarse debido a que no cumplen con los parámetros de calidad. Para esto, se llevó a cabo una caracterización del material para determinar su composición, incluyendo contenido de humedad, lignina, hemicelulosa y celulosa. Posteriormente, se extrajo el almidón de los residuos, obteniendo un rendimiento del 14,96% p/p. Se realizó una hidrólisis enzimática usando amilasa y amiloglucosidasa sobre el almidón, y se maximizó mediante pruebas cinéticas, evaluando la producción de azúcares reductores con el método DNS, determinando así las condiciones óptimas de temperatura y pH. La glucosa alcanzó un rendimiento de 47,78% p/p, y fue cuantificada mediante HPLC-IR. Se realizó también un ensayo preliminar de fermentación ABE, monitoreando el crecimiento y el pH del medio. Finalmente, se realizó una revisión de literatura buscando identificar tendencias con respecto a la producción biológica de solventes, a fin de encontrar un marco de acción con el cual encauzar una posterior investigación experimental (Texto tomado de la fuente). | spa |
dc.description.abstract | This thesis project aimed to evaluate the potential of using potato waste as raw material to produce biobutanol, specifically from tubers that cannot be marketed due to not meeting quality standards. To achieve this, a characterization of the material was carried out to determine its composition, including moisture content, lignin, hemicellulose, and cellulose. Subsequently, starch was extracted from the waste, yielding 14,96% w/w on a wet basis. Enzymatic hydrolysis was performed using amylase and amyloglucosidase on the starch, and was maximized through kinetic tests, evaluating the production of reducing sugars with the DNS method, thereby determining the optimal temperature and pH conditions. Glucose reached a yield of 47,78% w/w and was quantified by HPLC-IR. A preliminary ABE fermentation assay was also conducted, monitoring the growth and pH of the medium. Finally, a literature review was carried out to identify trends in the biological production of solvents, to find a framework for guiding further experimental research. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.description.researcharea | Procesos Sostenibles | spa |
dc.format.extent | 190 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86990 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005 | spa |
dc.relation.references | Agriculture of the Republic of Belarus. (2021). Statistical data books. https://www.belstat.gov.by/en/ofitsialnaya-statistika/publications/statistical-publications-data-books-bulletins/public_compilation/index_39780/ | spa |
dc.relation.references | Ahokas, M., Välimaa, A.-L., Lötjönen, T., Kankaala, A., Taskila, S., & Virtanen, E. (2014). Resource assessment for potato biorefinery : side stream potential in Northern Ostrobothnia. Agronomy Research, 12(3), 695–704. | spa |
dc.relation.references | Al-Shorgani, N. K. N., Shukor, H., Abdeshahian, P., Kalil, M. S., Yusoff, W. M. W., & Hamid, A. A. (2018). Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi Journal of Biological Sciences, 25(7), 1308–1321. https://doi.org/10.1016/j.sjbs.2016.02.017 | spa |
dc.relation.references | Al-Tabib, A. I., Al-Shorgani, N. K. N., Hasan, H. A., Hamid, A. A., & Kalil, M. S. (2018). Assessment of the detoxification of palm kernel cake hydrolysate for butanol production by Clostridium acetobutylicum YM1. Biocatalysis and Agricultural Biotechnology, 13, 105–109. https://doi.org/10.1016/j.bcab.2017.11.015 | spa |
dc.relation.references | Al-Weshahy, A., & Rao, V. A. (2012). Potato Peel as a Source of Important Phytochemical Antioxidant Nutraceuticals and Their Role in Human Health - A Review. In Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health. InTech. https://doi.org/10.5772/30459 | spa |
dc.relation.references | Amiri, H., & Karimi, K. (2019). Biobutanol Production. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts (pp. 109–133). Elsevier. https://doi.org/10.1016/B978-0-12-817941-3.00006-1 | spa |
dc.relation.references | Anna, & Wypych, G. (2014). Fatty acid methyl esters. In Databook of Green Solvents (pp. 135–203). Elsevier. https://doi.org/10.1016/B978-1-895198-82-9.50009-9 | spa |
dc.relation.references | Anukam, A., Mamphweli, S., Okoh, O., & Reddy, P. (2017). Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse. Bioengineering, 4(4), 22. https://doi.org/10.3390/bioengineering4010022 | spa |
dc.relation.references | Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., & Okoh, O. (2016). Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 775–801. https://doi.org/10.1016/j.rser.2016.08.046 | spa |
dc.relation.references | Arapoglou, D., Varzakas, Th., Vlyssides, A., & Israilides, C. (2010). Ethanol production from potato peel waste (PPW). Waste Management, 30(10), 1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017 | spa |
dc.relation.references | Askari, S., Siddiqui, A., & Kaleem, M. (2017). Potato peel mediated improvement in organic substances of vigna mungo growing under copper stress. Journal of Pharmacognosy and Phytochemistry, 6(4), 1373–1378. | spa |
dc.relation.references | Bajpai, P. (2024). Use of cellulose, hemicellulose and generated sugars and lignin. In Microorganisms and Enzymes for Lignocellulosic Biorefineries (pp. 173–202). Elsevier. https://doi.org/10.1016/B978-0-443-21492-9.00018-5 | spa |
dc.relation.references | Bang, J., Hwang, C. H., Ahn, J. H., Lee, J. A., & Lee, S. Y. (2020). Escherichia coli is engineered to grow on CO2 and formic acid. Nature Microbiology, 5(12), 1459–1463. https://doi.org/10.1038/s41564-020-00793-9 | spa |
dc.relation.references | Basu, P. (2018). Biomass Characteristics. In Biomass Gasification, Pyrolysis and Torrefaction (pp. 49–91). Elsevier. https://doi.org/10.1016/B978-0-12-812992-0.00003-0 | spa |
dc.relation.references | Bay, K., Wanko, H., & Ulrich, J. (2006). Absorption of Volatile Organic Compounds in Biodiesel. Chemical Engineering Research and Design, 84(1), 22–28. https://doi.org/10.1205/cherd.05050 | spa |
dc.relation.references | Behera, S., Konde, K., & Patil, S. (2023). Methods for bio-butanol production and purification. In Advances and Developments in Biobutanol Production (pp. 279–301). Elsevier. https://doi.org/10.1016/B978-0-323-91178-8.00004-7 | spa |
dc.relation.references | BeMiller, J. N. (2019). Starches. In Carbohydrate Chemistry for Food Scientists (pp. 159–189). Elsevier. https://doi.org/10.1016/B978-0-12-812069-9.00006-6 | spa |
dc.relation.references | Bird, M., Keitel, C., & Meredith, W. (2016). Analysis of biochars for C, H, N, O and S by elemental analyser. In Biochar: a guide to analytical methods. | spa |
dc.relation.references | Boutsika, A., Tanou, G., Xanthopoulou, A., Samiotaki, M., Nianiou-Obeidat, I., Ganopoulos, I., & Mellidou, I. (2022). Insights and advances in integrating multi-omic approaches for potato crop improvement. Scientia Horticulturae, 305, 111387. https://doi.org/10.1016/j.scienta.2022.111387 | spa |
dc.relation.references | Bradley, T., Ling-Chin, J., Maga, D., Speranza, L. G., & Roskilly, A. P. (2022). Life Cycle Assessment (LCA) of Algae Biofuels. In Comprehensive Renewable Energy (pp. 387–404). Elsevier. https://doi.org/10.1016/B978-0-12-819727-1.00067-4 | spa |
dc.relation.references | Brasca, M., Morandi, S., & Silvetti, T. (2022). Clostridium spp. In Encyclopedia of Dairy Sciences (pp. 431–438). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22989-2 | spa |
dc.relation.references | Buehler, E. A., & Mesbah, A. (2016). Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture. PLOS ONE, 11(8), e0158243. https://doi.org/10.1371/journal.pone.0158243 | spa |
dc.relation.references | Butler, D. P., van der Maarel, M. J. E. C., & Steeneken, P. A. M. (2004). Starch-acting enzymes. In Starch in Food (pp. 128–155). Elsevier. https://doi.org/10.1533/9781855739093.1.128 | spa |
dc.relation.references | Butler, V., & Tetlow, I. J. (2024). Starch synthesis in plants. In Starch in Food (pp. 1–33). Elsevier. https://doi.org/10.1016/B978-0-323-96102-8.00009-7 | spa |
dc.relation.references | Cai, D., Chen, C., Zhang, C., Wang, Y., Wen, H., & Qin, P. (2017). Fed-batch fermentation with intermittent gas stripping using immobilized Clostridium acetobutylicum for biobutanol production from corn stover bagasse hydrolysate. Biochemical Engineering Journal, 125, 18–22. https://doi.org/10.1016/j.bej.2017.05.006 | spa |
dc.relation.references | Cai, D., Chen, H., Chen, C., Hu, S., Wang, Y., Chang, Z., Miao, Q., Qin, P., Wang, Z., Wang, J., & Tan, T. (2016). Gas stripping–pervaporation hybrid process for energy-saving product recovery from acetone–butanol–ethanol (ABE) fermentation broth. Chemical Engineering Journal, 287, 1–10. https://doi.org/10.1016/j.cej.2015.11.024 | spa |
dc.relation.references | Cai, D., Wen, J., Wu, Y., Su, C., Bi, H., Wang, Y., Jiang, Y., Qin, P., Tan, T., & Zhang, C. (2024). Surfactant-assisted dilute ethylenediamine fractionation of corn stover for technical lignin valorization and biobutanol production. Bioresource Technology, 394, 130231. https://doi.org/10.1016/j.biortech.2023.130231 | spa |
dc.relation.references | Cai, D., Wen, J., Zhuang, Y., Huang, T., Si, Z., Qin, P., & Chen, H. (2022). Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Separation and Purification Technology, 298, 121244. https://doi.org/10.1016/j.seppur.2022.121244 | spa |
dc.relation.references | Carrié, M., Velly, H., Ben-Chaabane, F., & Gabelle, J.-C. (2022). Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochemical Engineering Journal, 180, 108355. https://doi.org/10.1016/j.bej.2022.108355 | spa |
dc.relation.references | Castro, Y. A., Ellis, J. T., Miller, C. D., & Sims, R. C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy, 140, 14–19. https://doi.org/10.1016/j.apenergy.2014.11.045 | spa |
dc.relation.references | Cereda, M. P. (2024). Starch hydrolysis: physical, acid, and enzymatic processes. In Starch Industries: Processes and Innovative Products in Food and Non-Food Uses (pp. 75–113). Elsevier. https://doi.org/10.1016/B978-0-323-90842-9.00016-9 | spa |
dc.relation.references | Chacón, S. J., Matias, G., Vieira, C. F. dos S., Ezeji, T. C., Maciel Filho, R., & Mariano, A. P. (2020). Enabling butanol production from crude sugarcane bagasse hemicellulose hydrolysate by batch-feeding it into molasses fermentation. Industrial Crops and Products, 155, 112837. https://doi.org/10.1016/j.indcrop.2020.112837 | spa |
dc.relation.references | Chadni, M., Moussa, M., Athès, V., Allais, F., & Ioannou, I. (2023). Membrane contactors-assisted liquid-liquid extraction of biomolecules from biorefinery liquid streams: A case study on organic acids. Separation and Purification Technology, 317, 123927. https://doi.org/10.1016/j.seppur.2023.123927 | spa |
dc.relation.references | Chandgude, V., Välisalmi, T., Linnekoski, J., Granström, T., Pratto, B., Eerikäinen, T., Jurgens, G., & Bankar, S. (2021). Reducing agents assisted fed-batch fermentation to enhance ABE yields. Energy Conversion and Management, 227, 113627. https://doi.org/10.1016/j.enconman.2020.113627 | spa |
dc.relation.references | Chang, W., Hou, W., Xu, M., & Yang, S. (2022). High‐rate continuous n ‐butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single‐pass fibrous‐bed bioreactor. Biotechnology and Bioengineering, 119(12), 3474–3486. https://doi.org/10.1002/bit.28223 | spa |
dc.relation.references | Chatzifragkou, A., Vrcic, N., & Hernandez-Hernandez, O. (2021). Analysis of carbohydrates and glycoconjugates in food by CE and HPLC. In Carbohydrate Analysis by Modern Liquid Phase Separation Techniques (pp. 815–842). Elsevier. https://doi.org/10.1016/B978-0-12-821447-3.00011-1 | spa |
dc.relation.references | Chen, C.-W., Yu, W.-S., Zheng, Z.-X., Cheng, Y.-S., & Li, S.-Y. (2023). Waste valorization through acetone-butanol-ethanol (ABE) fermentation. Journal of the Taiwan Institute of Chemical Engineers, 105280. https://doi.org/10.1016/j.jtice.2023.105280 | spa |
dc.relation.references | Chen, J., Razdan, N., Field, T., Liu, D. E., Wolski, P., Cao, X., Prausnitz, J. M., & Radke, C. J. (2017). Recovery of dilute aqueous butanol by membrane vapor extraction with dodecane or mesitylene. Journal of Membrane Science, 528, 103–111. https://doi.org/10.1016/j.memsci.2017.01.018 | spa |
dc.relation.references | Chen, W., Oldfield, T. L., Cinelli, P., Righetti, M. C., & Holden, N. M. (2020). Hybrid life cycle assessment of potato pulp valorisation in biocomposite production. Journal of Cleaner Production, 269, 122366. https://doi.org/10.1016/j.jclepro.2020.122366 | spa |
dc.relation.references | Chen, X., Li, Y., Li, X., Shi, J., & Liu, L. (2024). Exploring the potential of multiple lignocellulosic biomass as a feedstock for biobutanol production. Fuel, 357, 129697. https://doi.org/10.1016/j.fuel.2023.129697 | spa |
dc.relation.references | Cheng, C., Bao, T., & Yang, S.-T. (2019). Engineering Clostridium for improved solvent production: recent progress and perspective. Applied Microbiology and Biotechnology, 103(14), 5549–5566. https://doi.org/10.1007/s00253-019-09916-7 | spa |
dc.relation.references | Cheng, H.-H., Whang, L.-M., Chan, K.-C., Chung, M.-C., Wu, S.-H., Liu, C.-P., Tien, S.-Y., Chen, S.-Y., Chang, J.-S., & Lee, W.-J. (2015). Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresource Technology, 184, 379–385. https://doi.org/10.1016/j.biortech.2014.11.017 | spa |
dc.relation.references | Chiang, K.-Y., Chien, K.-L., & Lu, C.-H. (2012). Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy. Applied Energy, 100, 164–171. https://doi.org/10.1016/j.apenergy.2012.06.063 | spa |
dc.relation.references | Chinwatpaiboon, P., Savarajara, A., & Luengnaruemitchai, A. (2023). Enzymatic hydrolysate of water hyacinth with NaOH pretreatment for biobutanol production via ABE fermentation by Clostridium beijerinckii JCM 8026. Biomass and Bioenergy, 173, 106782. https://doi.org/10.1016/j.biombioe.2023.106782 | spa |
dc.relation.references | Cui, Y., Yang, K.-L., & Zhou, K. (2021). Using Co-Culture to Functionalize Clostridium Fermentation. Trends in Biotechnology, 39(9), 914–926. https://doi.org/10.1016/j.tibtech.2020.11.016 | spa |
dc.relation.references | Czekała, W., Bartnikowska, S., Dach, J., Janczak, D., Smurzyńska, A., Kozłowski, K., Bugała, A., Lewicki, A., Cieślik, M., Typańska, D., & Mazurkiewicz, J. (2018). The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122. https://doi.org/10.1016/j.energy.2018.06.090 | spa |
dc.relation.references | DANE. (2020). Encuesta Nacional Agropecuaria - ENA - 2016. https://microdatos.dane.gov.co/index.php/catalog/671 | spa |
dc.relation.references | de Brito Bezerra, P. K. S., de Azevedo, J. C. S., & dos Santos, E. S. (2023). Biobutanol production by batch and fed-batch fermentations from the green coconut husk hydrolysate using C. beijerinckii ATCC 10132. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04537-7 | spa |
dc.relation.references | del Amo-Mateos, E., López-Linares, J. C., García-Cubero, M. T., Lucas, S., & Coca, M. (2022). Green biorefinery for sugar beet pulp valorisation: Microwave hydrothermal processing for pectooligosaccharides recovery and biobutanol production. Industrial Crops and Products, 184, 115060. https://doi.org/10.1016/j.indcrop.2022.115060 | spa |
dc.relation.references | Devi, A., Singh, A., Bajar, S., Pant, D., & Din, Z. U. (2021). Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. Journal of Environmental Chemical Engineering, 9(5), 105798. https://doi.org/10.1016/j.jece.2021.105798 | spa |
dc.relation.references | Dinesha, P., Mohan, S., & Kumar, S. (2022). Experimental investigation of SI engine characteristics using Acetone-Butanol-Ethanol (ABE) – Gasoline blends and optimization using Particle Swarm Optimization. International Journal of Hydrogen Energy, 47(8), 5692–5708. https://doi.org/10.1016/j.ijhydene.2021.11.119 | spa |
dc.relation.references | Ding, J., Luo, H., Xie, F., Wang, H., Xu, M., & Shi, Z. (2018). Electron receptor addition enhances butanol synthesis in ABE fermentation by Clostridium acetobutylicum. Bioresource Technology, 247, 1201–1205. https://doi.org/10.1016/j.biortech.2017.09.010 | spa |
dc.relation.references | do Nascimento, B. F., de Araujo, C. M. B., do Nascimento, A. C., da Silva, F. L. H., de Melo, D. J. N., Jaguaribe, E. F., Lima Cavalcanti, J. V. F., & da Motta Sobrinho, M. A. (2021). Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaí waste. Journal of Hazardous Materials, 409, 124494. https://doi.org/10.1016/j.jhazmat.2020.124494 | spa |
dc.relation.references | Dolan, J. W. (2009). Calibration Curves, Part IV: Choosing the Appropriate Model. LCGC North America. https://www.chromatographyonline.com/view/calibration-curves-part-iv-choosing-appropriate-model | spa |
dc.relation.references | dos Santos, T. C., Gomes, D. P. P., Bonomo, R. C. F., & Franco, M. (2012). Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chemistry, 133(4), 1299–1304. https://doi.org/10.1016/j.foodchem.2011.11.115 | spa |
dc.relation.references | Dou, J., Chandgude, V., Vuorinen, T., Bankar, S., Hietala, S., & Lê, H. Q. (2021). Enhancing Biobutanol Production from biomass willow by pre-removal of water extracts or bark. Journal of Cleaner Production, 327, 129432. https://doi.org/10.1016/j.jclepro.2021.129432 | spa |
dc.relation.references | Du, J., Hong, Y., Cheng, L., Gu, Z., Li, Z., & Li, C. (2021). Enzyme-assisted fermentation improves the antimicrobial activity and drying properties of potato pulp. LWT, 141, 110874. https://doi.org/10.1016/j.lwt.2021.110874 | spa |
dc.relation.references | Du, R., Guo, W., Shen, Y., Dai, J., Zhang, H., Fu, M., & Wang, X. (2023). In situ assay of the reducing sugars in hydrophilic natural deep eutectic solvents by a modified DNS method. Journal of Molecular Liquids, 385, 122286. https://doi.org/10.1016/j.molliq.2023.122286 | spa |
dc.relation.references | Ebrahimi, E., Amiri, H., & Asadollahi, M. A. (2020). Enhanced aerobic conversion of starch to butanol by a symbiotic system of Clostridium acetobutylicum and Nesterenkonia. Biochemical Engineering Journal, 164, 107752. https://doi.org/10.1016/j.bej.2020.107752 | spa |
dc.relation.references | Ebrahimi, E., Amiri, H., Asadollahi, M. A., & Shojaosadati, S. A. (2020). Efficient butanol production under aerobic conditions by coculture of Clostridium acetobutylicum and Nesterenkonia sp. strain F. Biotechnology and Bioengineering, 117(2), 392–405. https://doi.org/10.1002/bit.27221 | spa |
dc.relation.references | El-Dalatony, M. M., Basak, B., Kurade, M. B., Roh, H.-S., Jang, M., & Jeon, B.-H. (2022). Effect of sonication pretreatment on hydrogen and acetone-butanol-ethanol coproduction from Chlamydomonas mexicana biomass using Clostridium acetobutylicum. Journal of Environmental Chemical Engineering, 10(3), 107600. https://doi.org/10.1016/j.jece.2022.107600 | spa |
dc.relation.references | Elkatory, M. R., Hassaan, M. A., & El Nemr, A. (2022). Algal biomass for bioethanol and biobutanol production. In Handbook of Algal Biofuels (pp. 251–279). Elsevier. https://doi.org/10.1016/B978-0-12-823764-9.00014-5 | spa |
dc.relation.references | Farag, S. (2011). Improving citric acid production from some carbohydrates by-products using irradiated Aspergillus niger. Ain Shams University. | spa |
dc.relation.references | Farmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236–244. https://doi.org/10.1016/j.biortech.2018.09.017 | spa |
dc.relation.references | FEDEPAPA. (2020). Boletin regional número 05. | spa |
dc.relation.references | FEDEPAPA. (2021). Informe trimestral de coyuntura económica del subsector papa III trimestre 2020. https://fedepapa.com/wp-content/uploads/2021/09/BOLETIN-ECONOMICO-N°13.pdf | spa |
dc.relation.references | Fernbach, A., & Halford, E. (1912). Fermentation process for the production of acetone and higher alcohols from starch, sugars, and other carbohydrate material (Patent US1044368A). | spa |
dc.relation.references | Ferreira dos Santos Vieira, C., Duzi Sia, A., Maugeri Filho, F., Maciel Filho, R., & Pinto Mariano, A. (2022). Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. Bioresource Technology, 344, 126313. https://doi.org/10.1016/j.biortech.2021.126313 | spa |
dc.relation.references | Fiayaz, A., & Dahman, Y. (2023). Greener approach to the comprehensive utilization of algal biomass and oil using novel Clostridial fusants and bio-based solvents. Engineering Microbiology, 3(2), 100068. https://doi.org/10.1016/j.engmic.2022.100068 | spa |
dc.relation.references | Franco-Lara, L., Varela-Correa, C. A., Guerrero-Carranza, G. P., & Quintero-Vargas, J. C. (2023). Association of phytoplasmas with a new disease of potato crops in cundinamarca, Colombia. Crop Protection, 163, 106123. https://doi.org/10.1016/j.cropro.2022.106123 | spa |
dc.relation.references | Gad, S. C. (2014). Diesel Fuel. In Encyclopedia of Toxicology (pp. 115–118). https://doi.org/https://doi.org/10.1016/B978-0-12-386454-3.00837-X | spa |
dc.relation.references | Gao, R., Xiong, L., Wang, M., Peng, F., Zhang, H., & Chen, X. (2022). Production of acetone-butanol-ethanol and lipids from sugarcane molasses via coupled fermentation by Clostridium acetobutylicum and oleaginous yeasts. Industrial Crops and Products, 185, 115131. https://doi.org/10.1016/j.indcrop.2022.115131 | spa |
dc.relation.references | Geng, Q., Park, C.-H., & Janni, K. (1995). Uptake of organic acids byClostridium acetobutylicum B18 under controlled pH and reduced butanol inhibition. Korean Journal of Chemical Engineering, 12(3), 378–383. https://doi.org/10.1007/BF02705772 | spa |
dc.relation.references | Gika, H., Kaklamanos, G., Manesiotis, P., & Theodoridis, G. (2016). Chromatography: High-Performance Liquid Chromatography. In Encyclopedia of Food and Health (pp. 93–99). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00159-8 | spa |
dc.relation.references | Göktas, M., Balki, M. K., Sayin, C., & Canakci, M. (2020). An evaluation of the use of alcohol fuels in SI engines in terms of performance, emission and combustion characteristics: A review. Fuel, 286(2021). https://doi.org/https://doi.org/10.1016/j.fuel.2020.119425 | spa |
dc.relation.references | Gottumukkala, L. D., Parameswaran, B., Valappil, S. K., Mathiyazhakan, K., Pandey, A., & Sukumaran, R. K. (2013). Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresource Technology, 145, 182–187. https://doi.org/10.1016/j.biortech.2013.01.046 | spa |
dc.relation.references | Grob, K. (2013). GAS CHROMATOGRAPHY | Online Coupled HPLC–GC. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.00217-1 | spa |
dc.relation.references | Guo, H., Zhao, Y., Chang, J.-S., & Lee, D.-J. (2022). Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresource Technology, 361, 127666. https://doi.org/10.1016/j.biortech.2022.127666 | spa |
dc.relation.references | Guo, Z., Yu, X., Du, Y., & Wang, T. (2022). Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection. Fuel, 316, 123363. https://doi.org/10.1016/j.fuel.2022.123363 | spa |
dc.relation.references | Gupta, S., Mondal, P., Borugadda, V. B., & Dalai, A. K. (2021). Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review. Environmental Technology & Innovation, 21, 101276. https://doi.org/10.1016/j.eti.2020.101276 | spa |
dc.relation.references | Halder, P., & Azad, A. K. (2019). Recent trends and challenges of algal biofuel conversion technologies. In Advanced Biofuels (pp. 167–179). Elsevier. https://doi.org/10.1016/B978-0-08-102791-2.00007-6 | spa |
dc.relation.references | Hashim, S. O. (2019). Starch-Modifying Enzymes (pp. 221–244). https://doi.org/10.1007/10_2019_91 | spa |
dc.relation.references | Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143 | spa |
dc.relation.references | Huang, H., Singh, V., & Qureshi, N. (2015). Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnology for Biofuels, 8(1), 147. https://doi.org/10.1186/s13068-015-0332-x | spa |
dc.relation.references | Ijaz, N., Bashir, S., Ikram, A., Zafar, A., Ul Ain, H. B., Ambreen, S., Ahmad, M., Almalki, R. S., Khalid, M. Z., Khalid, W., & Madilo, F. K. (2024). Valorization of potato peel: a sustainable eco-friendly approach. CyTA - Journal of Food, 22(1). https://doi.org/10.1080/19476337.2024.2306951 | spa |
dc.relation.references | Iyyappan, J., Bharathiraja, B., Varjani, S., PraveenKumar, R., & Muthu Kumar, S. (2022). Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. Bioresource Technology, 346, 126405. https://doi.org/10.1016/j.biortech.2021.126405 | spa |
dc.relation.references | Jain, S., & Sharma, M. P. (2010). Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 14(2), 667–678. https://doi.org/10.1016/j.rser.2009.10.011 | spa |
dc.relation.references | Jawad, M., Wang, H., Wu, Y., Rehman, O., Song, Y., Xu, R., Zhang, Q., Gao, H., & Xue, C. (2024). Lignocellulosic ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii co-culture using non-detoxified corn stover hydrolysate. Journal of Biotechnology, 379, 1–5. https://doi.org/10.1016/j.jbiotec.2023.11.002 | spa |
dc.relation.references | Jeong, S.-Y., Trinh, L. T. P., Lee, H.-J., & Lee, J.-W. (2014). Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresource Technology, 152, 444–449. https://doi.org/10.1016/j.biortech.2013.11.029 | spa |
dc.relation.references | Jiang, Y., Lv, Y., Wu, R., Sui, Y., Chen, C., Xin, F., Zhou, J., Dong, W., & Jiang, M. (2019). Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresource Technology Reports, 7, 100245. https://doi.org/10.1016/j.biteb.2019.100245 | spa |
dc.relation.references | Jiang, Y., Xu, B., Yan, W., Liu, J., Dong, W., Zhou, J., Zhang, W., Xin, F., & Jiang, M. (2021). Inhibitors tolerance analysis of Clostridium sp. strain LJ4 and its application for butanol production from corncob hydrolysate through electrochemical detoxification. Biochemical Engineering Journal, 167, 107891. https://doi.org/10.1016/j.bej.2020.107891 | spa |
dc.relation.references | Jin, Q., An, Z., Damle, A., Poe, N., Wu, J., Wang, H., Wang, Z., & Huang, H. (2020). High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation. ACS Sustainable Chemistry & Engineering, 8(26), 9822–9832. https://doi.org/10.1021/acssuschemeng.0c02529 | spa |
dc.relation.references | JONES, D. T. (2014). THE STRATEGIC IMPORTANCE OF BUTANOL FOR JAPAN DURING WWII: A CASE STUDY OF THE BUTANOL FERMENTATION PROCESS IN TAIWAN AND JAPAN. In Systems Biology of Clostridium (pp. 220–272). IMPERIAL COLLEGE PRESS. https://doi.org/10.1142/9781783264414_0009 | spa |
dc.relation.references | Kalivas, J. H., & Brown, S. D. (2020). Calibration Methodologies. In Comprehensive Chemometrics (pp. 213–247). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14666-9 | spa |
dc.relation.references | Karthick, C., & Nanthagopal, K. (2021). A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Conversion and Management, 239, 114219. https://doi.org/10.1016/j.enconman.2021.114219 | spa |
dc.relation.references | Kaur, L., Kaur, R., & Singh, J. (2024). Chemical modification of starch. In Starch in Food (pp. 97–117). Elsevier. https://doi.org/10.1016/B978-0-323-96102-8.00015-2 | spa |
dc.relation.references | Kaur, L., Singh, J., & Liu, Q. (2007). Starch – A Potential Biomaterial for Biomedical Applications. In Nanomaterials and Nanosystems for Biomedical Applications (pp. 83–98). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6289-6_5 | spa |
dc.relation.references | Khamaiseh, E. I. S., Hamid, A. Abd., Yusoff, W. M. W., & Kalil, M. S. (2013). Effect of Some Environmental Parameters on Biobutanol Production by Clostridium acetobutylicum NCIMB 13357 in Date Fruit Medium. Pakistan Journal of Biological Sciences, 16(20), 1145–1151. https://doi.org/10.3923/pjbs.2013.1145.1151 | spa |
dc.relation.references | Khunchit, K., Nitayavardhana, S., Ramaraj, R., Ponnusamy, V. K., & Unpaprom, Y. (2020). Liquid hot water extraction as a chemical-free pretreatment approach for biobutanol production from Cassia fistula pods. Fuel, 279, 118393. https://doi.org/10.1016/j.fuel.2020.118393 | spa |
dc.relation.references | Kongjan, P., Tohlang, N., Khaonuan, S., Cheirsilp, B., & Jariyaboon, R. (2022). Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. Biochemical Engineering Journal, 182, 108437. https://doi.org/10.1016/j.bej.2022.108437 | spa |
dc.relation.references | Kot, A. M., Pobiega, K., Piwowarek, K., Kieliszek, M., Błażejak, S., Gniewosz, M., & Lipińska, E. (2020). Biotechnological Methods of Management and Utilization of Potato Industry Waste—a Review. Potato Research, 63(3), 431–447. https://doi.org/10.1007/s11540-019-09449-6 | spa |
dc.relation.references | Krishnasamy, A., & Bukkarapu, K. R. (2021). A comprehensive review of biodiesel property prediction models for combustion modeling studies. Fuel, 302, 121085. https://doi.org/10.1016/j.fuel.2021.121085 | spa |
dc.relation.references | Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7. https://doi.org/10.1186/s40643-017-0137-9 | spa |
dc.relation.references | Kumar, K., Jadhav, S. M., & Moholkar, V. S. (2024). Acetone-Butanol-Ethanol (ABE) fermentation with clostridial co-cultures for enhanced biobutanol production. Process Safety and Environmental Protection, 185, 277–285. https://doi.org/10.1016/j.psep.2024.03.027 | spa |
dc.relation.references | Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055 | spa |
dc.relation.references | Kushkevych, I. (2023). Bacterial Chemical Composition and Functional Cell Structures. In Bacterial Physiology and Biochemistry (pp. 23–90). Elsevier. https://doi.org/10.1016/B978-0-443-18738-4.50002-4 | spa |
dc.relation.references | Kushwaha, A., Goswami, S., Sultana, A., Katiyar, N. K., Athar, M., Dubey, L., Goswami, L., Hussain, C. M., & Kareem, M. A. (2022). Waste biomass to biobutanol: recent trends and advancements. In Waste-to-Energy Approaches Towards Zero Waste (pp. 393–423). Elsevier. https://doi.org/10.1016/B978-0-323-85387-3.00004-5 | spa |
dc.relation.references | Kyzas, G. Z., & Deliyanni, E. A. (2015). Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chemical Engineering Research and Design, 97, 135–144. https://doi.org/10.1016/j.cherd.2014.08.020 | spa |
dc.relation.references | LaCourse, W. R. (2017). HPLC Instrumentation. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11123-0 | spa |
dc.relation.references | LaCourse, W. R., & LaCourse, M. E. (2023). General instrumentation in HPLC. In Liquid Chromatography (pp. 61–73). Elsevier. https://doi.org/10.1016/B978-0-323-99968-7.00009-6 | spa |
dc.relation.references | Liang, S., & McDonald, A. G. (2014). Chemical and Thermal Characterization of Potato Peel Waste and Its Fermentation Residue as Potential Resources for Biofuel and Bioproducts Production. Journal of Agricultural and Food Chemistry, 62(33), 8421–8429. https://doi.org/10.1021/jf5019406 | spa |
dc.relation.references | Limb, B. J., Smith, J. P., Simske, S. J., & Quinn, J. C. (2024). Estimating geographic origins of corn and soybean biomass for biofuel production: A detailed dataset. Data in Brief, 54, 110291. https://doi.org/10.1016/j.dib.2024.110291 | spa |
dc.relation.references | Lin, L., Zhang, Z., Tang, H., Guo, Y., Zhou, B., Liu, Y., Huang, R., Du, L., & Pang, H. (2021). Enhanced sucrose fermentation by introduction of heterologous sucrose transporter and invertase into Clostridium beijerinckii for acetone–butanol–ethanol production. Royal Society Open Science, 8(9). https://doi.org/10.1098/rsos.201858 | spa |
dc.relation.references | Lin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. Fermentation, 9(9), 847. https://doi.org/10.3390/fermentation9090847 | spa |
dc.relation.references | Liu, C.-G., Qin, J.-C., & Lin, Y.-H. (2017). Fermentation and Redox Potential. In Fermentation Processes. InTech. https://doi.org/10.5772/64640 | spa |
dc.relation.references | Liu, J., Zhou, W., Fan, S., Qiu, B., Wang, Y., Xiao, Z., Tang, X., Wang, W., Jian, S., & Qin, Y. (2019). Cell degeneration and performance decline of immobilized Clostridium acetobutylicum on bagasse during hydrogen and butanol production by repeated cycle fermentation. International Journal of Hydrogen Energy, 44(48), 26204–26212. https://doi.org/10.1016/j.ijhydene.2019.08.102 | spa |
dc.relation.references | Liu, L., Wang, Y., Wang, N., Chen, X., Li, B., Shi, J., & Li, X. (2021). Process optimization of acetone-butanol-ethanol fermentation integrated with pervaporation for enhanced butanol production. Biochemical Engineering Journal, 173, 108070. https://doi.org/10.1016/j.bej.2021.108070 | spa |
dc.relation.references | Liu, Y., Yuan, Y., Ramya, G., Mohan Singh, S., Thuy Lan Chi, N., Pugazhendhi, A., Xia, C., & Mathimani, T. (2022a). A review on the promising fuel of the future – Biobutanol; the hindrances and future perspectives. Fuel, 327, 125166. https://doi.org/10.1016/j.fuel.2022.125166 | spa |
dc.relation.references | Liu, Y., Yuan, Y., Ramya, G., Mohan Singh, S., Thuy Lan Chi, N., Pugazhendhi, A., Xia, C., & Mathimani, T. (2022b). A review on the promising fuel of the future – Biobutanol; the hindrances and future perspectives. Fuel, 327, 125166. https://doi.org/10.1016/j.fuel.2022.125166 | spa |
dc.relation.references | Llano, T., Quijorna, N., & Coz, A. (2017). Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects. Energies, 10(3), 348. https://doi.org/10.3390/en10030348 | spa |
dc.relation.references | López-Linares, J. C., García-Cubero, M. T., Coca, M., & Lucas, S. (2021). Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment. Bioresource Technology, 320, 124348. https://doi.org/10.1016/j.biortech.2020.124348 | spa |
dc.relation.references | López-Linares, J., Garcia-Cubero, M. T., Lucas, S., & Coca, M. (2020). Integral valorization of cellulosic and hemicellulosic sugars for biobutanol production: ABE fermentation of the whole slurry from microwave pretreated brewer’s spent grain. Biomass and Bioenergy, 135, 1–12. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105524 | spa |
dc.relation.references | Lu, K.-M., Chiang, Y.-S., Wang, Y.-R., Chein, R.-Y., & Li, S.-Y. (2016). Performance of fed-batch acetone–butanol–ethanol (ABE) fermentation coupled with the integrated in situ extraction-gas stripping process and the fractional condensation. Journal of the Taiwan Institute of Chemical Engineers, 60, 119–123. https://doi.org/10.1016/j.jtice.2015.10.044 | spa |
dc.relation.references | Luo, H., Shi, Y., Xie, F., Zhou, T., Gao, L., Yang, R., & Wang, Z. (2023). Efficient co-production of fermentable sugars and biobutanol from corn stover based on a novel butyric acid pretreatment strategy. Industrial Crops and Products, 191, 115976. https://doi.org/10.1016/j.indcrop.2022.115976 | spa |
dc.relation.references | Luo, H., Zeng, Q., Han, S., Wang, Z., Dong, Q., Bi, Y., & Zhao, Y. (2017). High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World Journal of Microbiology and Biotechnology, 33(4), 76. https://doi.org/10.1007/s11274-017-2246-1 | spa |
dc.relation.references | Mai, S., Wang, G., Wu, P., Gu, C., Liu, H., Zhang, J., & Wang, G. (2017). Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Biotechnology and Applied Biochemistry, 64(5), 719–726. https://doi.org/10.1002/bab.1522 | spa |
dc.relation.references | Maiti, S., Gallastegui, G., Suresh, G., Brar, S. K., LeBihan, Y., Drogui, P., Buelna, G., Ramirez, A. A., Verma, M., & Soccol, C. R. (2017). Two-phase partitioning detoxification to improve biobutanol production from brewery industry wastes. Chemical Engineering Journal, 330, 1100–1108. https://doi.org/10.1016/j.cej.2017.08.035 | spa |
dc.relation.references | Malik, K., Sharma, P., Yang, Y., Zhang, P., Zhang, L., Xing, X., Yue, J., Song, Z., Nan, L., Yujun, S., El-Dalatony, M. M., Salama, E.-S., & Li, X. (2022). Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches. Industrial Crops and Products, 188, 115569. https://doi.org/10.1016/j.indcrop.2022.115569 | spa |
dc.relation.references | Manna, M. S., Mazumder, A., Bhowmick, T. K., & Gayen, K. (2023). Economic analysis of biobutanol recovery from the acetone-butanol-ethanol fermentation using molasses. Journal of the Indian Chemical Society, 100(1), 100809. https://doi.org/10.1016/j.jics.2022.100809 | spa |
dc.relation.references | Mao, B., Li, G., Wang, M., Deng, X., Gao, K., & Zhang, B. (2024). Using nitrogen starvation and excess phosphorus for two-stage algae cultivation to improve butanol production of lipid-extracted algae. Renewable Energy, 220, 119652. https://doi.org/10.1016/j.renene.2023.119652 | spa |
dc.relation.references | Mao, B., & Zhang, B. (2023). Combining ABE fermentation and anaerobic digestion to treat with lipid extracted algae for enhanced bioenergy production. Science of The Total Environment, 875, 162691. https://doi.org/10.1016/j.scitotenv.2023.162691 | spa |
dc.relation.references | Mayer, F., & Hillebrandt, J.-O. (1997). Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product. Applied Microbiology and Biotechnology, 48, 435–440. | spa |
dc.relation.references | Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030 | spa |
dc.relation.references | Mishra, N., & Dubey, A. (2017). Biobutanol: An Alternative Biofuel. In Advances in Biofeedstocks and Biofuels (pp. 155–175). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119117551.ch6 | spa |
dc.relation.references | Mittal, N., Leslie Athony, R., Bansal, R., & Ramesh, K. C. (2013). Study of performance and emission characteristics of a partially coated LHR SI engine blended with n-butanol and gasoline. Alexandria Engineering Journal, 53(3), 285–293. https://doi.org/https://doi.org/10.1016/j.aej.2013.06.005 | spa |
dc.relation.references | Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003 | spa |
dc.relation.references | Moldoveanu, S. C., & David, V. (2017). Basic Information Regarding the HPLC Techniques. In Selection of the HPLC Method in Chemical Analysis (pp. 87–187). Elsevier. https://doi.org/10.1016/B978-0-12-803684-6.00004-4 | spa |
dc.relation.references | Moldoveanu, S., & David, V. (2022a). Overview of HPLC instrumentation and its use. In Essentials in Modern HPLC Separations (pp. 21–61). Elsevier. https://doi.org/10.1016/B978-0-323-91177-1.00015-6 | spa |
dc.relation.references | Moldoveanu, S., & David, V. (2022b). Parameters for the characterization of HPLC separation. In Essentials in Modern HPLC Separations (pp. 63–105). Elsevier. https://doi.org/10.1016/B978-0-323-91177-1.00004-1 | spa |
dc.relation.references | Montoya, D., Ar�valo, C., Gonzales, S., Aristizabal, F., & Schwarz, W. (2001). New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. Journal of Industrial Microbiology and Biotechnology, 27(5), 329–335. https://doi.org/10.1038/sj.jim.7000193 | spa |
dc.relation.references | Moon, H. G., Jang, Y., Cho, C., Lee, J., Binkley, R., & Lee, S. Y. (2016a). One hundred years of clostridial butanol fermentation. January. https://doi.org/10.1093/femsle/fnw001 | spa |
dc.relation.references | Nanda, S., Dalai, A. K., & Kozinski, J. A. (2014). Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Science & Engineering, 2(3), 138–148. https://doi.org/10.1002/ese3.41 | spa |
dc.relation.references | Nandhini, R., Rameshwar, S. S., Sivaprakash, B., Rajamohan, N., & Monisha, R. S. (2023). Carbon neutrality in biobutanol production through microbial fermentation technique from lignocellulosic materials – A biorefinery approach. Journal of Cleaner Production, 413, 137470. https://doi.org/10.1016/j.jclepro.2023.137470 | spa |
dc.relation.references | Narchonai, G., Arutselvan, C., LewisOscar, F., & Thajuddin, N. (2020). Enhancing starch accumulation/production in Chlorococcum humicola through sulphur limitation and 2,4- D treatment for butanol production. Biotechnology Reports, 28, e00528. https://doi.org/10.1016/j.btre.2020.e00528 | spa |
dc.relation.references | Nguyen, N.-P.-T., Raynaud, C., Meynial-Salles, I., & Soucaille, P. (2018). Reviving the Weizmann process for commercial n-butanol production. Nature Communications, 9(1), 3682. https://doi.org/10.1038/s41467-018-05661-z | spa |
dc.relation.references | Niglio, S., Marzocchella, A., & Rehmann, L. (2019). Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. Heliyon, 5(3), e01401. https://doi.org/10.1016/j.heliyon.2019.e01401 | spa |
dc.relation.references | Nogueira, C. da C., Padilha, C. E. de A., Dantas, J. M. de M., Medeiros, F. G. M. de, Guilherme, A. de A., Souza, D. F. de S., & Santos, E. S. dos. (2021). In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass. Renewable Energy, 180, 914–936. https://doi.org/10.1016/j.renene.2021.09.012 | spa |
dc.relation.references | Oliva-Rodríguez, A. G., Quintero, J., Medina-Morales, M. A., Morales-Martínez, T. K., Rodríguez-De la Garza, J. A., Moreno-Dávila, M., Aroca, G., & Rios González, L. J. (2019). Clostridium strain selection for co-culture with Bacillus subtilis for butanol production from agave hydrolysates. Bioresource Technology, 275, 410–415. https://doi.org/10.1016/j.biortech.2018.12.085 | spa |
dc.relation.references | Onay, M. (2020). Enhancing carbohydrate productivity from Nannochloropsis gaditana for bio-butanol production. Energy Reports, 6, 63–67. https://doi.org/10.1016/j.egyr.2019.08.019 | spa |
dc.relation.references | Padmanabhan, P., Sullivan, J. A., & Paliyath, G. (2016). Potatoes and Related Crops. In Encyclopedia of Food and Health (pp. 446–451). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00556-0 | spa |
dc.relation.references | Patange, V. S., Fernandez, R. J., Motla, M. U., & Mahajan, S. A. (1996). Dressing wounds with potato peel. Indian Journal of Dermatology, Venereology and Leprology, 62(5), 286–288. http://www.ncbi.nlm.nih.gov/pubmed/20948091 | spa |
dc.relation.references | Pathak, P. D., Mandavgane, S. A., Puranik, N. M., Jambhulkar, S. J., & Kulkarni, B. D. (2018). Valorization of potato peel: a biorefinery approach. Critical Reviews in Biotechnology, 38(2), 218–230. https://doi.org/10.1080/07388551.2017.1331337 | spa |
dc.relation.references | Patil, A. R., & Keswani, M. H. (1985). Bandages of boiled potato peels. Burns, 11(6), 444–445. https://doi.org/10.1016/0305-4179(85)90153-6 | spa |
dc.relation.references | Patil, R. C., Suryawanshi, P. G., Kataki, R., & Goud, V. V. (2019). Current challenges and advances in butanol production. In Sustainable Bioenergy (pp. 225–256). Elsevier. https://doi.org/10.1016/B978-0-12-817654-2.00008-3 | spa |
dc.relation.references | Pedreira, A., Vázquez, J. A., & García, M. R. (2022). Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.758237 | spa |
dc.relation.references | Phillips, E. (2020). Algal Butanol Production (pp. 33–50). https://doi.org/10.1007/978-981-32-9607-7_2 | spa |
dc.relation.references | Pinto, T., Flores-Alsina, X., Gernaey, K. V., & Junicke, H. (2021). Alone or together? A review on pure and mixed microbial cultures for butanol production. Renewable and Sustainable Energy Reviews, 147, 111244. https://doi.org/10.1016/j.rser.2021.111244 | spa |
dc.relation.references | Plaza, P. E., Coca, M., Yagüe, S. L., Gutiérrez, G., Rochón, E., & García-Cubero, M. T. (2022). Bioprocess intensification for acetone-butanol-ethanol fermentation from brewer’s spent grain: Fed-batch strategies coupled with in-situ gas stripping. Biomass and Bioenergy, 156, 106327. https://doi.org/10.1016/j.biombioe.2021.106327 | spa |
dc.relation.references | Potato News Today. (2022). FAO updates global potato statistics. https://www.potatonewstoday.com/2022/03/28/fao-updates-global-potato-statistics/ | spa |
dc.relation.references | Pratto, B., Chandgude, V., de Sousa, R., Cruz, A. J. G., & Bankar, S. (2020). Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation. Industrial Crops and Products, 148, 112265. https://doi.org/10.1016/j.indcrop.2020.112265 | spa |
dc.relation.references | Procentese, A., Raganati, F., Olivieri, G., Elena Russo, M., & Marzocchella, A. (2017). Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass and Bioenergy, 96, 172–179. https://doi.org/10.1016/j.biombioe.2016.11.015 | spa |
dc.relation.references | Qi, G., Huang, D., Wang, J., Shen, Y., & Gao, X. (2019). Enhanced butanol production from ammonium sulfite pretreated wheat straw by separate hydrolysis and fermentation and simultaneous saccharification and fermentation. Sustainable Energy Technologies and Assessments, 36, 100549. https://doi.org/10.1016/j.seta.2019.100549 | spa |
dc.relation.references | Qi, G., Xiong, L., Luo, M., Huang, Q., Huang, C., Li, H., Chen, X., & Chen, X. (2018). Solvents production from cassava by co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 6(1), 128–133. https://doi.org/10.1016/j.jece.2017.11.067 | spa |
dc.relation.references | Qureshi, N. (2017). Solvent (Acetone–Butanol: AB) Production ☆. In Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.13109-7 | spa |
dc.relation.references | Qureshi, N., & Singh, V. (2014). Process Economics of Renewable Biorefineries. In Biorefineries (pp. 237–254). Elsevier. https://doi.org/10.1016/B978-0-444-59498-3.00012-9 | spa |
dc.relation.references | Rafieyan, S., Boojari, M. A., Setayeshnia, A., Fakhroleslam, M., Sánchez-Ramírez, E., Bay, M. S., & Segovia-Hernández, J. G. (2024). Acetone-butanol-ethanol fermentation products recovery: Challenges and opportunities. Chemical Engineering Research and Design, 205, 640–664. https://doi.org/10.1016/j.cherd.2024.04.021 | spa |
dc.relation.references | Raganati, F., Procentese, A., Olivieri, G., Russo, M. E., Salatino, P., & Marzocchella, A. (2022). A novel integrated fermentation/recovery system for butanol production by Clostridium acetobutylicum. Chemical Engineering and Processing - Process Intensification, 173, 108852. https://doi.org/10.1016/j.cep.2022.108852 | spa |
dc.relation.references | Raj, T., Chandrasekhar, K., Morya, R., Kumar Pandey, A., Jung, J.-H., Kumar, D., Singhania, R. R., & Kim, S.-H. (2022). Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. Bioresource Technology, 360, 127512. https://doi.org/10.1016/j.biortech.2022.127512 | spa |
dc.relation.references | Raspolli Galletti, A. M., Antonetti, C., Fulignati, S., Licursi, D., Dell’Omo, S., Benito, P., Wilbers, E., & Heeres, H. J. (2023). Upgrading bio-butanol in the presence of copper-hydrotalcite derived mixed oxides: From batch to continuous flow catalytic process highly selective to butyl butyrate. Catalysis Today, 423, 114288. https://doi.org/10.1016/j.cattod.2023.114288 | spa |
dc.relation.references | Raud, M., Tutt, M., Olt, J., & Kikas, T. (2015). Effect of lignin content of lignocellulosic material on hydrolysis efficiency. Agronomy Research, 13(2), 405–412. | spa |
dc.relation.references | Reshma, G., Kumar, M., Mahitha, P. M., Kulkarni, N. V., Kharissova, O. V., & Kharissov, B. I. (2024). Trends in valorization of biomass to biofuels: biobutanol. In Handbook of Emerging Materials for Sustainable Energy (pp. 419–432). Elsevier. https://doi.org/10.1016/B978-0-323-96125-7.00012-5 | spa |
dc.relation.references | Rochón, E., Cortizo, G., Cabot, M. I., García Cubero, M. T., Coca, M., Ferrari, M. D., & Lareo, C. (2020). Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. Fuel, 281, 118593. https://doi.org/10.1016/j.fuel.2020.118593 | spa |
dc.relation.references | Roy, S., & Chakraborty, S. (2024). Emerging technologies for waste biomass pretreatment: pros and cons. In Processing of Biomass Waste (pp. 41–54). Elsevier. https://doi.org/10.1016/B978-0-323-95179-1.00004-9 | spa |
dc.relation.references | Saadatinavaz, F., Karimi, K., & Denayer, J. F. M. (2021). Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. Bioresource Technology, 341, 125834. https://doi.org/10.1016/j.biortech.2021.125834 | spa |
dc.relation.references | Şahin, Z., Nazım Aksu, O., & Bayram, C. (2021). The effects of n-butanol/gasoline blends and 2.5% n-butanol/gasoline blend with 9% water injection into the intake air on the SIE engine performance and exhaust emissions. Fuel, 303, 121210. https://doi.org/10.1016/j.fuel.2021.121210 | spa |
dc.relation.references | Saini, M., Chiang, C.-J., Li, S.-Y., & Chao, Y.-P. (2016). Production of biobutanol from cellulose hydrolysate by the Escherichia coli co-culture system. FEMS Microbiology Letters, 363(4), fnw008. https://doi.org/10.1093/femsle/fnw008 | spa |
dc.relation.references | Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118–129. https://doi.org/10.1016/j.tifs.2020.07.015 | spa |
dc.relation.references | Sarangi, P. K., & Nanda, S. (2018). Recent Developments and Challenges of Acetone-Butanol-Ethanol Fermentation. In Recent Advancements in Biofuels and Bioenergy Utilization (pp. 111–123). Springer Singapore. https://doi.org/10.1007/978-981-13-1307-3_5 | spa |
dc.relation.references | Sarker, T. R., Nanda, S., & Dalai, A. K. (2024). Insights on biomass pretreatment and bioconversion to bioethanol and biobutanol. In Biomass to Bioenergy (pp. 15–48). Elsevier. https://doi.org/10.1016/B978-0-443-15377-8.00018-7 | spa |
dc.relation.references | Sayin, C., & Balki, M. K. (2015). Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends. Energy, 82, 550–555. https://doi.org/10.1016/j.energy.2015.01.064 | spa |
dc.relation.references | Schultze-Jena, A., Vroon, R. C., Macleod, A. K. A., Hreggviðsson, G. Ó., Adalsteinsson, B. T., Engelen-Smit, N. P. E., de Vrije, T., Budde, M. A. W., van der Wal, H., López-Contreras, A. M., & Boon, M. A. (2022). Production of acetone, butanol, and ethanol by fermentation of Saccharina latissima: Cultivation, enzymatic hydrolysis, inhibitor removal, and fermentation. Algal Research, 62, 102618. https://doi.org/10.1016/j.algal.2021.102618 | spa |
dc.relation.references | Sepelev, I., & Galoburda, R. (2015). Industrial potato peel waste application in food production: a review. Research for Rural Development, Food Sciences, 1, 130–136. | spa |
dc.relation.references | Sharma, S., Arumugam, S. M., Kumar, S., Mahala, S., Devi, B., & Elumalai, S. (2022). Updated technologies for sugar fermentation to bioethanol. In Biomass, Biofuels, Biochemicals (pp. 95–116). Elsevier. https://doi.org/10.1016/B978-0-12-824419-7.00024-8 | spa |
dc.relation.references | Sharma, Y. C., Singh, B., & Upadhyay, S. N. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87(12), 2355–2373. https://doi.org/10.1016/j.fuel.2008.01.014 | spa |
dc.relation.references | Shukla, J., & Kar, R. (2006). Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates. World Journal of Microbiology and Biotechnology, 22(5), 417–422. https://doi.org/10.1007/s11274-005-9049-5 | spa |
dc.relation.references | Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering: Basic Concepts (2nd ed.). | spa |
dc.relation.references | Silva, D. A. da, Hansted, A. L. S., Nakashima, G. T., Padilla, E. R. D., Pereira, J. C., & Yamaji, F. M. (2021). Volatile matter values change according to the standard utilized? Research, Society and Development, 10(12), e291101220476. https://doi.org/10.33448/rsd-v10i12.20476 | spa |
dc.relation.references | Sindhu, R., Binod, P., & Pandey, A. (2017). α-Amylases. In Current Developments in Biotechnology and Bioengineering (pp. 3–24). Elsevier. https://doi.org/10.1016/B978-0-444-63662-1.00001-4 | spa |
dc.relation.references | Singh, D., Sharma, D., Soni, S. L., Sharma, S., & Kumari, D. (2019). Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel, 253, 60–71. https://doi.org/10.1016/j.fuel.2019.04.174 | spa |
dc.relation.references | Sirajunnisa, A. R., Geethalakshmi, R., Thiruvengadam, S., Mohankumar, B., Durga Devi, S., & Duraiarasan, S. (2023). Current status and perspective on algal biomass-based biobutanol production. In Advances and Developments in Biobutanol Production (pp. 303–327). Elsevier. https://doi.org/10.1016/B978-0-323-91178-8.00011-4 | spa |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples . https://www.nrel.gov/docs/gen/fy08/42623.pdf | spa |
dc.relation.references | Su, C., Cai, D., Zhang, H., Wu, Y., Jiang, Y., Liu, Y., Zhang, C., Li, C., Qin, P., & Tan, T. (2024). Pilot-scale acetone-butanol-ethanol fermentation from corn stover. Green Carbon, 2(1), 81–93. https://doi.org/10.1016/j.greenca.2024.02.004 | spa |
dc.relation.references | Su, C., Zhang, C., Wu, Y., Zhu, Q., Wen, J., Wang, Y., Zhao, J., Liu, Y., Qin, P., & Cai, D. (2022). Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover. Renewable Energy, 200, 592–600. https://doi.org/10.1016/j.renene.2022.10.008 | spa |
dc.relation.references | Sukumaran, R. K., Gottumukkala, L. D., Rajasree, K., Alex, D., & Pandey, A. (2011). Butanol Fuel from Biomass. In Biofuels (pp. 571–586). Elsevier. https://doi.org/10.1016/B978-0-12-385099-7.00026-7 | spa |
dc.relation.references | Tantray, J. A., Mansoor, S., Wani, R. F. C., & Nissa, N. U. (2023). Estimation of reducing sugar by using dinitro salicylic acid method. In Basic Life Science Methods (pp. 69–73). Elsevier. https://doi.org/10.1016/B978-0-443-19174-9.00017-9 | spa |
dc.relation.references | Taylor, P. J. (2005). Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clinical Biochemistry, 38(4), 328–334. https://doi.org/10.1016/j.clinbiochem.2004.11.007 | spa |
dc.relation.references | Tekin, N., Karatay, S. E., & Dönmez, G. (2023). Optimization studies about efficient biobutanol production from industrial tea waste by Clostridium beijerinckii. Fuel, 331, 125763. https://doi.org/10.1016/j.fuel.2022.125763 | spa |
dc.relation.references | Thakkar, K., Kachhwaha, S. S., Kodgire, P., & Srinivasan, S. (2021). Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control. Renewable and Sustainable Energy Reviews, 137, 110468. https://doi.org/10.1016/j.rser.2020.110468 | spa |
dc.relation.references | Thanapornsin, T., Laopaiboon, L., & Laopaiboon, P. (2023). Capability of immobilized Clostridium beijerinckii for batch and repeated-batch butanol fermentation from sweet sorghum stem juice in various bioreactors. Bioresource Technology Reports, 23, 101590. https://doi.org/10.1016/j.biteb.2023.101590 | spa |
dc.relation.references | Tian, Z., Zhen, X., Wang, Y., Daming, L., & Li, X. (2020). Combustion and emission characteristics of n-butanol-gasoline blends in SI direct injection gasoline engine. Renewable Energy, 146, 267–279. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.041 | spa |
dc.relation.references | Torres-Jimenez, E., Jerman, M. S., Gregorc, A., Lisec, I., Dorado, M. P., & Kegl, B. (2011). Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 90(2), 795–802. https://doi.org/10.1016/j.fuel.2010.09.045 | spa |
dc.relation.references | Tri, C. L., & Kamei, I. (2020). Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing. Bioresource Technology, 305, 123065. https://doi.org/10.1016/j.biortech.2020.123065 | spa |
dc.relation.references | Tripathi, M., Singh, R., Lal, B., Mohammad, A., Ahmad, I., Yadav, A. K., & Choi, C.-H. (2024). Fungal co-culture enabled co-fermentation of food waste for production of endoglucanase enzyme. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.05.119 | spa |
dc.relation.references | Valles, A., Álvarez-Hornos, J., Capilla, M., San-Valero, P., & Gabaldón, C. (2021). Fed-batch simultaneous saccharification and fermentation including in-situ recovery for enhanced butanol production from rice straw. Bioresource Technology, 342, 126020. https://doi.org/10.1016/j.biortech.2021.126020 | spa |
dc.relation.references | Vamsi Krishna, K., Bharathi, N., George Shiju, S., Alagesan Paari, K., & Malaviya, A. (2022). An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. Environmental Science and Pollution Research, 29(32), 47988–48019. https://doi.org/10.1007/s11356-022-20637-9 | spa |
dc.relation.references | Vannini, M., Marchese, P., Sisti, L., Saccani, A., Mu, T., Sun, H., & Celli, A. (2021). Integrated Efforts for the Valorization of Sweet Potato By-Products within a Circular Economy Concept: Biocomposites for Packaging Applications Close the Loop. Polymers, 13(7), 1048. https://doi.org/10.3390/polym13071048 | spa |
dc.relation.references | Veza, I., Muhamad Said, M. F., & Latiff, Z. A. (2021). Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass and Bioenergy, 144, 105919. https://doi.org/10.1016/j.biombioe.2020.105919 | spa |
dc.relation.references | Veza, I., Said, M. F. M., & Latiff, Z. A. (2019a). Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Processing Technology, 196, 106179. https://doi.org/10.1016/j.fuproc.2019.106179 | spa |
dc.relation.references | Veza, I., Said, M. F. M., & Latiff, Z. A. (2019b). Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Processing Technology, 196, 106179. https://doi.org/10.1016/j.fuproc.2019.106179 | spa |
dc.relation.references | Wang, A., Sun, K., Xu, R., Sun, Y., & Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. https://doi.org/10.1016/j.jclepro.2020.125385 | spa |
dc.relation.references | Wang, Y., Guo, W., Cheng, C.-L., Ho, S.-H., Chang, J.-S., & Ren, N. (2016). Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource Technology, 200, 557–564. https://doi.org/10.1016/j.biortech.2015.10.056 | spa |
dc.relation.references | Wang, Y., Ho, S.-H., Cheng, C.-L., Nagarajan, D., Guo, W.-Q., Lin, C., Li, S., Ren, N., & Chang, J.-S. (2017). Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7–14. https://doi.org/10.1016/j.biortech.2017.03.122 | spa |
dc.relation.references | Wang, Y., Ho, S.-H., Yen, H.-W., Nagarajan, D., Ren, N.-Q., Li, S., Hu, Z., Lee, D.-J., Kondo, A., & Chang, J.-S. (2017). Current advances on fermentative biobutanol production using third generation feedstock. Biotechnology Advances, 35(8), 1049–1059. https://doi.org/10.1016/j.biotechadv.2017.06.001 | spa |
dc.relation.references | Weizmann, C. (1919a). Production of acetone and alcohol, by bactebiological processes (Patent US1315585A). | spa |
dc.relation.references | Weizmann, C. (1919b). PRODUCTION OF ACETONE AND ALCOHOL BY BACTEBIOLOGTCAL PROCESSES. (Patent US1315585A). https://patents.google.com/patent/US1315585A/en?oq=Patent+1%2C315%2C585%2C+1919. | spa |
dc.relation.references | Wen, H., Chen, H., Cai, D., Gong, P., Zhang, T., Wu, Z., Gao, H., Li, Z., Qin, P., & Tan, T. (2018). Integrated in situ gas stripping–salting-out process for high-titer acetone–butanol–ethanol production from sweet sorghum bagasse. Biotechnology for Biofuels, 11(1), 134. https://doi.org/10.1186/s13068-018-1137-5 | spa |
dc.relation.references | Wen, H., Gao, H., Zhang, T., Wu, Z., Gong, P., Li, Z., Chen, H., Cai, D., Qin, P., & Tan, T. (2018). Hybrid pervaporation and salting-out for effective acetone-butanol-ethanol separation from fermentation broth. Bioresource Technology Reports, 2, 45–52. https://doi.org/10.1016/j.biteb.2018.04.005 | spa |
dc.relation.references | Wen, Z., Wu, M., Lin, Y., Yang, L., Lin, J., & Cen, P. (2014). A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii to produce solvents from alkali extracted corn cobs. Process Biochemistry, 49(11), 1941–1949. https://doi.org/10.1016/j.procbio.2014.07.009 | spa |
dc.relation.references | World Nuclear Association. (n.d.). Heat Values of Various Fuels. https://world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx | spa |
dc.relation.references | Wu, J., Dong, L., Liu, B., Xing, D., Zhou, C., Wang, Q., Wu, X., Feng, L., & Cao, G. (2020a). A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. Environmental Research, 186, 109580. https://doi.org/10.1016/j.envres.2020.109580 | spa |
dc.relation.references | Wu, J., Dong, L., Zhou, C., Liu, B., Feng, L., Wu, C., Qi, Z., & Cao, G. (2019). Developing a coculture for enhanced butanol production by Clostridium beijerinckii and Saccharomyces cerevisiae. Bioresource Technology Reports, 6, 223–228. https://doi.org/10.1016/j.biteb.2019.03.006 | spa |
dc.relation.references | Wu, Y., Wang, Z., Ma, X., & Xue, C. (2021). High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochemistry, 100, 20–25. https://doi.org/10.1016/j.procbio.2020.09.026 | spa |
dc.relation.references | Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 16, 100445. https://doi.org/10.1016/j.mtbio.2022.100445 | spa |
dc.relation.references | Xiao, H., Guo, F., Wang, R., Yang, X., Li, S., & Ruan, J. (2020). Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends. Fuel, 268, 117387. https://doi.org/10.1016/j.fuel.2020.117387 | spa |
dc.relation.references | Xie, W., Zhang, Z., Bai, S., & Wu, Y.-R. (2022). Extracellular expression of agarolytic enzymes in Clostridium sp. strain and its application for butanol production from Gelidium amansii. Bioresource Technology, 363, 127962. https://doi.org/10.1016/j.biortech.2022.127962 | spa |
dc.relation.references | Xu, G.-L., Yao, C.-D., & Rutland, C. J. (2014). Simulations of diesel–methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier–Stokes model. International Journal of Engine Research, 15(6), 751–769. https://doi.org/10.1177/1468087413516119 | spa |
dc.relation.references | Xue, C., Du, G.-Q., Sun, J.-X., Chen, L.-J., Gao, S.-S., Yu, M.-L., Yang, S.-T., & Bai, F.-W. (2014). Characterization of gas stripping and its integration with acetone–butanol–ethanol fermentation for high-efficient butanol production and recovery. Biochemical Engineering Journal, 83, 55–61. https://doi.org/10.1016/j.bej.2013.12.003 | spa |
dc.relation.references | Yang, J., Cai, D., Liu, X., Zhu, L., Zhang, C., Peng, Q., Han, Y., Liu, G., & Yang, M. (2023a). Glucose Conversion for Biobutanol Production from Fresh Chlorella sorokiniana via Direct Enzymatic Hydrolysis. Fermentation, 9(3), 284. https://doi.org/10.3390/fermentation9030284 | spa |
dc.relation.references | Yang, J., Cai, D., Liu, X., Zhu, L., Zhang, C., Peng, Q., Han, Y., Liu, G., & Yang, M. (2023b). Glucose Conversion for Biobutanol Production from Fresh Chlorella sorokiniana via Direct Enzymatic Hydrolysis. Fermentation, 9(3), 284. https://doi.org/10.3390/fermentation9030284 | spa |
dc.relation.references | Yousif, I. E., & Saleh, A. M. (2023a). Butanol-gasoline blends impact on performance and exhaust emissions of a four stroke spark ignition engine. Case Studies in Thermal Engineering, 41, 102612. https://doi.org/10.1016/j.csite.2022.102612 | spa |
dc.relation.references | Yousif, I. E., & Saleh, A. M. (2023b). Butanol-gasoline blends impact on performance and exhaust emissions of a four stroke spark ignition engine. Case Studies in Thermal Engineering, 41, 102612. https://doi.org/10.1016/j.csite.2022.102612 | spa |
dc.relation.references | Yu, W., & Dhital, S. (2024). Starch molecular structures and their relations with enzymic digestion. In Starch in Food (pp. 169–212). Elsevier. https://doi.org/10.1016/B978-0-323-96102-8.00003-6 | spa |
dc.relation.references | Yusoff, M. N. A. M., Zulkifli, N. W. M., Masjuki, H. H., Harith, M. H., Syahir, A. Z., Kalam, M. A., Mansor, M. F., Azham, A., & Khuong, L. S. (2017). Performance and emission characteristics of a spark ignition engine fuelled with butanol isomer-gasoline blends. Transportation Research Part D: Transport and Environment, 57, 23–38. https://doi.org/10.1016/j.trd.2017.09.004 | spa |
dc.relation.references | Zetty-Arenas, A. M., Tovar, L. P., Alves, R. F., Mariano, A. P., van Gulik, W., Maciel Filho, R., & Freitas, S. (2021). Co-fermentation of sugarcane bagasse hydrolysate and molasses by Clostridium saccharoperbutylacetonicum: Effect on sugar consumption and butanol production. Industrial Crops and Products, 167, 113512. https://doi.org/10.1016/j.indcrop.2021.113512 | spa |
dc.relation.references | Zhang, J., Zhou, H., Liu, D., & Zhao, X. (2020). Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. In Lignocellulosic Biomass to Liquid Biofuels (pp. 17–65). Elsevier. https://doi.org/10.1016/B978-0-12-815936-1.00002-2 | spa |
dc.relation.references | Zhang, K., Hong, Y., Chen, C., & Wu, Y.-R. (2021). Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii through a distinct acidolytic pretreatment. Bioresource Technology, 342, 125939. https://doi.org/10.1016/j.biortech.2021.125939 | spa |
dc.relation.references | Zhang, W., Zhang, Y. G., & Liu, Z. (2012). Effect of Different Absorbents on Fermentation Quality of Wet Potato Pulp. Journal of Animal and Veterinary Advances, 11(22), 4230–4235. https://doi.org/10.3923/javaa.2012.4230.4235 | spa |
dc.relation.references | Zhang, Z.-H., & Balasubramanian, R. (2014). Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine. Applied Energy, 119, 530–536. https://doi.org/10.1016/j.apenergy.2014.01.043 | spa |
dc.relation.references | Zhao, Y., Liu, S., Han, X., Zhou, Z., & Mao, J. (2022). Combined effects of fermentation temperature and Saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in huangjiu fermentation. Food Microbiology, 108, 104091. https://doi.org/10.1016/j.fm.2022.104091 | spa |
dc.relation.references | Zhen, X., Wang, Y., & Liu, D. (2020). Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renewable Energy, 147, 2494–2521. https://doi.org/10.1016/j.renene.2019.10.119 | spa |
dc.relation.references | Zheng, Y.-N., Li, L.-Z., Xian, M., Ma, Y.-J., Yang, J.-M., Xu, X., & He, D.-Z. (2009). Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology, 36(9), 1127–1138. https://doi.org/10.1007/s10295-009-0609-9 | spa |
dc.relation.references | Zhou, Z., Yang, S., Moore, C. D., Zhang, Q., Peng, S., & Li, H. (2020). Acetone, butanol, and ethanol production from puerariae slag hydrolysate through ultrasound-assisted dilute acid by Clostridium beijerinckii YBS3. Bioresource Technology, 316, 123899. https://doi.org/10.1016/j.biortech.2020.123899 | spa |
dc.relation.references | Zhuang, W., Yang, J., Wu, J., Liu, D., Zhou, J., Chen, Y., & Ying, H. (2016). Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Advances, 6(40), 33695–33704. https://doi.org/10.1039/C5RA24923F | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | COMBUSTIBLES VEGETALES | spa |
dc.subject.lemb | Vegetal fuel | eng |
dc.subject.lemb | ALMIDON DE PAPA | spa |
dc.subject.lemb | Potato starch | eng |
dc.subject.lemb | ALCOHOL COMBUSTIBLE | spa |
dc.subject.lemb | Alcohol as fuel | eng |
dc.subject.lemb | GASOHOL | spa |
dc.subject.proposal | Fermentación ABE | spa |
dc.subject.proposal | Biobutanol | spa |
dc.subject.proposal | Hidrólisis enzimática | spa |
dc.subject.proposal | Biomasa | spa |
dc.subject.proposal | Aprovechamiento de residuos | spa |
dc.subject.proposal | ABE Fermentation | eng |
dc.subject.proposal | Biobutanol | eng |
dc.subject.proposal | Enzymatic hydrolysis | eng |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Waste valorization | eng |
dc.title | Evaluación del potencial de valorización de residuos de papa como sustrato para la producción de biobutanol: una revisión crítica | spa |
dc.title.translated | Evaluation of the Potential for Valorization of Potato Waste as a Substrate for Biobutanol Production: A Critical Review | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1113677914.2024.pdf
- Tamaño:
- 4.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: