Evaluación del potencial de valorización de residuos de papa como sustrato para la producción de biobutanol: una revisión crítica

dc.contributor.advisorGuerrero Fajardo, Carlos Albertospa
dc.contributor.authorSerrano Echeverry, Víctor Alejandrospa
dc.contributor.orcidSerrano Echeverry, Víctor [0009000408095478]spa
dc.contributor.researchgroupAprovechamiento de los Recursos Naturalesspa
dc.date.accessioned2024-10-18T14:41:57Z
dc.date.available2024-10-18T14:41:57Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEste proyecto de tesis tuvo como objetivo evaluar la potencialidad de aprovechamiento de residuos de papa como materia prima para la producción de biobutanol, específicamente de los tubérculos que no pueden comercializarse debido a que no cumplen con los parámetros de calidad. Para esto, se llevó a cabo una caracterización del material para determinar su composición, incluyendo contenido de humedad, lignina, hemicelulosa y celulosa. Posteriormente, se extrajo el almidón de los residuos, obteniendo un rendimiento del 14,96% p/p. Se realizó una hidrólisis enzimática usando amilasa y amiloglucosidasa sobre el almidón, y se maximizó mediante pruebas cinéticas, evaluando la producción de azúcares reductores con el método DNS, determinando así las condiciones óptimas de temperatura y pH. La glucosa alcanzó un rendimiento de 47,78% p/p, y fue cuantificada mediante HPLC-IR. Se realizó también un ensayo preliminar de fermentación ABE, monitoreando el crecimiento y el pH del medio. Finalmente, se realizó una revisión de literatura buscando identificar tendencias con respecto a la producción biológica de solventes, a fin de encontrar un marco de acción con el cual encauzar una posterior investigación experimental (Texto tomado de la fuente).spa
dc.description.abstractThis thesis project aimed to evaluate the potential of using potato waste as raw material to produce biobutanol, specifically from tubers that cannot be marketed due to not meeting quality standards. To achieve this, a characterization of the material was carried out to determine its composition, including moisture content, lignin, hemicellulose, and cellulose. Subsequently, starch was extracted from the waste, yielding 14,96% w/w on a wet basis. Enzymatic hydrolysis was performed using amylase and amyloglucosidase on the starch, and was maximized through kinetic tests, evaluating the production of reducing sugars with the DNS method, thereby determining the optimal temperature and pH conditions. Glucose reached a yield of 47,78% w/w and was quantified by HPLC-IR. A preliminary ABE fermentation assay was also conducted, monitoring the growth and pH of the medium. Finally, a literature review was carried out to identify trends in the biological production of solvents, to find a framework for guiding further experimental research.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaProcesos Sosteniblesspa
dc.format.extent190 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86990
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAgbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005spa
dc.relation.referencesAgriculture of the Republic of Belarus. (2021). Statistical data books. https://www.belstat.gov.by/en/ofitsialnaya-statistika/publications/statistical-publications-data-books-bulletins/public_compilation/index_39780/spa
dc.relation.referencesAhokas, M., Välimaa, A.-L., Lötjönen, T., Kankaala, A., Taskila, S., & Virtanen, E. (2014). Resource assessment for potato biorefinery : side stream potential in Northern Ostrobothnia. Agronomy Research, 12(3), 695–704.spa
dc.relation.referencesAl-Shorgani, N. K. N., Shukor, H., Abdeshahian, P., Kalil, M. S., Yusoff, W. M. W., & Hamid, A. A. (2018). Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi Journal of Biological Sciences, 25(7), 1308–1321. https://doi.org/10.1016/j.sjbs.2016.02.017spa
dc.relation.referencesAl-Tabib, A. I., Al-Shorgani, N. K. N., Hasan, H. A., Hamid, A. A., & Kalil, M. S. (2018). Assessment of the detoxification of palm kernel cake hydrolysate for butanol production by Clostridium acetobutylicum YM1. Biocatalysis and Agricultural Biotechnology, 13, 105–109. https://doi.org/10.1016/j.bcab.2017.11.015spa
dc.relation.referencesAl-Weshahy, A., & Rao, V. A. (2012). Potato Peel as a Source of Important Phytochemical Antioxidant Nutraceuticals and Their Role in Human Health - A Review. In Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health. InTech. https://doi.org/10.5772/30459spa
dc.relation.referencesAmiri, H., & Karimi, K. (2019). Biobutanol Production. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts (pp. 109–133). Elsevier. https://doi.org/10.1016/B978-0-12-817941-3.00006-1spa
dc.relation.referencesAnna, & Wypych, G. (2014). Fatty acid methyl esters. In Databook of Green Solvents (pp. 135–203). Elsevier. https://doi.org/10.1016/B978-1-895198-82-9.50009-9spa
dc.relation.referencesAnukam, A., Mamphweli, S., Okoh, O., & Reddy, P. (2017). Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse. Bioengineering, 4(4), 22. https://doi.org/10.3390/bioengineering4010022spa
dc.relation.referencesAnukam, A., Mamphweli, S., Reddy, P., Meyer, E., & Okoh, O. (2016). Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 775–801. https://doi.org/10.1016/j.rser.2016.08.046spa
dc.relation.referencesArapoglou, D., Varzakas, Th., Vlyssides, A., & Israilides, C. (2010). Ethanol production from potato peel waste (PPW). Waste Management, 30(10), 1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017spa
dc.relation.referencesAskari, S., Siddiqui, A., & Kaleem, M. (2017). Potato peel mediated improvement in organic substances of vigna mungo growing under copper stress. Journal of Pharmacognosy and Phytochemistry, 6(4), 1373–1378.spa
dc.relation.referencesBajpai, P. (2024). Use of cellulose, hemicellulose and generated sugars and lignin. In Microorganisms and Enzymes for Lignocellulosic Biorefineries (pp. 173–202). Elsevier. https://doi.org/10.1016/B978-0-443-21492-9.00018-5spa
dc.relation.referencesBang, J., Hwang, C. H., Ahn, J. H., Lee, J. A., & Lee, S. Y. (2020). Escherichia coli is engineered to grow on CO2 and formic acid. Nature Microbiology, 5(12), 1459–1463. https://doi.org/10.1038/s41564-020-00793-9spa
dc.relation.referencesBasu, P. (2018). Biomass Characteristics. In Biomass Gasification, Pyrolysis and Torrefaction (pp. 49–91). Elsevier. https://doi.org/10.1016/B978-0-12-812992-0.00003-0spa
dc.relation.referencesBay, K., Wanko, H., & Ulrich, J. (2006). Absorption of Volatile Organic Compounds in Biodiesel. Chemical Engineering Research and Design, 84(1), 22–28. https://doi.org/10.1205/cherd.05050spa
dc.relation.referencesBehera, S., Konde, K., & Patil, S. (2023). Methods for bio-butanol production and purification. In Advances and Developments in Biobutanol Production (pp. 279–301). Elsevier. https://doi.org/10.1016/B978-0-323-91178-8.00004-7spa
dc.relation.referencesBeMiller, J. N. (2019). Starches. In Carbohydrate Chemistry for Food Scientists (pp. 159–189). Elsevier. https://doi.org/10.1016/B978-0-12-812069-9.00006-6spa
dc.relation.referencesBird, M., Keitel, C., & Meredith, W. (2016). Analysis of biochars for C, H, N, O and S by elemental analyser. In Biochar: a guide to analytical methods.spa
dc.relation.referencesBoutsika, A., Tanou, G., Xanthopoulou, A., Samiotaki, M., Nianiou-Obeidat, I., Ganopoulos, I., & Mellidou, I. (2022). Insights and advances in integrating multi-omic approaches for potato crop improvement. Scientia Horticulturae, 305, 111387. https://doi.org/10.1016/j.scienta.2022.111387spa
dc.relation.referencesBradley, T., Ling-Chin, J., Maga, D., Speranza, L. G., & Roskilly, A. P. (2022). Life Cycle Assessment (LCA) of Algae Biofuels. In Comprehensive Renewable Energy (pp. 387–404). Elsevier. https://doi.org/10.1016/B978-0-12-819727-1.00067-4spa
dc.relation.referencesBrasca, M., Morandi, S., & Silvetti, T. (2022). Clostridium spp. In Encyclopedia of Dairy Sciences (pp. 431–438). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22989-2spa
dc.relation.referencesBuehler, E. A., & Mesbah, A. (2016). Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture. PLOS ONE, 11(8), e0158243. https://doi.org/10.1371/journal.pone.0158243spa
dc.relation.referencesButler, D. P., van der Maarel, M. J. E. C., & Steeneken, P. A. M. (2004). Starch-acting enzymes. In Starch in Food (pp. 128–155). Elsevier. https://doi.org/10.1533/9781855739093.1.128spa
dc.relation.referencesButler, V., & Tetlow, I. J. (2024). Starch synthesis in plants. In Starch in Food (pp. 1–33). Elsevier. https://doi.org/10.1016/B978-0-323-96102-8.00009-7spa
dc.relation.referencesCai, D., Chen, C., Zhang, C., Wang, Y., Wen, H., & Qin, P. (2017). Fed-batch fermentation with intermittent gas stripping using immobilized Clostridium acetobutylicum for biobutanol production from corn stover bagasse hydrolysate. Biochemical Engineering Journal, 125, 18–22. https://doi.org/10.1016/j.bej.2017.05.006spa
dc.relation.referencesCai, D., Chen, H., Chen, C., Hu, S., Wang, Y., Chang, Z., Miao, Q., Qin, P., Wang, Z., Wang, J., & Tan, T. (2016). Gas stripping–pervaporation hybrid process for energy-saving product recovery from acetone–butanol–ethanol (ABE) fermentation broth. Chemical Engineering Journal, 287, 1–10. https://doi.org/10.1016/j.cej.2015.11.024spa
dc.relation.referencesCai, D., Wen, J., Wu, Y., Su, C., Bi, H., Wang, Y., Jiang, Y., Qin, P., Tan, T., & Zhang, C. (2024). Surfactant-assisted dilute ethylenediamine fractionation of corn stover for technical lignin valorization and biobutanol production. Bioresource Technology, 394, 130231. https://doi.org/10.1016/j.biortech.2023.130231spa
dc.relation.referencesCai, D., Wen, J., Zhuang, Y., Huang, T., Si, Z., Qin, P., & Chen, H. (2022). Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Separation and Purification Technology, 298, 121244. https://doi.org/10.1016/j.seppur.2022.121244spa
dc.relation.referencesCarrié, M., Velly, H., Ben-Chaabane, F., & Gabelle, J.-C. (2022). Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochemical Engineering Journal, 180, 108355. https://doi.org/10.1016/j.bej.2022.108355spa
dc.relation.referencesCastro, Y. A., Ellis, J. T., Miller, C. D., & Sims, R. C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy, 140, 14–19. https://doi.org/10.1016/j.apenergy.2014.11.045spa
dc.relation.referencesCereda, M. P. (2024). Starch hydrolysis: physical, acid, and enzymatic processes. In Starch Industries: Processes and Innovative Products in Food and Non-Food Uses (pp. 75–113). Elsevier. https://doi.org/10.1016/B978-0-323-90842-9.00016-9spa
dc.relation.referencesChacón, S. J., Matias, G., Vieira, C. F. dos S., Ezeji, T. C., Maciel Filho, R., & Mariano, A. P. (2020). Enabling butanol production from crude sugarcane bagasse hemicellulose hydrolysate by batch-feeding it into molasses fermentation. Industrial Crops and Products, 155, 112837. https://doi.org/10.1016/j.indcrop.2020.112837spa
dc.relation.referencesChadni, M., Moussa, M., Athès, V., Allais, F., & Ioannou, I. (2023). Membrane contactors-assisted liquid-liquid extraction of biomolecules from biorefinery liquid streams: A case study on organic acids. Separation and Purification Technology, 317, 123927. https://doi.org/10.1016/j.seppur.2023.123927spa
dc.relation.referencesChandgude, V., Välisalmi, T., Linnekoski, J., Granström, T., Pratto, B., Eerikäinen, T., Jurgens, G., & Bankar, S. (2021). Reducing agents assisted fed-batch fermentation to enhance ABE yields. Energy Conversion and Management, 227, 113627. https://doi.org/10.1016/j.enconman.2020.113627spa
dc.relation.referencesChang, W., Hou, W., Xu, M., & Yang, S. (2022). High‐rate continuous n ‐butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single‐pass fibrous‐bed bioreactor. Biotechnology and Bioengineering, 119(12), 3474–3486. https://doi.org/10.1002/bit.28223spa
dc.relation.referencesChatzifragkou, A., Vrcic, N., & Hernandez-Hernandez, O. (2021). Analysis of carbohydrates and glycoconjugates in food by CE and HPLC. In Carbohydrate Analysis by Modern Liquid Phase Separation Techniques (pp. 815–842). Elsevier. https://doi.org/10.1016/B978-0-12-821447-3.00011-1spa
dc.relation.referencesChen, C.-W., Yu, W.-S., Zheng, Z.-X., Cheng, Y.-S., & Li, S.-Y. (2023). Waste valorization through acetone-butanol-ethanol (ABE) fermentation. Journal of the Taiwan Institute of Chemical Engineers, 105280. https://doi.org/10.1016/j.jtice.2023.105280spa
dc.relation.referencesChen, J., Razdan, N., Field, T., Liu, D. E., Wolski, P., Cao, X., Prausnitz, J. M., & Radke, C. J. (2017). Recovery of dilute aqueous butanol by membrane vapor extraction with dodecane or mesitylene. Journal of Membrane Science, 528, 103–111. https://doi.org/10.1016/j.memsci.2017.01.018spa
dc.relation.referencesChen, W., Oldfield, T. L., Cinelli, P., Righetti, M. C., & Holden, N. M. (2020). Hybrid life cycle assessment of potato pulp valorisation in biocomposite production. Journal of Cleaner Production, 269, 122366. https://doi.org/10.1016/j.jclepro.2020.122366spa
dc.relation.referencesChen, X., Li, Y., Li, X., Shi, J., & Liu, L. (2024). Exploring the potential of multiple lignocellulosic biomass as a feedstock for biobutanol production. Fuel, 357, 129697. https://doi.org/10.1016/j.fuel.2023.129697spa
dc.relation.referencesCheng, C., Bao, T., & Yang, S.-T. (2019). Engineering Clostridium for improved solvent production: recent progress and perspective. Applied Microbiology and Biotechnology, 103(14), 5549–5566. https://doi.org/10.1007/s00253-019-09916-7spa
dc.relation.referencesCheng, H.-H., Whang, L.-M., Chan, K.-C., Chung, M.-C., Wu, S.-H., Liu, C.-P., Tien, S.-Y., Chen, S.-Y., Chang, J.-S., & Lee, W.-J. (2015). Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresource Technology, 184, 379–385. https://doi.org/10.1016/j.biortech.2014.11.017spa
dc.relation.referencesChiang, K.-Y., Chien, K.-L., & Lu, C.-H. (2012). Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy. Applied Energy, 100, 164–171. https://doi.org/10.1016/j.apenergy.2012.06.063spa
dc.relation.referencesChinwatpaiboon, P., Savarajara, A., & Luengnaruemitchai, A. (2023). Enzymatic hydrolysate of water hyacinth with NaOH pretreatment for biobutanol production via ABE fermentation by Clostridium beijerinckii JCM 8026. Biomass and Bioenergy, 173, 106782. https://doi.org/10.1016/j.biombioe.2023.106782spa
dc.relation.referencesCui, Y., Yang, K.-L., & Zhou, K. (2021). Using Co-Culture to Functionalize Clostridium Fermentation. Trends in Biotechnology, 39(9), 914–926. https://doi.org/10.1016/j.tibtech.2020.11.016spa
dc.relation.referencesCzekała, W., Bartnikowska, S., Dach, J., Janczak, D., Smurzyńska, A., Kozłowski, K., Bugała, A., Lewicki, A., Cieślik, M., Typańska, D., & Mazurkiewicz, J. (2018). The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122. https://doi.org/10.1016/j.energy.2018.06.090spa
dc.relation.referencesDANE. (2020). Encuesta Nacional Agropecuaria - ENA - 2016. https://microdatos.dane.gov.co/index.php/catalog/671spa
dc.relation.referencesde Brito Bezerra, P. K. S., de Azevedo, J. C. S., & dos Santos, E. S. (2023). Biobutanol production by batch and fed-batch fermentations from the green coconut husk hydrolysate using C. beijerinckii ATCC 10132. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04537-7spa
dc.relation.referencesdel Amo-Mateos, E., López-Linares, J. C., García-Cubero, M. T., Lucas, S., & Coca, M. (2022). Green biorefinery for sugar beet pulp valorisation: Microwave hydrothermal processing for pectooligosaccharides recovery and biobutanol production. Industrial Crops and Products, 184, 115060. https://doi.org/10.1016/j.indcrop.2022.115060spa
dc.relation.referencesDevi, A., Singh, A., Bajar, S., Pant, D., & Din, Z. U. (2021). Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. Journal of Environmental Chemical Engineering, 9(5), 105798. https://doi.org/10.1016/j.jece.2021.105798spa
dc.relation.referencesDinesha, P., Mohan, S., & Kumar, S. (2022). Experimental investigation of SI engine characteristics using Acetone-Butanol-Ethanol (ABE) – Gasoline blends and optimization using Particle Swarm Optimization. International Journal of Hydrogen Energy, 47(8), 5692–5708. https://doi.org/10.1016/j.ijhydene.2021.11.119spa
dc.relation.referencesDing, J., Luo, H., Xie, F., Wang, H., Xu, M., & Shi, Z. (2018). Electron receptor addition enhances butanol synthesis in ABE fermentation by Clostridium acetobutylicum. Bioresource Technology, 247, 1201–1205. https://doi.org/10.1016/j.biortech.2017.09.010spa
dc.relation.referencesdo Nascimento, B. F., de Araujo, C. M. B., do Nascimento, A. C., da Silva, F. L. H., de Melo, D. J. N., Jaguaribe, E. F., Lima Cavalcanti, J. V. F., & da Motta Sobrinho, M. A. (2021). Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaí waste. Journal of Hazardous Materials, 409, 124494. https://doi.org/10.1016/j.jhazmat.2020.124494spa
dc.relation.referencesDolan, J. W. (2009). Calibration Curves, Part IV: Choosing the Appropriate Model. LCGC North America. https://www.chromatographyonline.com/view/calibration-curves-part-iv-choosing-appropriate-modelspa
dc.relation.referencesdos Santos, T. C., Gomes, D. P. P., Bonomo, R. C. F., & Franco, M. (2012). Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chemistry, 133(4), 1299–1304. https://doi.org/10.1016/j.foodchem.2011.11.115spa
dc.relation.referencesDou, J., Chandgude, V., Vuorinen, T., Bankar, S., Hietala, S., & Lê, H. Q. (2021). Enhancing Biobutanol Production from biomass willow by pre-removal of water extracts or bark. Journal of Cleaner Production, 327, 129432. https://doi.org/10.1016/j.jclepro.2021.129432spa
dc.relation.referencesDu, J., Hong, Y., Cheng, L., Gu, Z., Li, Z., & Li, C. (2021). Enzyme-assisted fermentation improves the antimicrobial activity and drying properties of potato pulp. LWT, 141, 110874. https://doi.org/10.1016/j.lwt.2021.110874spa
dc.relation.referencesDu, R., Guo, W., Shen, Y., Dai, J., Zhang, H., Fu, M., & Wang, X. (2023). In situ assay of the reducing sugars in hydrophilic natural deep eutectic solvents by a modified DNS method. Journal of Molecular Liquids, 385, 122286. https://doi.org/10.1016/j.molliq.2023.122286spa
dc.relation.referencesEbrahimi, E., Amiri, H., & Asadollahi, M. A. (2020). Enhanced aerobic conversion of starch to butanol by a symbiotic system of Clostridium acetobutylicum and Nesterenkonia. Biochemical Engineering Journal, 164, 107752. https://doi.org/10.1016/j.bej.2020.107752spa
dc.relation.referencesEbrahimi, E., Amiri, H., Asadollahi, M. A., & Shojaosadati, S. A. (2020). Efficient butanol production under aerobic conditions by coculture of Clostridium acetobutylicum and Nesterenkonia sp. strain F. Biotechnology and Bioengineering, 117(2), 392–405. https://doi.org/10.1002/bit.27221spa
dc.relation.referencesEl-Dalatony, M. M., Basak, B., Kurade, M. B., Roh, H.-S., Jang, M., & Jeon, B.-H. (2022). Effect of sonication pretreatment on hydrogen and acetone-butanol-ethanol coproduction from Chlamydomonas mexicana biomass using Clostridium acetobutylicum. Journal of Environmental Chemical Engineering, 10(3), 107600. https://doi.org/10.1016/j.jece.2022.107600spa
dc.relation.referencesElkatory, M. R., Hassaan, M. A., & El Nemr, A. (2022). Algal biomass for bioethanol and biobutanol production. In Handbook of Algal Biofuels (pp. 251–279). Elsevier. https://doi.org/10.1016/B978-0-12-823764-9.00014-5spa
dc.relation.referencesFarag, S. (2011). Improving citric acid production from some carbohydrates by-products using irradiated Aspergillus niger. Ain Shams University.spa
dc.relation.referencesFarmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236–244. https://doi.org/10.1016/j.biortech.2018.09.017spa
dc.relation.referencesFEDEPAPA. (2020). Boletin regional número 05.spa
dc.relation.referencesFEDEPAPA. (2021). Informe trimestral de coyuntura económica del subsector papa III trimestre 2020. https://fedepapa.com/wp-content/uploads/2021/09/BOLETIN-ECONOMICO-N°13.pdfspa
dc.relation.referencesFernbach, A., & Halford, E. (1912). Fermentation process for the production of acetone and higher alcohols from starch, sugars, and other carbohydrate material (Patent US1044368A).spa
dc.relation.referencesFerreira dos Santos Vieira, C., Duzi Sia, A., Maugeri Filho, F., Maciel Filho, R., & Pinto Mariano, A. (2022). Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. Bioresource Technology, 344, 126313. https://doi.org/10.1016/j.biortech.2021.126313spa
dc.relation.referencesFiayaz, A., & Dahman, Y. (2023). Greener approach to the comprehensive utilization of algal biomass and oil using novel Clostridial fusants and bio-based solvents. Engineering Microbiology, 3(2), 100068. https://doi.org/10.1016/j.engmic.2022.100068spa
dc.relation.referencesFranco-Lara, L., Varela-Correa, C. A., Guerrero-Carranza, G. P., & Quintero-Vargas, J. C. (2023). Association of phytoplasmas with a new disease of potato crops in cundinamarca, Colombia. Crop Protection, 163, 106123. https://doi.org/10.1016/j.cropro.2022.106123spa
dc.relation.referencesGad, S. C. (2014). Diesel Fuel. In Encyclopedia of Toxicology (pp. 115–118). https://doi.org/https://doi.org/10.1016/B978-0-12-386454-3.00837-Xspa
dc.relation.referencesGao, R., Xiong, L., Wang, M., Peng, F., Zhang, H., & Chen, X. (2022). Production of acetone-butanol-ethanol and lipids from sugarcane molasses via coupled fermentation by Clostridium acetobutylicum and oleaginous yeasts. Industrial Crops and Products, 185, 115131. https://doi.org/10.1016/j.indcrop.2022.115131spa
dc.relation.referencesGeng, Q., Park, C.-H., & Janni, K. (1995). Uptake of organic acids byClostridium acetobutylicum B18 under controlled pH and reduced butanol inhibition. Korean Journal of Chemical Engineering, 12(3), 378–383. https://doi.org/10.1007/BF02705772spa
dc.relation.referencesGika, H., Kaklamanos, G., Manesiotis, P., & Theodoridis, G. (2016). Chromatography: High-Performance Liquid Chromatography. In Encyclopedia of Food and Health (pp. 93–99). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00159-8spa
dc.relation.referencesGöktas, M., Balki, M. K., Sayin, C., & Canakci, M. (2020). An evaluation of the use of alcohol fuels in SI engines in terms of performance, emission and combustion characteristics: A review. Fuel, 286(2021). https://doi.org/https://doi.org/10.1016/j.fuel.2020.119425spa
dc.relation.referencesGottumukkala, L. D., Parameswaran, B., Valappil, S. K., Mathiyazhakan, K., Pandey, A., & Sukumaran, R. K. (2013). Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresource Technology, 145, 182–187. https://doi.org/10.1016/j.biortech.2013.01.046spa
dc.relation.referencesGrob, K. (2013). GAS CHROMATOGRAPHY | Online Coupled HPLC–GC. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.00217-1spa
dc.relation.referencesGuo, H., Zhao, Y., Chang, J.-S., & Lee, D.-J. (2022). Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresource Technology, 361, 127666. https://doi.org/10.1016/j.biortech.2022.127666spa
dc.relation.referencesGuo, Z., Yu, X., Du, Y., & Wang, T. (2022). Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection. Fuel, 316, 123363. https://doi.org/10.1016/j.fuel.2022.123363spa
dc.relation.referencesGupta, S., Mondal, P., Borugadda, V. B., & Dalai, A. K. (2021). Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review. Environmental Technology & Innovation, 21, 101276. https://doi.org/10.1016/j.eti.2020.101276spa
dc.relation.referencesHalder, P., & Azad, A. K. (2019). Recent trends and challenges of algal biofuel conversion technologies. In Advanced Biofuels (pp. 167–179). Elsevier. https://doi.org/10.1016/B978-0-08-102791-2.00007-6spa
dc.relation.referencesHashim, S. O. (2019). Starch-Modifying Enzymes (pp. 221–244). https://doi.org/10.1007/10_2019_91spa
dc.relation.referencesHoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143spa
dc.relation.referencesHuang, H., Singh, V., & Qureshi, N. (2015). Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnology for Biofuels, 8(1), 147. https://doi.org/10.1186/s13068-015-0332-xspa
dc.relation.referencesIjaz, N., Bashir, S., Ikram, A., Zafar, A., Ul Ain, H. B., Ambreen, S., Ahmad, M., Almalki, R. S., Khalid, M. Z., Khalid, W., & Madilo, F. K. (2024). Valorization of potato peel: a sustainable eco-friendly approach. CyTA - Journal of Food, 22(1). https://doi.org/10.1080/19476337.2024.2306951spa
dc.relation.referencesIyyappan, J., Bharathiraja, B., Varjani, S., PraveenKumar, R., & Muthu Kumar, S. (2022). Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. Bioresource Technology, 346, 126405. https://doi.org/10.1016/j.biortech.2021.126405spa
dc.relation.referencesJain, S., & Sharma, M. P. (2010). Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 14(2), 667–678. https://doi.org/10.1016/j.rser.2009.10.011spa
dc.relation.referencesJawad, M., Wang, H., Wu, Y., Rehman, O., Song, Y., Xu, R., Zhang, Q., Gao, H., & Xue, C. (2024). Lignocellulosic ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii co-culture using non-detoxified corn stover hydrolysate. Journal of Biotechnology, 379, 1–5. https://doi.org/10.1016/j.jbiotec.2023.11.002spa
dc.relation.referencesJeong, S.-Y., Trinh, L. T. P., Lee, H.-J., & Lee, J.-W. (2014). Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresource Technology, 152, 444–449. https://doi.org/10.1016/j.biortech.2013.11.029spa
dc.relation.referencesJiang, Y., Lv, Y., Wu, R., Sui, Y., Chen, C., Xin, F., Zhou, J., Dong, W., & Jiang, M. (2019). Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresource Technology Reports, 7, 100245. https://doi.org/10.1016/j.biteb.2019.100245spa
dc.relation.referencesJiang, Y., Xu, B., Yan, W., Liu, J., Dong, W., Zhou, J., Zhang, W., Xin, F., & Jiang, M. (2021). Inhibitors tolerance analysis of Clostridium sp. strain LJ4 and its application for butanol production from corncob hydrolysate through electrochemical detoxification. Biochemical Engineering Journal, 167, 107891. https://doi.org/10.1016/j.bej.2020.107891spa
dc.relation.referencesJin, Q., An, Z., Damle, A., Poe, N., Wu, J., Wang, H., Wang, Z., & Huang, H. (2020). High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation. ACS Sustainable Chemistry & Engineering, 8(26), 9822–9832. https://doi.org/10.1021/acssuschemeng.0c02529spa
dc.relation.referencesJONES, D. T. (2014). THE STRATEGIC IMPORTANCE OF BUTANOL FOR JAPAN DURING WWII: A CASE STUDY OF THE BUTANOL FERMENTATION PROCESS IN TAIWAN AND JAPAN. In Systems Biology of Clostridium (pp. 220–272). IMPERIAL COLLEGE PRESS. https://doi.org/10.1142/9781783264414_0009spa
dc.relation.referencesKalivas, J. H., & Brown, S. D. (2020). Calibration Methodologies. In Comprehensive Chemometrics (pp. 213–247). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14666-9spa
dc.relation.referencesKarthick, C., & Nanthagopal, K. (2021). A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Conversion and Management, 239, 114219. https://doi.org/10.1016/j.enconman.2021.114219spa
dc.relation.referencesKaur, L., Kaur, R., & Singh, J. (2024). Chemical modification of starch. In Starch in Food (pp. 97–117). Elsevier. https://doi.org/10.1016/B978-0-323-96102-8.00015-2spa
dc.relation.referencesKaur, L., Singh, J., & Liu, Q. (2007). Starch – A Potential Biomaterial for Biomedical Applications. In Nanomaterials and Nanosystems for Biomedical Applications (pp. 83–98). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6289-6_5spa
dc.relation.referencesKhamaiseh, E. I. S., Hamid, A. Abd., Yusoff, W. M. W., & Kalil, M. S. (2013). Effect of Some Environmental Parameters on Biobutanol Production by Clostridium acetobutylicum NCIMB 13357 in Date Fruit Medium. Pakistan Journal of Biological Sciences, 16(20), 1145–1151. https://doi.org/10.3923/pjbs.2013.1145.1151spa
dc.relation.referencesKhunchit, K., Nitayavardhana, S., Ramaraj, R., Ponnusamy, V. K., & Unpaprom, Y. (2020). Liquid hot water extraction as a chemical-free pretreatment approach for biobutanol production from Cassia fistula pods. Fuel, 279, 118393. https://doi.org/10.1016/j.fuel.2020.118393spa
dc.relation.referencesKongjan, P., Tohlang, N., Khaonuan, S., Cheirsilp, B., & Jariyaboon, R. (2022). Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. Biochemical Engineering Journal, 182, 108437. https://doi.org/10.1016/j.bej.2022.108437spa
dc.relation.referencesKot, A. M., Pobiega, K., Piwowarek, K., Kieliszek, M., Błażejak, S., Gniewosz, M., & Lipińska, E. (2020). Biotechnological Methods of Management and Utilization of Potato Industry Waste—a Review. Potato Research, 63(3), 431–447. https://doi.org/10.1007/s11540-019-09449-6spa
dc.relation.referencesKrishnasamy, A., & Bukkarapu, K. R. (2021). A comprehensive review of biodiesel property prediction models for combustion modeling studies. Fuel, 302, 121085. https://doi.org/10.1016/j.fuel.2021.121085spa
dc.relation.referencesKumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7. https://doi.org/10.1186/s40643-017-0137-9spa
dc.relation.referencesKumar, K., Jadhav, S. M., & Moholkar, V. S. (2024). Acetone-Butanol-Ethanol (ABE) fermentation with clostridial co-cultures for enhanced biobutanol production. Process Safety and Environmental Protection, 185, 277–285. https://doi.org/10.1016/j.psep.2024.03.027spa
dc.relation.referencesKumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055spa
dc.relation.referencesKushkevych, I. (2023). Bacterial Chemical Composition and Functional Cell Structures. In Bacterial Physiology and Biochemistry (pp. 23–90). Elsevier. https://doi.org/10.1016/B978-0-443-18738-4.50002-4spa
dc.relation.referencesKushwaha, A., Goswami, S., Sultana, A., Katiyar, N. K., Athar, M., Dubey, L., Goswami, L., Hussain, C. M., & Kareem, M. A. (2022). Waste biomass to biobutanol: recent trends and advancements. In Waste-to-Energy Approaches Towards Zero Waste (pp. 393–423). Elsevier. https://doi.org/10.1016/B978-0-323-85387-3.00004-5spa
dc.relation.referencesKyzas, G. Z., & Deliyanni, E. A. (2015). Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chemical Engineering Research and Design, 97, 135–144. https://doi.org/10.1016/j.cherd.2014.08.020spa
dc.relation.referencesLaCourse, W. R. (2017). HPLC Instrumentation. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11123-0spa
dc.relation.referencesLaCourse, W. R., & LaCourse, M. E. (2023). General instrumentation in HPLC. In Liquid Chromatography (pp. 61–73). Elsevier. https://doi.org/10.1016/B978-0-323-99968-7.00009-6spa
dc.relation.referencesLiang, S., & McDonald, A. G. (2014). Chemical and Thermal Characterization of Potato Peel Waste and Its Fermentation Residue as Potential Resources for Biofuel and Bioproducts Production. Journal of Agricultural and Food Chemistry, 62(33), 8421–8429. https://doi.org/10.1021/jf5019406spa
dc.relation.referencesLimb, B. J., Smith, J. P., Simske, S. J., & Quinn, J. C. (2024). Estimating geographic origins of corn and soybean biomass for biofuel production: A detailed dataset. Data in Brief, 54, 110291. https://doi.org/10.1016/j.dib.2024.110291spa
dc.relation.referencesLin, L., Zhang, Z., Tang, H., Guo, Y., Zhou, B., Liu, Y., Huang, R., Du, L., & Pang, H. (2021). Enhanced sucrose fermentation by introduction of heterologous sucrose transporter and invertase into Clostridium beijerinckii for acetone–butanol–ethanol production. Royal Society Open Science, 8(9). https://doi.org/10.1098/rsos.201858spa
dc.relation.referencesLin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. Fermentation, 9(9), 847. https://doi.org/10.3390/fermentation9090847spa
dc.relation.referencesLiu, C.-G., Qin, J.-C., & Lin, Y.-H. (2017). Fermentation and Redox Potential. In Fermentation Processes. InTech. https://doi.org/10.5772/64640spa
dc.relation.referencesLiu, J., Zhou, W., Fan, S., Qiu, B., Wang, Y., Xiao, Z., Tang, X., Wang, W., Jian, S., & Qin, Y. (2019). Cell degeneration and performance decline of immobilized Clostridium acetobutylicum on bagasse during hydrogen and butanol production by repeated cycle fermentation. International Journal of Hydrogen Energy, 44(48), 26204–26212. https://doi.org/10.1016/j.ijhydene.2019.08.102spa
dc.relation.referencesLiu, L., Wang, Y., Wang, N., Chen, X., Li, B., Shi, J., & Li, X. (2021). Process optimization of acetone-butanol-ethanol fermentation integrated with pervaporation for enhanced butanol production. Biochemical Engineering Journal, 173, 108070. https://doi.org/10.1016/j.bej.2021.108070spa
dc.relation.referencesLiu, Y., Yuan, Y., Ramya, G., Mohan Singh, S., Thuy Lan Chi, N., Pugazhendhi, A., Xia, C., & Mathimani, T. (2022a). A review on the promising fuel of the future – Biobutanol; the hindrances and future perspectives. Fuel, 327, 125166. https://doi.org/10.1016/j.fuel.2022.125166spa
dc.relation.referencesLiu, Y., Yuan, Y., Ramya, G., Mohan Singh, S., Thuy Lan Chi, N., Pugazhendhi, A., Xia, C., & Mathimani, T. (2022b). A review on the promising fuel of the future – Biobutanol; the hindrances and future perspectives. Fuel, 327, 125166. https://doi.org/10.1016/j.fuel.2022.125166spa
dc.relation.referencesLlano, T., Quijorna, N., & Coz, A. (2017). Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects. Energies, 10(3), 348. https://doi.org/10.3390/en10030348spa
dc.relation.referencesLópez-Linares, J. C., García-Cubero, M. T., Coca, M., & Lucas, S. (2021). Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment. Bioresource Technology, 320, 124348. https://doi.org/10.1016/j.biortech.2020.124348spa
dc.relation.referencesLópez-Linares, J., Garcia-Cubero, M. T., Lucas, S., & Coca, M. (2020). Integral valorization of cellulosic and hemicellulosic sugars for biobutanol production: ABE fermentation of the whole slurry from microwave pretreated brewer’s spent grain. Biomass and Bioenergy, 135, 1–12. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105524spa
dc.relation.referencesLu, K.-M., Chiang, Y.-S., Wang, Y.-R., Chein, R.-Y., & Li, S.-Y. (2016). Performance of fed-batch acetone–butanol–ethanol (ABE) fermentation coupled with the integrated in situ extraction-gas stripping process and the fractional condensation. Journal of the Taiwan Institute of Chemical Engineers, 60, 119–123. https://doi.org/10.1016/j.jtice.2015.10.044spa
dc.relation.referencesLuo, H., Shi, Y., Xie, F., Zhou, T., Gao, L., Yang, R., & Wang, Z. (2023). Efficient co-production of fermentable sugars and biobutanol from corn stover based on a novel butyric acid pretreatment strategy. Industrial Crops and Products, 191, 115976. https://doi.org/10.1016/j.indcrop.2022.115976spa
dc.relation.referencesLuo, H., Zeng, Q., Han, S., Wang, Z., Dong, Q., Bi, Y., & Zhao, Y. (2017). High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World Journal of Microbiology and Biotechnology, 33(4), 76. https://doi.org/10.1007/s11274-017-2246-1spa
dc.relation.referencesMai, S., Wang, G., Wu, P., Gu, C., Liu, H., Zhang, J., & Wang, G. (2017). Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Biotechnology and Applied Biochemistry, 64(5), 719–726. https://doi.org/10.1002/bab.1522spa
dc.relation.referencesMaiti, S., Gallastegui, G., Suresh, G., Brar, S. K., LeBihan, Y., Drogui, P., Buelna, G., Ramirez, A. A., Verma, M., & Soccol, C. R. (2017). Two-phase partitioning detoxification to improve biobutanol production from brewery industry wastes. Chemical Engineering Journal, 330, 1100–1108. https://doi.org/10.1016/j.cej.2017.08.035spa
dc.relation.referencesMalik, K., Sharma, P., Yang, Y., Zhang, P., Zhang, L., Xing, X., Yue, J., Song, Z., Nan, L., Yujun, S., El-Dalatony, M. M., Salama, E.-S., & Li, X. (2022). Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches. Industrial Crops and Products, 188, 115569. https://doi.org/10.1016/j.indcrop.2022.115569spa
dc.relation.referencesManna, M. S., Mazumder, A., Bhowmick, T. K., & Gayen, K. (2023). Economic analysis of biobutanol recovery from the acetone-butanol-ethanol fermentation using molasses. Journal of the Indian Chemical Society, 100(1), 100809. https://doi.org/10.1016/j.jics.2022.100809spa
dc.relation.referencesMao, B., Li, G., Wang, M., Deng, X., Gao, K., & Zhang, B. (2024). Using nitrogen starvation and excess phosphorus for two-stage algae cultivation to improve butanol production of lipid-extracted algae. Renewable Energy, 220, 119652. https://doi.org/10.1016/j.renene.2023.119652spa
dc.relation.referencesMao, B., & Zhang, B. (2023). Combining ABE fermentation and anaerobic digestion to treat with lipid extracted algae for enhanced bioenergy production. Science of The Total Environment, 875, 162691. https://doi.org/10.1016/j.scitotenv.2023.162691spa
dc.relation.referencesMayer, F., & Hillebrandt, J.-O. (1997). Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product. Applied Microbiology and Biotechnology, 48, 435–440.spa
dc.relation.referencesMiller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030spa
dc.relation.referencesMishra, N., & Dubey, A. (2017). Biobutanol: An Alternative Biofuel. In Advances in Biofeedstocks and Biofuels (pp. 155–175). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119117551.ch6spa
dc.relation.referencesMittal, N., Leslie Athony, R., Bansal, R., & Ramesh, K. C. (2013). Study of performance and emission characteristics of a partially coated LHR SI engine blended with n-butanol and gasoline. Alexandria Engineering Journal, 53(3), 285–293. https://doi.org/https://doi.org/10.1016/j.aej.2013.06.005spa
dc.relation.referencesMohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003spa
dc.relation.referencesMoldoveanu, S. C., & David, V. (2017). Basic Information Regarding the HPLC Techniques. In Selection of the HPLC Method in Chemical Analysis (pp. 87–187). Elsevier. https://doi.org/10.1016/B978-0-12-803684-6.00004-4spa
dc.relation.referencesMoldoveanu, S., & David, V. (2022a). Overview of HPLC instrumentation and its use. In Essentials in Modern HPLC Separations (pp. 21–61). Elsevier. https://doi.org/10.1016/B978-0-323-91177-1.00015-6spa
dc.relation.referencesMoldoveanu, S., & David, V. (2022b). Parameters for the characterization of HPLC separation. In Essentials in Modern HPLC Separations (pp. 63–105). Elsevier. https://doi.org/10.1016/B978-0-323-91177-1.00004-1spa
dc.relation.referencesMontoya, D., Ar�valo, C., Gonzales, S., Aristizabal, F., & Schwarz, W. (2001). New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. Journal of Industrial Microbiology and Biotechnology, 27(5), 329–335. https://doi.org/10.1038/sj.jim.7000193spa
dc.relation.referencesMoon, H. G., Jang, Y., Cho, C., Lee, J., Binkley, R., & Lee, S. Y. (2016a). One hundred years of clostridial butanol fermentation. January. https://doi.org/10.1093/femsle/fnw001spa
dc.relation.referencesNanda, S., Dalai, A. K., & Kozinski, J. A. (2014). Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Science & Engineering, 2(3), 138–148. https://doi.org/10.1002/ese3.41spa
dc.relation.referencesNandhini, R., Rameshwar, S. S., Sivaprakash, B., Rajamohan, N., & Monisha, R. S. (2023). Carbon neutrality in biobutanol production through microbial fermentation technique from lignocellulosic materials – A biorefinery approach. Journal of Cleaner Production, 413, 137470. https://doi.org/10.1016/j.jclepro.2023.137470spa
dc.relation.referencesNarchonai, G., Arutselvan, C., LewisOscar, F., & Thajuddin, N. (2020). Enhancing starch accumulation/production in Chlorococcum humicola through sulphur limitation and 2,4- D treatment for butanol production. Biotechnology Reports, 28, e00528. https://doi.org/10.1016/j.btre.2020.e00528spa
dc.relation.referencesNguyen, N.-P.-T., Raynaud, C., Meynial-Salles, I., & Soucaille, P. (2018). Reviving the Weizmann process for commercial n-butanol production. Nature Communications, 9(1), 3682. https://doi.org/10.1038/s41467-018-05661-zspa
dc.relation.referencesNiglio, S., Marzocchella, A., & Rehmann, L. (2019). Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. Heliyon, 5(3), e01401. https://doi.org/10.1016/j.heliyon.2019.e01401spa
dc.relation.referencesNogueira, C. da C., Padilha, C. E. de A., Dantas, J. M. de M., Medeiros, F. G. M. de, Guilherme, A. de A., Souza, D. F. de S., & Santos, E. S. dos. (2021). In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass. Renewable Energy, 180, 914–936. https://doi.org/10.1016/j.renene.2021.09.012spa
dc.relation.referencesOliva-Rodríguez, A. G., Quintero, J., Medina-Morales, M. A., Morales-Martínez, T. K., Rodríguez-De la Garza, J. A., Moreno-Dávila, M., Aroca, G., & Rios González, L. J. (2019). Clostridium strain selection for co-culture with Bacillus subtilis for butanol production from agave hydrolysates. Bioresource Technology, 275, 410–415. https://doi.org/10.1016/j.biortech.2018.12.085spa
dc.relation.referencesOnay, M. (2020). Enhancing carbohydrate productivity from Nannochloropsis gaditana for bio-butanol production. Energy Reports, 6, 63–67. https://doi.org/10.1016/j.egyr.2019.08.019spa
dc.relation.referencesPadmanabhan, P., Sullivan, J. A., & Paliyath, G. (2016). Potatoes and Related Crops. In Encyclopedia of Food and Health (pp. 446–451). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00556-0spa
dc.relation.referencesPatange, V. S., Fernandez, R. J., Motla, M. U., & Mahajan, S. A. (1996). Dressing wounds with potato peel. Indian Journal of Dermatology, Venereology and Leprology, 62(5), 286–288. http://www.ncbi.nlm.nih.gov/pubmed/20948091spa
dc.relation.referencesPathak, P. D., Mandavgane, S. A., Puranik, N. M., Jambhulkar, S. J., & Kulkarni, B. D. (2018). Valorization of potato peel: a biorefinery approach. Critical Reviews in Biotechnology, 38(2), 218–230. https://doi.org/10.1080/07388551.2017.1331337spa
dc.relation.referencesPatil, A. R., & Keswani, M. H. (1985). Bandages of boiled potato peels. Burns, 11(6), 444–445. https://doi.org/10.1016/0305-4179(85)90153-6spa
dc.relation.referencesPatil, R. C., Suryawanshi, P. G., Kataki, R., & Goud, V. V. (2019). Current challenges and advances in butanol production. In Sustainable Bioenergy (pp. 225–256). Elsevier. https://doi.org/10.1016/B978-0-12-817654-2.00008-3spa
dc.relation.referencesPedreira, A., Vázquez, J. A., & García, M. R. (2022). Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.758237spa
dc.relation.referencesPhillips, E. (2020). Algal Butanol Production (pp. 33–50). https://doi.org/10.1007/978-981-32-9607-7_2spa
dc.relation.referencesPinto, T., Flores-Alsina, X., Gernaey, K. V., & Junicke, H. (2021). Alone or together? A review on pure and mixed microbial cultures for butanol production. Renewable and Sustainable Energy Reviews, 147, 111244. https://doi.org/10.1016/j.rser.2021.111244spa
dc.relation.referencesPlaza, P. E., Coca, M., Yagüe, S. L., Gutiérrez, G., Rochón, E., & García-Cubero, M. T. (2022). Bioprocess intensification for acetone-butanol-ethanol fermentation from brewer’s spent grain: Fed-batch strategies coupled with in-situ gas stripping. Biomass and Bioenergy, 156, 106327. https://doi.org/10.1016/j.biombioe.2021.106327spa
dc.relation.referencesPotato News Today. (2022). FAO updates global potato statistics. https://www.potatonewstoday.com/2022/03/28/fao-updates-global-potato-statistics/spa
dc.relation.referencesPratto, B., Chandgude, V., de Sousa, R., Cruz, A. J. G., & Bankar, S. (2020). Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation. Industrial Crops and Products, 148, 112265. https://doi.org/10.1016/j.indcrop.2020.112265spa
dc.relation.referencesProcentese, A., Raganati, F., Olivieri, G., Elena Russo, M., & Marzocchella, A. (2017). Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass and Bioenergy, 96, 172–179. https://doi.org/10.1016/j.biombioe.2016.11.015spa
dc.relation.referencesQi, G., Huang, D., Wang, J., Shen, Y., & Gao, X. (2019). Enhanced butanol production from ammonium sulfite pretreated wheat straw by separate hydrolysis and fermentation and simultaneous saccharification and fermentation. Sustainable Energy Technologies and Assessments, 36, 100549. https://doi.org/10.1016/j.seta.2019.100549spa
dc.relation.referencesQi, G., Xiong, L., Luo, M., Huang, Q., Huang, C., Li, H., Chen, X., & Chen, X. (2018). Solvents production from cassava by co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 6(1), 128–133. https://doi.org/10.1016/j.jece.2017.11.067spa
dc.relation.referencesQureshi, N. (2017). Solvent (Acetone–Butanol: AB) Production ☆. In Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.13109-7spa
dc.relation.referencesQureshi, N., & Singh, V. (2014). Process Economics of Renewable Biorefineries. In Biorefineries (pp. 237–254). Elsevier. https://doi.org/10.1016/B978-0-444-59498-3.00012-9spa
dc.relation.referencesRafieyan, S., Boojari, M. A., Setayeshnia, A., Fakhroleslam, M., Sánchez-Ramírez, E., Bay, M. S., & Segovia-Hernández, J. G. (2024). Acetone-butanol-ethanol fermentation products recovery: Challenges and opportunities. Chemical Engineering Research and Design, 205, 640–664. https://doi.org/10.1016/j.cherd.2024.04.021spa
dc.relation.referencesRaganati, F., Procentese, A., Olivieri, G., Russo, M. E., Salatino, P., & Marzocchella, A. (2022). A novel integrated fermentation/recovery system for butanol production by Clostridium acetobutylicum. Chemical Engineering and Processing - Process Intensification, 173, 108852. https://doi.org/10.1016/j.cep.2022.108852spa
dc.relation.referencesRaj, T., Chandrasekhar, K., Morya, R., Kumar Pandey, A., Jung, J.-H., Kumar, D., Singhania, R. R., & Kim, S.-H. (2022). Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. Bioresource Technology, 360, 127512. https://doi.org/10.1016/j.biortech.2022.127512spa
dc.relation.referencesRaspolli Galletti, A. M., Antonetti, C., Fulignati, S., Licursi, D., Dell’Omo, S., Benito, P., Wilbers, E., & Heeres, H. J. (2023). Upgrading bio-butanol in the presence of copper-hydrotalcite derived mixed oxides: From batch to continuous flow catalytic process highly selective to butyl butyrate. Catalysis Today, 423, 114288. https://doi.org/10.1016/j.cattod.2023.114288spa
dc.relation.referencesRaud, M., Tutt, M., Olt, J., & Kikas, T. (2015). Effect of lignin content of lignocellulosic material on hydrolysis efficiency. Agronomy Research, 13(2), 405–412.spa
dc.relation.referencesReshma, G., Kumar, M., Mahitha, P. M., Kulkarni, N. V., Kharissova, O. V., & Kharissov, B. I. (2024). Trends in valorization of biomass to biofuels: biobutanol. In Handbook of Emerging Materials for Sustainable Energy (pp. 419–432). Elsevier. https://doi.org/10.1016/B978-0-323-96125-7.00012-5spa
dc.relation.referencesRochón, E., Cortizo, G., Cabot, M. I., García Cubero, M. T., Coca, M., Ferrari, M. D., & Lareo, C. (2020). Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. Fuel, 281, 118593. https://doi.org/10.1016/j.fuel.2020.118593spa
dc.relation.referencesRoy, S., & Chakraborty, S. (2024). Emerging technologies for waste biomass pretreatment: pros and cons. In Processing of Biomass Waste (pp. 41–54). Elsevier. https://doi.org/10.1016/B978-0-323-95179-1.00004-9spa
dc.relation.referencesSaadatinavaz, F., Karimi, K., & Denayer, J. F. M. (2021). Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. Bioresource Technology, 341, 125834. https://doi.org/10.1016/j.biortech.2021.125834spa
dc.relation.referencesŞahin, Z., Nazım Aksu, O., & Bayram, C. (2021). The effects of n-butanol/gasoline blends and 2.5% n-butanol/gasoline blend with 9% water injection into the intake air on the SIE engine performance and exhaust emissions. Fuel, 303, 121210. https://doi.org/10.1016/j.fuel.2021.121210spa
dc.relation.referencesSaini, M., Chiang, C.-J., Li, S.-Y., & Chao, Y.-P. (2016). Production of biobutanol from cellulose hydrolysate by the Escherichia coli co-culture system. FEMS Microbiology Letters, 363(4), fnw008. https://doi.org/10.1093/femsle/fnw008spa
dc.relation.referencesSampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118–129. https://doi.org/10.1016/j.tifs.2020.07.015spa
dc.relation.referencesSarangi, P. K., & Nanda, S. (2018). Recent Developments and Challenges of Acetone-Butanol-Ethanol Fermentation. In Recent Advancements in Biofuels and Bioenergy Utilization (pp. 111–123). Springer Singapore. https://doi.org/10.1007/978-981-13-1307-3_5spa
dc.relation.referencesSarker, T. R., Nanda, S., & Dalai, A. K. (2024). Insights on biomass pretreatment and bioconversion to bioethanol and biobutanol. In Biomass to Bioenergy (pp. 15–48). Elsevier. https://doi.org/10.1016/B978-0-443-15377-8.00018-7spa
dc.relation.referencesSayin, C., & Balki, M. K. (2015). Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends. Energy, 82, 550–555. https://doi.org/10.1016/j.energy.2015.01.064spa
dc.relation.referencesSchultze-Jena, A., Vroon, R. C., Macleod, A. K. A., Hreggviðsson, G. Ó., Adalsteinsson, B. T., Engelen-Smit, N. P. E., de Vrije, T., Budde, M. A. W., van der Wal, H., López-Contreras, A. M., & Boon, M. A. (2022). Production of acetone, butanol, and ethanol by fermentation of Saccharina latissima: Cultivation, enzymatic hydrolysis, inhibitor removal, and fermentation. Algal Research, 62, 102618. https://doi.org/10.1016/j.algal.2021.102618spa
dc.relation.referencesSepelev, I., & Galoburda, R. (2015). Industrial potato peel waste application in food production: a review. Research for Rural Development, Food Sciences, 1, 130–136.spa
dc.relation.referencesSharma, S., Arumugam, S. M., Kumar, S., Mahala, S., Devi, B., & Elumalai, S. (2022). Updated technologies for sugar fermentation to bioethanol. In Biomass, Biofuels, Biochemicals (pp. 95–116). Elsevier. https://doi.org/10.1016/B978-0-12-824419-7.00024-8spa
dc.relation.referencesSharma, Y. C., Singh, B., & Upadhyay, S. N. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87(12), 2355–2373. https://doi.org/10.1016/j.fuel.2008.01.014spa
dc.relation.referencesShukla, J., & Kar, R. (2006). Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates. World Journal of Microbiology and Biotechnology, 22(5), 417–422. https://doi.org/10.1007/s11274-005-9049-5spa
dc.relation.referencesShuler, M. L., & Kargi, F. (2002). Bioprocess engineering: Basic Concepts (2nd ed.).spa
dc.relation.referencesSilva, D. A. da, Hansted, A. L. S., Nakashima, G. T., Padilla, E. R. D., Pereira, J. C., & Yamaji, F. M. (2021). Volatile matter values change according to the standard utilized? Research, Society and Development, 10(12), e291101220476. https://doi.org/10.33448/rsd-v10i12.20476spa
dc.relation.referencesSindhu, R., Binod, P., & Pandey, A. (2017). α-Amylases. In Current Developments in Biotechnology and Bioengineering (pp. 3–24). Elsevier. https://doi.org/10.1016/B978-0-444-63662-1.00001-4spa
dc.relation.referencesSingh, D., Sharma, D., Soni, S. L., Sharma, S., & Kumari, D. (2019). Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel, 253, 60–71. https://doi.org/10.1016/j.fuel.2019.04.174spa
dc.relation.referencesSirajunnisa, A. R., Geethalakshmi, R., Thiruvengadam, S., Mohankumar, B., Durga Devi, S., & Duraiarasan, S. (2023). Current status and perspective on algal biomass-based biobutanol production. In Advances and Developments in Biobutanol Production (pp. 303–327). Elsevier. https://doi.org/10.1016/B978-0-323-91178-8.00011-4spa
dc.relation.referencesSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples . https://www.nrel.gov/docs/gen/fy08/42623.pdfspa
dc.relation.referencesSu, C., Cai, D., Zhang, H., Wu, Y., Jiang, Y., Liu, Y., Zhang, C., Li, C., Qin, P., & Tan, T. (2024). Pilot-scale acetone-butanol-ethanol fermentation from corn stover. Green Carbon, 2(1), 81–93. https://doi.org/10.1016/j.greenca.2024.02.004spa
dc.relation.referencesSu, C., Zhang, C., Wu, Y., Zhu, Q., Wen, J., Wang, Y., Zhao, J., Liu, Y., Qin, P., & Cai, D. (2022). Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover. Renewable Energy, 200, 592–600. https://doi.org/10.1016/j.renene.2022.10.008spa
dc.relation.referencesSukumaran, R. K., Gottumukkala, L. D., Rajasree, K., Alex, D., & Pandey, A. (2011). Butanol Fuel from Biomass. In Biofuels (pp. 571–586). Elsevier. https://doi.org/10.1016/B978-0-12-385099-7.00026-7spa
dc.relation.referencesTantray, J. A., Mansoor, S., Wani, R. F. C., & Nissa, N. U. (2023). Estimation of reducing sugar by using dinitro salicylic acid method. In Basic Life Science Methods (pp. 69–73). Elsevier. https://doi.org/10.1016/B978-0-443-19174-9.00017-9spa
dc.relation.referencesTaylor, P. J. (2005). Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clinical Biochemistry, 38(4), 328–334. https://doi.org/10.1016/j.clinbiochem.2004.11.007spa
dc.relation.referencesTekin, N., Karatay, S. E., & Dönmez, G. (2023). Optimization studies about efficient biobutanol production from industrial tea waste by Clostridium beijerinckii. Fuel, 331, 125763. https://doi.org/10.1016/j.fuel.2022.125763spa
dc.relation.referencesThakkar, K., Kachhwaha, S. S., Kodgire, P., & Srinivasan, S. (2021). Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control. Renewable and Sustainable Energy Reviews, 137, 110468. https://doi.org/10.1016/j.rser.2020.110468spa
dc.relation.referencesThanapornsin, T., Laopaiboon, L., & Laopaiboon, P. (2023). Capability of immobilized Clostridium beijerinckii for batch and repeated-batch butanol fermentation from sweet sorghum stem juice in various bioreactors. Bioresource Technology Reports, 23, 101590. https://doi.org/10.1016/j.biteb.2023.101590spa
dc.relation.referencesTian, Z., Zhen, X., Wang, Y., Daming, L., & Li, X. (2020). Combustion and emission characteristics of n-butanol-gasoline blends in SI direct injection gasoline engine. Renewable Energy, 146, 267–279. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.041spa
dc.relation.referencesTorres-Jimenez, E., Jerman, M. S., Gregorc, A., Lisec, I., Dorado, M. P., & Kegl, B. (2011). Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 90(2), 795–802. https://doi.org/10.1016/j.fuel.2010.09.045spa
dc.relation.referencesTri, C. L., & Kamei, I. (2020). Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing. Bioresource Technology, 305, 123065. https://doi.org/10.1016/j.biortech.2020.123065spa
dc.relation.referencesTripathi, M., Singh, R., Lal, B., Mohammad, A., Ahmad, I., Yadav, A. K., & Choi, C.-H. (2024). Fungal co-culture enabled co-fermentation of food waste for production of endoglucanase enzyme. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.05.119spa
dc.relation.referencesValles, A., Álvarez-Hornos, J., Capilla, M., San-Valero, P., & Gabaldón, C. (2021). Fed-batch simultaneous saccharification and fermentation including in-situ recovery for enhanced butanol production from rice straw. Bioresource Technology, 342, 126020. https://doi.org/10.1016/j.biortech.2021.126020spa
dc.relation.referencesVamsi Krishna, K., Bharathi, N., George Shiju, S., Alagesan Paari, K., & Malaviya, A. (2022). An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. Environmental Science and Pollution Research, 29(32), 47988–48019. https://doi.org/10.1007/s11356-022-20637-9spa
dc.relation.referencesVannini, M., Marchese, P., Sisti, L., Saccani, A., Mu, T., Sun, H., & Celli, A. (2021). Integrated Efforts for the Valorization of Sweet Potato By-Products within a Circular Economy Concept: Biocomposites for Packaging Applications Close the Loop. Polymers, 13(7), 1048. https://doi.org/10.3390/polym13071048spa
dc.relation.referencesVeza, I., Muhamad Said, M. F., & Latiff, Z. A. (2021). Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass and Bioenergy, 144, 105919. https://doi.org/10.1016/j.biombioe.2020.105919spa
dc.relation.referencesVeza, I., Said, M. F. M., & Latiff, Z. A. (2019a). Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Processing Technology, 196, 106179. https://doi.org/10.1016/j.fuproc.2019.106179spa
dc.relation.referencesVeza, I., Said, M. F. M., & Latiff, Z. A. (2019b). Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Processing Technology, 196, 106179. https://doi.org/10.1016/j.fuproc.2019.106179spa
dc.relation.referencesWang, A., Sun, K., Xu, R., Sun, Y., & Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. https://doi.org/10.1016/j.jclepro.2020.125385spa
dc.relation.referencesWang, Y., Guo, W., Cheng, C.-L., Ho, S.-H., Chang, J.-S., & Ren, N. (2016). Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource Technology, 200, 557–564. https://doi.org/10.1016/j.biortech.2015.10.056spa
dc.relation.referencesWang, Y., Ho, S.-H., Cheng, C.-L., Nagarajan, D., Guo, W.-Q., Lin, C., Li, S., Ren, N., & Chang, J.-S. (2017). Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7–14. https://doi.org/10.1016/j.biortech.2017.03.122spa
dc.relation.referencesWang, Y., Ho, S.-H., Yen, H.-W., Nagarajan, D., Ren, N.-Q., Li, S., Hu, Z., Lee, D.-J., Kondo, A., & Chang, J.-S. (2017). Current advances on fermentative biobutanol production using third generation feedstock. Biotechnology Advances, 35(8), 1049–1059. https://doi.org/10.1016/j.biotechadv.2017.06.001spa
dc.relation.referencesWeizmann, C. (1919a). Production of acetone and alcohol, by bactebiological processes (Patent US1315585A).spa
dc.relation.referencesWeizmann, C. (1919b). PRODUCTION OF ACETONE AND ALCOHOL BY BACTEBIOLOGTCAL PROCESSES. (Patent US1315585A). https://patents.google.com/patent/US1315585A/en?oq=Patent+1%2C315%2C585%2C+1919.spa
dc.relation.referencesWen, H., Chen, H., Cai, D., Gong, P., Zhang, T., Wu, Z., Gao, H., Li, Z., Qin, P., & Tan, T. (2018). Integrated in situ gas stripping–salting-out process for high-titer acetone–butanol–ethanol production from sweet sorghum bagasse. Biotechnology for Biofuels, 11(1), 134. https://doi.org/10.1186/s13068-018-1137-5spa
dc.relation.referencesWen, H., Gao, H., Zhang, T., Wu, Z., Gong, P., Li, Z., Chen, H., Cai, D., Qin, P., & Tan, T. (2018). Hybrid pervaporation and salting-out for effective acetone-butanol-ethanol separation from fermentation broth. Bioresource Technology Reports, 2, 45–52. https://doi.org/10.1016/j.biteb.2018.04.005spa
dc.relation.referencesWen, Z., Wu, M., Lin, Y., Yang, L., Lin, J., & Cen, P. (2014). A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii to produce solvents from alkali extracted corn cobs. Process Biochemistry, 49(11), 1941–1949. https://doi.org/10.1016/j.procbio.2014.07.009spa
dc.relation.referencesWorld Nuclear Association. (n.d.). Heat Values of Various Fuels. https://world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspxspa
dc.relation.referencesWu, J., Dong, L., Liu, B., Xing, D., Zhou, C., Wang, Q., Wu, X., Feng, L., & Cao, G. (2020a). A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. Environmental Research, 186, 109580. https://doi.org/10.1016/j.envres.2020.109580spa
dc.relation.referencesWu, J., Dong, L., Zhou, C., Liu, B., Feng, L., Wu, C., Qi, Z., & Cao, G. (2019). Developing a coculture for enhanced butanol production by Clostridium beijerinckii and Saccharomyces cerevisiae. Bioresource Technology Reports, 6, 223–228. https://doi.org/10.1016/j.biteb.2019.03.006spa
dc.relation.referencesWu, Y., Wang, Z., Ma, X., & Xue, C. (2021). High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochemistry, 100, 20–25. https://doi.org/10.1016/j.procbio.2020.09.026spa
dc.relation.referencesWu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 16, 100445. https://doi.org/10.1016/j.mtbio.2022.100445spa
dc.relation.referencesXiao, H., Guo, F., Wang, R., Yang, X., Li, S., & Ruan, J. (2020). Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends. Fuel, 268, 117387. https://doi.org/10.1016/j.fuel.2020.117387spa
dc.relation.referencesXie, W., Zhang, Z., Bai, S., & Wu, Y.-R. (2022). Extracellular expression of agarolytic enzymes in Clostridium sp. strain and its application for butanol production from Gelidium amansii. Bioresource Technology, 363, 127962. https://doi.org/10.1016/j.biortech.2022.127962spa
dc.relation.referencesXu, G.-L., Yao, C.-D., & Rutland, C. J. (2014). Simulations of diesel–methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier–Stokes model. International Journal of Engine Research, 15(6), 751–769. https://doi.org/10.1177/1468087413516119spa
dc.relation.referencesXue, C., Du, G.-Q., Sun, J.-X., Chen, L.-J., Gao, S.-S., Yu, M.-L., Yang, S.-T., & Bai, F.-W. (2014). Characterization of gas stripping and its integration with acetone–butanol–ethanol fermentation for high-efficient butanol production and recovery. Biochemical Engineering Journal, 83, 55–61. https://doi.org/10.1016/j.bej.2013.12.003spa
dc.relation.referencesYang, J., Cai, D., Liu, X., Zhu, L., Zhang, C., Peng, Q., Han, Y., Liu, G., & Yang, M. (2023a). Glucose Conversion for Biobutanol Production from Fresh Chlorella sorokiniana via Direct Enzymatic Hydrolysis. Fermentation, 9(3), 284. https://doi.org/10.3390/fermentation9030284spa
dc.relation.referencesYang, J., Cai, D., Liu, X., Zhu, L., Zhang, C., Peng, Q., Han, Y., Liu, G., & Yang, M. (2023b). Glucose Conversion for Biobutanol Production from Fresh Chlorella sorokiniana via Direct Enzymatic Hydrolysis. Fermentation, 9(3), 284. https://doi.org/10.3390/fermentation9030284spa
dc.relation.referencesYousif, I. E., & Saleh, A. M. (2023a). Butanol-gasoline blends impact on performance and exhaust emissions of a four stroke spark ignition engine. Case Studies in Thermal Engineering, 41, 102612. https://doi.org/10.1016/j.csite.2022.102612spa
dc.relation.referencesYousif, I. E., & Saleh, A. M. (2023b). Butanol-gasoline blends impact on performance and exhaust emissions of a four stroke spark ignition engine. Case Studies in Thermal Engineering, 41, 102612. https://doi.org/10.1016/j.csite.2022.102612spa
dc.relation.referencesYu, W., & Dhital, S. (2024). Starch molecular structures and their relations with enzymic digestion. In Starch in Food (pp. 169–212). Elsevier. https://doi.org/10.1016/B978-0-323-96102-8.00003-6spa
dc.relation.referencesYusoff, M. N. A. M., Zulkifli, N. W. M., Masjuki, H. H., Harith, M. H., Syahir, A. Z., Kalam, M. A., Mansor, M. F., Azham, A., & Khuong, L. S. (2017). Performance and emission characteristics of a spark ignition engine fuelled with butanol isomer-gasoline blends. Transportation Research Part D: Transport and Environment, 57, 23–38. https://doi.org/10.1016/j.trd.2017.09.004spa
dc.relation.referencesZetty-Arenas, A. M., Tovar, L. P., Alves, R. F., Mariano, A. P., van Gulik, W., Maciel Filho, R., & Freitas, S. (2021). Co-fermentation of sugarcane bagasse hydrolysate and molasses by Clostridium saccharoperbutylacetonicum: Effect on sugar consumption and butanol production. Industrial Crops and Products, 167, 113512. https://doi.org/10.1016/j.indcrop.2021.113512spa
dc.relation.referencesZhang, J., Zhou, H., Liu, D., & Zhao, X. (2020). Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. In Lignocellulosic Biomass to Liquid Biofuels (pp. 17–65). Elsevier. https://doi.org/10.1016/B978-0-12-815936-1.00002-2spa
dc.relation.referencesZhang, K., Hong, Y., Chen, C., & Wu, Y.-R. (2021). Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii through a distinct acidolytic pretreatment. Bioresource Technology, 342, 125939. https://doi.org/10.1016/j.biortech.2021.125939spa
dc.relation.referencesZhang, W., Zhang, Y. G., & Liu, Z. (2012). Effect of Different Absorbents on Fermentation Quality of Wet Potato Pulp. Journal of Animal and Veterinary Advances, 11(22), 4230–4235. https://doi.org/10.3923/javaa.2012.4230.4235spa
dc.relation.referencesZhang, Z.-H., & Balasubramanian, R. (2014). Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine. Applied Energy, 119, 530–536. https://doi.org/10.1016/j.apenergy.2014.01.043spa
dc.relation.referencesZhao, Y., Liu, S., Han, X., Zhou, Z., & Mao, J. (2022). Combined effects of fermentation temperature and Saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in huangjiu fermentation. Food Microbiology, 108, 104091. https://doi.org/10.1016/j.fm.2022.104091spa
dc.relation.referencesZhen, X., Wang, Y., & Liu, D. (2020). Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renewable Energy, 147, 2494–2521. https://doi.org/10.1016/j.renene.2019.10.119spa
dc.relation.referencesZheng, Y.-N., Li, L.-Z., Xian, M., Ma, Y.-J., Yang, J.-M., Xu, X., & He, D.-Z. (2009). Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology, 36(9), 1127–1138. https://doi.org/10.1007/s10295-009-0609-9spa
dc.relation.referencesZhou, Z., Yang, S., Moore, C. D., Zhang, Q., Peng, S., & Li, H. (2020). Acetone, butanol, and ethanol production from puerariae slag hydrolysate through ultrasound-assisted dilute acid by Clostridium beijerinckii YBS3. Bioresource Technology, 316, 123899. https://doi.org/10.1016/j.biortech.2020.123899spa
dc.relation.referencesZhuang, W., Yang, J., Wu, J., Liu, D., Zhou, J., Chen, Y., & Ying, H. (2016). Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Advances, 6(40), 33695–33704. https://doi.org/10.1039/C5RA24923Fspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembCOMBUSTIBLES VEGETALESspa
dc.subject.lembVegetal fueleng
dc.subject.lembALMIDON DE PAPAspa
dc.subject.lembPotato starcheng
dc.subject.lembALCOHOL COMBUSTIBLEspa
dc.subject.lembAlcohol as fueleng
dc.subject.lembGASOHOLspa
dc.subject.proposalFermentación ABEspa
dc.subject.proposalBiobutanolspa
dc.subject.proposalHidrólisis enzimáticaspa
dc.subject.proposalBiomasaspa
dc.subject.proposalAprovechamiento de residuosspa
dc.subject.proposalABE Fermentationeng
dc.subject.proposalBiobutanoleng
dc.subject.proposalEnzymatic hydrolysiseng
dc.subject.proposalBiomasseng
dc.subject.proposalWaste valorizationeng
dc.titleEvaluación del potencial de valorización de residuos de papa como sustrato para la producción de biobutanol: una revisión críticaspa
dc.title.translatedEvaluation of the Potential for Valorization of Potato Waste as a Substrate for Biobutanol Production: A Critical Revieweng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1113677914.2024.pdf
Tamaño:
4.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: