Caracterización del rol de ALIX y CD9 en la ruta de biogénesis de vesículas extracelulares en un modelo celular de linaje mesenquimal humano
dc.contributor.advisor | Salguero López, Gustavo Andrés | spa |
dc.contributor.advisor | Cadavid Gutiérrez, Luis Fernando | spa |
dc.contributor.author | Hernández Mejía, David Guillermo | spa |
dc.contributor.cvlac | Hernández Mejía, David Guillermo [0001471126] | spa |
dc.contributor.googlescholar | Hernández Mejía, David Guillermo [David Hernández Mejía] | spa |
dc.contributor.orcid | Hernández Mejía, David Guillermo [0000000330437089] | spa |
dc.contributor.scopus | Hernández Mejía, David Guillemro [56389657100] | spa |
dc.date.accessioned | 2025-02-17T16:47:02Z | |
dc.date.available | 2025-02-17T16:47:02Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Las vesículas extracelulares (VEs) son microestructuras esféricas liberadas por las células como un mecanismo de comunicación celular, tanto a nivel local como sistémico. Estas vesículas desempeñan un papel esencial en la regulación de la homeostasis celular y están implicadas en diversas patologías, incluyendo el cáncer, enfermedades neurodegenerativas y autoinmunes. Su baja inmunogenicidad, toxicidad reducida y presencia en distintos fluidos corporales han despertado un creciente interés en su estudio, especialmente en aplicaciones diagnósticas y terapéuticas. Investigaciones recientes han profundizado en los mecanismos de biogénesis de las VEs, destacando el papel de complejos proteicos como ESCRT, así como de proteínas auxiliares como ALIX o estructurales como CD9, en su formación, selección y empaquetamiento de biomoléculas. Sin embargo, aún no se comprende completamente cómo las alteraciones en la expresión de estas proteínas podrían modificar las interacciones con el complejo ESCRT durante la biogénesis de VE, lo que podría cambiar las características estructurales, de producción, de contenido o funcionales. Resolver esta cuestión es crucial para optimizar la aplicación de VEs en la biomedicina y la biotecnología. Los modelos celulares basados en células de linaje mesenquimal (CLM), como la línea celular MRC-5, ofrecen una plataforma ideal para estudiar procesos de inmunomodulación en ambientes in vitro de inflamación. A partir de VEs derivadas de estas células de linaje mesenquimal humano se puede evaluar la funcionalidad de las VEs después de generar cambios en la expresión de ALIX y CD9, siguiendo los cambios en la inmunomodulación de células del sistema inmune en modelos in vitro de inflamación. Con base en lo anterior, el objetivo principal de esta investigación consistió en dilucidar el rol de las proteínas ALIX y CD9 durante la biogénesis de VEs derivadas de células de linaje mesenquimal humano a través de alteraciones en la expresión de estas proteínas y el impacto generado las características estructurales, concentración, selección de contenido y funcionales de las VEs en un modelo biológico de inmunomodulación. Los resultados conseguidos en la tesis evidenciaron que ALIX y CD9 cumplen funciones fundamentales y complementarias durante la biogénesis de las VEs. Las modificaciones genéticas llevadas a cabo en la línea celular de linaje mesenquimal humano, MRC-5, demostraron la importancia de ALIX y CD9 como reguladores esenciales de la maquinaria del complejo X ESCRT, participando en la selección de biomoléculas y en la escisión y posterior liberación de las VEs (Texto tomado de la fuente). | spa |
dc.description.abstract | Abstract Extracellular vesicles (EVs) are spherical microstructures released by cells as a mechanism of cellular communication at both local and systemic levels. These vesicles play a crucial role in regulating cellular homeostasis and are involved in various pathologies, including cancer, neurodegenerative diseases, and autoimmune disorders. Their low immunogenicity, reduced toxicity, and presence in different bodily fluids have generated increasing interest in their study, particularly for diagnostic and therapeutic applications. Recent research has deepened our understanding of EV biogenesis mechanisms, highlighting the role of protein complexes such as ESCRT, as well as auxiliary proteins like ALIX and structural proteins like CD9, in their formation, selection, and packaging of biomolecules. However, the extent to which alterations in the expression of these proteins may modify their interactions with the ESCRT complex during EV biogenesis remains incompletely understood, potentially affecting structural characteristics, production, content, or functional properties. Addressing this question is crucial for optimizing the application of EVs in biomedicine and biotechnology. Cell models based on mesenchymal lineage cells (MLCs), such as the MRC-5 cell line, provide an ideal platform for studying immunomodulatory processes in in vitro inflammation environments. EVs derived from these human mesenchymal lineage cells can be used to evaluate their functionality after inducing changes in ALIX and CD9 expression, thereby assessing subsequent immunomodulatory effects on immune system cells in in vitro inflammation models. Based on these premises, the main objective of this research was to elucidate the role of ALIX and CD9 proteins during the biogenesis of EVs derived from human mesenchymal lineage cells by altering their expression and analyzing the impact on the structural characteristics, concentration, content selection, and functional properties of EVs in a biological immunomodulation model. The findings of this study demonstrated that ALIX and CD9 play fundamental and complementary roles in EV biogenesis. Genetic modifications performed in the human mesenchymal lineage cell line MRC-5 underscored the importance of ALIX and CD9 as essential regulators of the ESCRT complex machinery, participating in biomolecule selection as well as in membrane scission and subsequent EV release. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Genética Humana | spa |
dc.description.methods | Para cumplir los objetivos planteados en el trabajo se dividió la metodología en cuatro fases: El silenciamiento de un gen facilita la comprensión de su papel en una vía de biogénesis al analizar las repercusiones de su falta en los procesos específicos de la célula. Al limitar su expresión, es posible examinar qué fases del proceso se ven modificadas o interrumpidas, lo que ofrece indicios esenciales acerca de su función, ya sea en la formación, liberación o composición de estructuras como las vesículas extracelulares. Por tal motivo, en una primera fase se generaron varias de líneas celulares MRC-5 silenciadas para el gen ALIX del complejo ESCRT y se determinó el nivel de silenciamiento o reducción de la expresión de este gen con el fin de cumplir la primera parte del objetivo. Para obtener las líneas celulares MRC-5 silenciadas parcialmente (Knockdown) o totalmente (Knock out) para el gen ALIX se utilizaron dos metodologías de transfección distintas. En el primer método de transfección se realizó una nucleofección de un plásmido de expresión del sistema CRISPR-Cas9 asociado a un gen de resistencia a la puromicina para su selección (pSpCas9(BB)-2A-Puro_ pX459 v2.0). El vector seleccionado tiene un sitio de inserción de los sgARN, que previamente fueron seleccionados bioinformáticamente, y clonados en el vector. Las sgARN diseñas van dirigidas a secuencias en los exones 1 y 5 del gen ALIX. Para la clonación en el vector, se realizó la hibridación de ambas hebras, su clonación en el plásmido y se confirmaron tanto por PCR convencional como por secuenciación Sanger. La endonucleasa Cas9 se expresa en conjunto con la ARN guías dentro de las células MRC-5 nucleofectadas para que generen un corte en la región codificante y mediante una reparación de unión de extremos no homólogos (NHEJ) introducir indels para que generen una mutación “frameshift” o de desplazamiento de marco de lectura y finalmente, un codón de parada prematuro y tener un knock out para ALIX. Para la selección de solo las células modificas, posterior a la nucleofección se colocaron las células MRC-5 en cultivo con el antibiótico puromicina, que a altas concentraciones es letal para las células eucariotas. Para evaluar el silenciamiento obtenido por este método se realizaron varias pruebas: (i) Una marcación intracelular de una cola de histidinas DYKDDDDK (Flag) que también se expresa el plásmido nucleofectado por citometría de flujo, (ii) una cuantificación relativa de la expresión de génica de ALIX y Beta 2 microglobulina (B2M) por RT-qPCR, (iii) también se realizó inmunotransferencia o Western Blot para evaluar expresión a nivel de proteína de ALIX frente a la proteína GAPDH como control y (iv) por último, se confirmó por secuenciación Sanger si las células seleccionada contenía algún indel en los exones. | spa |
dc.description.researcharea | Terapia celular y génica | spa |
dc.format.extent | 215 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87503 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Genética Humana | spa |
dc.relation.references | Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946 Nov;166(1):189–97. | spa |
dc.relation.references | Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967 May;13(3):269–88. | spa |
dc.relation.references | Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. | spa |
dc.relation.references | Lötvall J, Hill AF, Hochberg F, Buzás EI, Vizio D Di, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Vol. 3, Journal of Extracellular Vesicles. Co-Action Publishing; 2014. | spa |
dc.relation.references | Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol. 2020 Aug; | spa |
dc.relation.references | Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. | spa |
dc.relation.references | Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019 Jul;10(1):1–12. | spa |
dc.relation.references | Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci. 2017 Jan;42(1):42–56. | spa |
dc.relation.references | Larios J, Mercier V, Roux A, Gruenberg J. ALIX- And ESCRT-III-dependent sorting of tetraspanins to exosomes. Journal of Cell Biology. 2020 Mar 2;219(3). | spa |
dc.relation.references | Johnstone RM. Exosomes biological significance: A concise review. Blood Cells Mol Dis. 2006;36(2):315–21. | spa |
dc.relation.references | Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013 Dec;126(Pt 24):5553–65. | spa |
dc.relation.references | Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008 Sep;8(9):726–36. | spa |
dc.relation.references | Cheng Y, Cao X, Qin L. Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Novel Cell-Free Therapy for Sepsis. Front Immunol. 2020;11:647. | spa |
dc.relation.references | Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res. 2016 Aug;64(4):831–40. | spa |
dc.relation.references | Zhang K, Na T, Wang L, Gao Q, Yin W, Wang J, et al. Human diploid MRC-5 cells exhibit several critical properties of human umbilical cord-derived mesenchymal stem cells. Vaccine. 2014 Nov 28;32(50):6820–7. | spa |
dc.relation.references | Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol [Internet]. 1967 May;13(3):269–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6025241 | spa |
dc.relation.references | Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39. | spa |
dc.relation.references | Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987 Jul;262(19):9412–20. | spa |
dc.relation.references | Harding C, Heuser J, Stahl P. Receptor-mediated Endocytosis of Transferrin and of the Transferrin Receptor in Rat Reticulocytes Recycling [Internet]. Vol. 97, THE JOURNAL OF CELL BIOLOGY • VOLUME. 1983. | spa |
dc.relation.references | Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding C V, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine. 1996 Mar 1;183(3):1161–72. | spa |
dc.relation.references | Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006 May;20(5):847–56. | spa |
dc.relation.references | Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–9. | spa |
dc.relation.references | van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018 Apr 17;19(4):213–28. | spa |
dc.relation.references | Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104. | spa |
dc.relation.references | Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Front Cell Infect Microbiol. 2020;10:346. | spa |
dc.relation.references | Zhao K, Bleackley M, Chisanga D, Gangoda L, Fonseka P, Liem M, et al. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Commun Biol. 2019;2:305. | spa |
dc.relation.references | Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci. 2019 Nov;20(22). | spa |
dc.relation.references | Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal. 2019 Feb;30(6):813–56. | spa |
dc.relation.references | Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. Vol. 4, Journal of Extracellular Vesicles. Co-Action Publishing; 2015. p. 1–60. | spa |
dc.relation.references | Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. 2016 Apr;36(3):301–12. | spa |
dc.relation.references | Aheget H, Tristán-Manzano M, Mazini L, Cortijo-Gutierrez M, Galindo-Moreno P, Herrera C, et al. Exosome: A New Player in Translational Nanomedicine. J Clin Med. 2020 Jul;9(8). | spa |
dc.relation.references | Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010 Jan;12(1):13–9. | spa |
dc.relation.references | Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res. 2017 Apr;66:30–41. | spa |
dc.relation.references | Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Fauré J, et al. Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization. Science (1979). 2004;303(5657):531–4. | spa |
dc.relation.references | Orefice NS. Development of New Strategies Using Extracellular Vesicles Loaded with Exogenous Nucleic Acid. Pharmaceutics. 2020 Jul;12(8). | spa |
dc.relation.references | Pathan M, Fonseka P, Chitti S V, Kang T, Sanwlani R, Van Deun J, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2019 Jan;47(D1):D516–9. | spa |
dc.relation.references | Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016 Feb;428(4):688–92. | spa |
dc.relation.references | Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015 Mar;31(6):933–9. | spa |
dc.relation.references | Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Vol. 19, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2018. p. 213–28. | spa |
dc.relation.references | Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. | spa |
dc.relation.references | Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012 Feb;56(2):293–304. | spa |
dc.relation.references | Doyle L, Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019 Jul 15;8(7):727. | spa |
dc.relation.references | Lu M, Xing H, Yang Z, Sun Y, Yang T, Zhao X, et al. Recent advances on extracellular vesicles in therapeutic delivery: Challenges, solutions, and opportunities. Eur J Pharm Biopharm. 2017 Oct;119:381–95. | spa |
dc.relation.references | Lucchetti D, Fattorossi A, Sgambato A. Extracellular Vesicles in Oncology: Progress and Pitfalls in the Methods of Isolation and Analysis. Biotechnol J. 2019;14(1):1–33. | spa |
dc.relation.references | Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, et al. The Exosome Total Isolation Chip. ACS Nano. 2017 Nov;11(11):10712–23. | spa |
dc.relation.references | Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological guidelines to study extracellular vesicles. Vol. 120, Circulation Research. Lippincott Williams and Wilkins; 2017. p. 1632–48. | spa |
dc.relation.references | van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010 Dec;8(12):2596–607. | spa |
dc.relation.references | Gardiner C, Shaw M, Hole P, Smith J, Tannetta D, Redman CW, et al. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J Extracell Vesicles. 2014;3(1). | spa |
dc.relation.references | Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: Toward clinical application. Journal of Clinical Investigation. 2016;126(4):1152–62. | spa |
dc.relation.references | Gurunathan S, Kang M hee, Jeyaraj M, Qasim M, Kim J hoi. Function, and Multifarious Therapeutic Approaches of Exosomes. 2019; | spa |
dc.relation.references | Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int J Mol Sci. 2017 May;18(6). | spa |
dc.relation.references | Serrano-Pertierra E, Oliveira-Rodríguez M, Matos M, Gutiérrez G, Moyano A, Salvador M, et al. Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules. 2020 May;10(6). | spa |
dc.relation.references | Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020 Apr;17(4):323–34. | spa |
dc.relation.references | O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585–606. | spa |
dc.relation.references | Gilligan KE, Dwyer RM. Extracellular Vesicles for Cancer Therapy: Impact of Host Immune Response. Cells. 2020 Jan;9(1). | spa |
dc.relation.references | Tesovnik T, Kovač J, Pohar K, Hudoklin S, Dovč K, Bratina N, et al. Extracellular Vesicles Derived Human-miRNAs Modulate the Immune System in Type 1 Diabetes. Front Cell Dev Biol. 2020;8:202. | spa |
dc.relation.references | D’Anca M, Fenoglio C, Serpente M, Arosio B, Cesari M, Scarpini EA, et al. Exosome determinants of physiological aging and age-related neurodegenerative diseases. Front Aging Neurosci. 2019;11(AUG):1–13. | spa |
dc.relation.references | Lim CZJ, Natalia A, Sundah NR, Shao H. Biomarker Organization in Circulating Extracellular Vesicles: New Applications in Detecting Neurodegenerative Diseases. Adv Biosyst. 2020 Jun;e1900309. | spa |
dc.relation.references | Eitan E, Green J, Bodogai M, Mode NA, Bæk R, Jørgensen MM, et al. Age-Related Changes in Plasma Extracellular Vesicle Characteristics and Internalization by Leukocytes. Sci Rep. 2017 May;7(1):1342. | spa |
dc.relation.references | Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019;8(4):307. | spa |
dc.relation.references | Kanada M, Bachmann MH, Hardy JW, Omar D, Bronsart L, Wang A, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci U S A. 2015 Mar;112(12):E1433-42. | spa |
dc.relation.references | Cabeza L, Perazzoli G, Peña M, Cepero A, Luque C, Melguizo C, et al. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Release. 2020 Nov;327:296–315. | spa |
dc.relation.references | Sil S, Dagur RS, Liao K, Peeples ES, Hu G, Periyasamy P, et al. Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. J Neuroimmune Pharmacol. 2020 Sep;15(3):422–42. | spa |
dc.relation.references | Lelek J, Zuba-Surma EK. Perspectives for Future Use of Extracellular Vesicles from Umbilical Cord- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells in Regenerative Therapies-Synthetic Review. Int J Mol Sci. 2020 Jan;21(3). | spa |
dc.relation.references | Diomede F, Gugliandolo A, Cardelli P, Merciaro I, Ettorre V, Traini T, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther. 2018 Apr;9(1):104. | spa |
dc.relation.references | Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Vol. 8, Cells. MDPI; 2019. | spa |
dc.relation.references | Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83. | spa |
dc.relation.references | Colombo M, Moita C, Niel G Van, Kowal J, Vigneron J. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. 2011; | spa |
dc.relation.references | Schöneberg J, Lee IH, Iwasa JH, Hurley JH. Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol. 2016;18(1):5–17. | spa |
dc.relation.references | Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Vol. 42, Trends in Biochemical Sciences. Elsevier Ltd; 2017. p. 42–56. | spa |
dc.relation.references | Zhou X, Si J, Corvera J, Gallick GE, Kuang J. Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. Biochemical Journal. 2010 Dec 15;432(3):525–34. | spa |
dc.relation.references | Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012 Jul;14(7):677–85. | spa |
dc.relation.references | Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol [Internet]. 2021 Jan 8;23(1):11–22. Available from: https://www.nature.com/articles/s41556-020-00620-7 | spa |
dc.relation.references | Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, et al. Structural insights into tetraspanin CD9 function. Nat Commun. 2020 Dec 1;11(1). | spa |
dc.relation.references | Toribio V, Yáñez-Mó M. Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. Eur J Cell Biol. 2022 Aug 1;101(3). | spa |
dc.relation.references | Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5(SEP). | spa |
dc.relation.references | Jankovičová J, Sečová P, Michalková K, Antalíková J. Tetraspanins, more than markers of extracellular vesicles in reproduction. Vol. 21, International Journal of Molecular Sciences. MDPI AG; 2020. p. 1–30. | spa |
dc.relation.references | Brzozowski JS, Bond DR, Jankowski H, Goldie BJ, Burchell R, Naudin C, et al. Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci Rep. 2018 Dec 1;8(1). | spa |
dc.relation.references | Rädler J, Gupta D, Zickler A, Andaloussi S EL. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Vol. 31, Molecular Therapy. Cell Press; 2023. p. 1231–50. | spa |
dc.relation.references | Neda B, Sai Priyanka K, Mujib U. Role of CD9 Sensing, AI, and Exosomes in Cellular Communication of Cancer. Int J Stem Cell Res Ther. 2023 Dec 31;10(1). | spa |
dc.relation.references | Palmulli R, Van Niel G. To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Vol. 62, Essays in Biochemistry. Portland Press Ltd; 2018. p. 177–91. | spa |
dc.relation.references | Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: Endosomal functions and beyond. Semin Cell Dev Biol. 2018 Feb;74:21–8. | spa |
dc.relation.references | Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs. Nat Rev Mol Cell Biol. 2020 Jan;21(1):25–42. | spa |
dc.relation.references | Stuffers S, Brech A, Stenmark H. ESCRT proteins in physiology and disease. Exp Cell Res. 2009 May;315(9):1619–26. | spa |
dc.relation.references | Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs. Vol. 21, Nature Reviews Molecular Cell Biology. Nature Research; 2020. p. 25–42 | spa |
dc.relation.references | Friedenstein AJ, Chailakhyan RK, Latsinik N V., Panasyuk AF, Keiliss-Borok I V. Stromal Cells Responsible for Transferring the Microenvironment of the Hemopoietic Tissues. Vol. 17, Transplantation. 1974. p. 331–40. | spa |
dc.relation.references | Caplan AI. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991 Sep;9(5):641–50. | spa |
dc.relation.references | Cai J, Wu J, Wang J, Li Y, Hu X, Luo S, et al. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci. 2020;10:69. | spa |
dc.relation.references | Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. | spa |
dc.relation.references | Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016 Aug;7(1):125. | spa |
dc.relation.references | Cruz-Barrera M, Flórez-Zapata N, Lemus-Diaz N, Medina C, Galindo CC, González-Acero LX, et al. Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Front Immunol. 2020;11(September):1–19. | spa |
dc.relation.references | Jacobs JP. The status of human diploid cell strain MRC-5 as an approved substrate for the production of viral vaccines. J Biol Stand [Internet]. 1976 Jan;4(2):97–9. | spa |
dc.relation.references | Pellegrini V, Fineschi N, Matteucci G, Marsili I, Nencioni L, Puddu M, et al. Preparation and immunogenicity of an inactivated hepatitis A vaccine. Vaccine [Internet]. 1993 Jan;11(3):383–7. | spa |
dc.relation.references | Alirezaie B, Taqavian M, Aghaiypour K, Esna-Ashari F, Shafyi A. Phenotypic and genomic analysis of serotype 3 sabin poliovirus vaccine produced in MRC-5 Cell substrate. J Med Virol. 2011 May;83(5):897–903 | spa |
dc.relation.references | Salguero G, Daenthanasanmak A, Münz C, Raykova A, Guzmán CA, Riese P, et al. Dendritic Cell–Mediated Immune Humanization of Mice: Implications for Allogeneic and Xenogeneic Stem Cell Transplantation. The Journal of Immunology [Internet]. 2014 May 15;192(10):4636–47. | spa |
dc.relation.references | Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol. 2020;8:665. | spa |
dc.relation.references | Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6. | spa |
dc.relation.references | Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. | spa |
dc.relation.references | Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells. 2008;26(1):151–62. | spa |
dc.relation.references | Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, et al. Human Mesenchymal Stem Cells Promote Survival of T Cells in a Quiescent State. Stem Cells. 2007;25(7):1753–60. | spa |
dc.relation.references | Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72. | spa |
dc.relation.references | Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. | spa |
dc.relation.references | Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med [Internet]. 2019 Dec 2;4(1):22. | spa |
dc.relation.references | Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010 Jul;5(7):e11803. | spa |
dc.relation.references | Xie H, Gao F, Guo AY, Lei Q, Liu T, Ren W, et al. Microvesicles as Potential Biomarkers for the Identification of Senescence in Human Mesenchymal Stem Cells. Theranostics. 2017;7(10):2673–89. | spa |
dc.relation.references | Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res. 2012 Feb;11(2):839–49. | spa |
dc.relation.references | Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 2018 Sep;9(1):247. | spa |
dc.relation.references | Adlerz K, Patel D, Rowley J, Ng K, Ahsan T. Strategies for scalable manufacturing and translation of MSC-derived extracellular vesicles. Stem Cell Res. 2020 Oct;48:101978 | spa |
dc.relation.references | Fattore A Del, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24(12):2615–27. | spa |
dc.relation.references | Lai RC, Yeo RWY, Tan KH, Lim SK. Exosomes for drug delivery - A novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31(5):543–51. | spa |
dc.relation.references | Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, et al. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS Nano. 2019;13(9):10015–28. | spa |
dc.relation.references | Nazari-Shafti TZ, Neuber S, Garcia Duran A, Xu Z, Beltsios E, Seifert M, et al. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med. 2020 Aug; | spa |
dc.relation.references | Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256. | spa |
dc.relation.references | Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep. 2013;3:1197. | spa |
dc.relation.references | Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells. 2020 Aug 26;12(8):814–40. | spa |
dc.relation.references | Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Vol. 28, Leukemia. England; 2014. p. 970–3. | spa |
dc.relation.references | Favaro E, Carpanetto A, Caorsi C, Giovarelli M, Angelini C, Cavallo-Perin P, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia. 2016 Feb;59(2):325–33. | spa |
dc.relation.references | Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016 Nov 6;30(11):2221–31. | spa |
dc.relation.references | Börger V, Weiss DJ, Anderson JD, Borràs FE, Bussolati B, Carter DRF, et al. International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronaviru. Cytotherapy. 2020;22(9):482–5. | spa |
dc.relation.references | Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili S V. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications. Front Cell Dev Biol. 2020;8:149. | spa |
dc.relation.references | Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Vol. 19, Nature Reviews Nephrology. Nature Research; 2023. p. 9–22. | spa |
dc.relation.references | Zhang L, Lu Q, Chang C. Epigenetics in Health and Disease. In: Journal of Cell Science [Internet]. 2020. p. 3–55. Available from: http://link.springer.com/10.1007/978-981-15-3449-2_1 | spa |
dc.relation.references | Moore LD, Le T, Fan G. DNA methylation and its basic function. Vol. 38, Neuropsychopharmacology. 2013. p. 23–38. | spa |
dc.relation.references | Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, et al. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Vol. 9, Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A.; 2021 | spa |
dc.relation.references | Shi B, Xue M, Wang Y, Wang Y, Li D, Zhao X, et al. An improved method for increasing the efficiency of gene transfection and transduction. Int J Physiol Pathophysiol Pharmacol [Internet]. 2018 Jul 1;10(2):95–104. | spa |
dc.relation.references | Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Vol. 23, Biomaterials Research. BioMed Central Ltd.; 2019. | spa |
dc.relation.references | Kumar P, Nagarajan A, Uchil PD. Transfection of Mammalian Cells with Calcium Phosphate–DNA Coprecipitates. Cold Spring Harb Protoc [Internet]. 2019 Oct 1;2019(10):pdb.top096255. | spa |
dc.relation.references | Sork H, Nordin JZ, Turunen JJ, Wiklander OP, Bestas B, Zaghloul EM, et al. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency. Mol Ther Nucleic Acids. 2016;5:e290 | spa |
dc.relation.references | Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, et al. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci [Internet]. 2018 Mar 13;253(4):117–40. | spa |
dc.relation.references | Kim TK, Eberwine JH. Mammalian cell transfection: The present and the future. Anal Bioanal Chem. 2010 Aug;397(8):3173–8. | spa |
dc.relation.references | Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Dahm R. High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc. 2007 Jun 28;2(7):1692–704. | spa |
dc.relation.references | Meng L, Liu X, Wang Y, Zhang W, Zhou W, Cai F, et al. Sonoporation of Cells by a Parallel Stable Cavitation Microbubble Array. Advanced Science. 2019 Sep 1;6(17). | spa |
dc.relation.references | Wang Y, Cui H, Li K, Sun C, Du W, Cui J, et al. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One. 2014 Jul 21;9(7) | spa |
dc.relation.references | Chow YT, Chen S, Wang R, Liu C, Kong C wing, Li RA, et al. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Sci Rep [Internet]. 2016 Apr 12;6(1):24127. | spa |
dc.relation.references | Tiefenboeck P, Kim JA, Leroux JC. Intracellular delivery of colloids: Past and future contributions from microinjection. Adv Drug Deliv Rev [Internet]. 2018 Jul 2;132(3):3–15. | spa |
dc.relation.references | Bergmann-Leitner ES, Leitner WW. Vaccination Using Gene-Gun Technology. In: EMBO reports [Internet]. Springer Science and Business Media LLC; 2015. p. 289–302. | spa |
dc.relation.references | Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K. Single cell optical transfection. Vol. 7, Journal of the Royal Society Interface. Royal Society; 2010. p. 863–71. | spa |
dc.relation.references | Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: A technical review. Vol. 9, PeerJ. PeerJ Inc.; 2021. | spa |
dc.relation.references | Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Vol. 8, Genes. MDPI AG; 2017. | spa |
dc.relation.references | Elsner C, Bohne J. The retroviral vector family: something for everyone. Virus Genes [Internet]. 2017 Oct 31;53(5):714–22. | spa |
dc.relation.references | Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Vol. 32, Leukemia. Nature Publishing Group; 2018. p. 1529–41. | spa |
dc.relation.references | Fernández-Frías I, Pérez-Luz S, Díaz-Nido J. Enhanced Production of Herpes Simplex Virus 1 Amplicon Vectors by Gene Modification and Optimization of Packaging Cell Growth Medium. Mol Ther Methods Clin Dev. 2020 Jun 12;17:491–6. | spa |
dc.relation.references | Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-capacity adenoviral vectors: Expanding the scope of gene therapy. Vol. 21, International Journal of Molecular Sciences. MDPI AG; 2020. | spa |
dc.relation.references | Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Vol. 4, Genes and Diseases. Chongqing University; 2017. p. 43–63. | spa |
dc.relation.references | Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Vol. 22, Molecular Cancer. BioMed Central Ltd; 2023. | spa |
dc.relation.references | Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature [Internet]. 2015 Jan 29;517(7536):583–8. | spa |
dc.relation.references | Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, Nakamura M, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell. 2021 Oct 21;81(20):4333-4345.e4. | spa |
dc.relation.references | Friedrich M, Aigner A. Therapeutic siRNA: State-of-the-Art and Future Perspectives. Vol. 36, BioDrugs. Adis; 2022. p. 549–71. | spa |
dc.relation.references | Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: Similarities and differences. Vol. 61, Advanced Drug Delivery Reviews. 2009. p. 746–59. | spa |
dc.relation.references | Goel K, Ploski JE. RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Vol. 15, Frontiers in Molecular Neuroscience. Frontiers Media S.A.; 2022. | spa |
dc.relation.references | Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, et al. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. Mol Ther Nucleic Acids. 2017 Dec 1;9:89–99. | spa |
dc.relation.references | Hsieh AC, Bo R, Manola J, Vazquez F, Bare O, Khvorova A, et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: Determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 2004;32(3):893–901. | spa |
dc.relation.references | Takasaki S. Methods for selecting effective siRNA target sequences using a variety of statistical and analytical techniques. Methods in Molecular Biology. 2013;942:17–55. | spa |
dc.relation.references | Ui-Tei K. Optimal choice of functional and off-target effect-reduced siRNAs for RNAi therapeutics. Vol. 4, Frontiers in Genetics. 2013. | spa |
dc.relation.references | Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004 Mar;22(3):326–30. | spa |
dc.relation.references | Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun. 2004 Apr 16;316(4):1050–8. | spa |
dc.relation.references | Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, et al. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol. 2005 Aug;23(8):995–1001. | spa |
dc.relation.references | Filhol O, Ciais D, Lajaunie C, Charbonnier P, Foveau N, Vert JP, et al. DSIR: Assessing the Design of Highly Potent siRNA by Testing a Set of Cancer-Relevant Target Genes. PLoS One. 2012 Oct 30;7(10). | spa |
dc.relation.references | Ichihara M, Murakumo Y, Masuda A, Matsuura T, Asai N, Jijiwa M, et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res. 2007 Sep;35(18). | spa |
dc.relation.references | Katoh T, Suzuki T. Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acids Res. 2007 Feb;35(4). | spa |
dc.relation.references | Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. | spa |
dc.relation.references | Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, et al. A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. Cell. 2006 Mar 24;124(6):1283–98. | spa |
dc.relation.references | Himes BT, Fain CE, Tritz ZP, Nesvick CL, Jin-Lee HJ, Geiger PA, et al. Use of heparin to rescue immunosuppressive monocyte reprogramming by glioblastoma-derived extracellular vesicles. J Neurosurg. 2023 May 1;138(5):1291–301. | spa |
dc.relation.references | Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, et al. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5194–200. | spa |
dc.relation.references | Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024 Feb 1;13(2). | spa |
dc.relation.references | Toh WS, Lai RC, Zhang B, Lim SK. MSC exosome works through a protein-based mechanism of action. Vol. 46, Biochemical Society Transactions. Portland Press Ltd; 2018. p. 843–53. | spa |
dc.relation.references | Buzas EI. The roles of extracellular vesicles in the immune system. Vol. 23, Nature Reviews Immunology. Nature Research; 2023. p. 236–50. | spa |
dc.relation.references | Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, et al. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: Present and future. Vol. 10, Journal of Extracellular Vesicles. John Wiley and Sons Inc; 2021. | spa |
dc.relation.references | Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, et al. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 2020 Jun 15;391(2). | spa |
dc.relation.references | Gilligan KE, Dwyer RM. Extracellular vesicles for cancer therapy: Impact of host immune response. Vol. 9, Cells. Multidisciplinary Digital Publishing Institute (MDPI); 2020. | spa |
dc.relation.references | Ju Y, Bai H, Ren L, Zhang L. The role of exosome and the escrt pathway on enveloped virus infection. Vol. 22, International Journal of Molecular Sciences. MDPI; 2021 | spa |
dc.relation.references | Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Vol. 8, Cells. MDPI; 2019. | spa |
dc.relation.references | Jeske R, Bejoy J, Marzano M, Li Y. Human pluripotent stem cell-derived extracellular vesicles: Characteristics and applications. Vol. 26, Tissue Engineering - Part B: Reviews. Mary Ann Liebert Inc.; 2020. p. 129–44. | spa |
dc.relation.references | Cone AS, Hurwitz SN, Lee GS, Yuan X, Zhou Y, Li Y, et al. Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Mol Cell Biol. 2020 Jul 30;21(1). | spa |
dc.relation.references | Matsui T, Osaki F, Hiragi S, Sakamaki Y, Fukuda M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 2021 May 5;22(5). | spa |
dc.relation.references | Sun R, Liu Y, Lu M, Ding Q, Wang P, Zhang H, et al. ALIX increases protein content and protective function of iPSC-derived exosomes. J Mol Med. 2019 Jun 1;97(6):829–44. | spa |
dc.relation.references | Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. Journal of Biological Chemistry. 2013 Apr 26;288(17):11649–61. | spa |
dc.relation.references | Fan J, Zhu GZ, Niles RM. Expression and function of CD9 in melanoma cells. Mol Carcinog. 2010 Jan;49(1):85–93. | spa |
dc.relation.references | Li Y, Yu S, Li L, Chen J, Quan M, Li Q, et al. KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis. 2020 Apr 1;11(4). | spa |
dc.relation.references | Ondruššek R, Kvokačková B, Kryštofová K, Brychtová S, Souček K, Bouchal J. Prognostic value and multifaceted roles of tetraspanin CD9 in cancer. Vol. 13, Frontiers in Oncology. Frontiers Media S.A.; 2023. | spa |
dc.relation.references | York SB, Sun L, Cone AS, Duke LC, Cheerathodi MR, Meckes DG. Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. 2021; Available from: https://doi.org/10.1128/mSphere | spa |
dc.relation.references | Böker KO, Lemus-Diaz N, Rinaldi Ferreira R, Schiller L, Schneider S, Gruber J. The Impact of the CD9 Tetraspanin on Lentivirus Infectivity and Exosome Secretion. Molecular Therapy. 2018 Feb 7;26(2):634–47. | spa |
dc.relation.references | Buschow SI, Nolte-’t Hoen ENM, van Niel G, Pols MS, ten Broeke T, Lauwen M, et al. MHC II In dendritic cells is targeted to lysosomes or t cell-induced exosomes via distinct multivesicular body pathways. Traffic. 2009 Oct;10(10):1528–42. | spa |
dc.relation.references | Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: A novel mechanism that antagonizes Wnt signaling. Journal of Cell Biology. 2010 Sep 20;190(6):1079–91. | spa |
dc.relation.references | Giassafaki LPN, Siqueira S, Panteris E, Psatha K, Chatzopoulou F, Aivaliotis M, et al. Towards analyzing the potential of exosomes to deliver microRNA therapeutics. J Cell Physiol. 2021 Feb 1;236(2):1529–44. | spa |
dc.relation.references | Liu P, Yang S, Shao X, Li C, Wang Z, Dai H, et al. Mesenchymal Stem Cells-Derived Exosomes Alleviate Acute Lung Injury by Inhibiting Alveolar Macrophage Pyroptosis. Stem Cells Transl Med. 2024 Apr 1;13(4):371–86 | spa |
dc.relation.references | Iavello A, Frech VSL, Gai C, Deregibus MC, Quesenberry PJ, Camussi G. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med. 2016 Apr 1;37(4):958–66. | spa |
dc.relation.references | Bellotti C, Stäuble A, Steinfeld R. CD9 and folate receptor overexpression are not sufficient for VSV-G-independent lentiviral transduction. PLoS One. 2022 Mar 1;17(3 March). | spa |
dc.relation.references | Williams S, Fernandez-Rhodes M, Law A, Peacock B, Lewis MP, Davies OG. Comparison of extracellular vesicle isolation processes for therapeutic applications. J Tissue Eng. 2023 Jan 1;14. | spa |
dc.relation.references | Valkonen S, van der Pol E, Böing A, Yuana Y, Yliperttula M, Nieuwland R, et al. Biological reference materials for extracellular vesicle studies. European Journal of Pharmaceutical Sciences. 2017 Feb 15;98:4–16. | spa |
dc.relation.references | Welsh JA, van der Pol E, Bettin BA, Carter DRF, Hendrix A, Lenassi M, et al. Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. Vol. 9, Journal of Extracellular Vesicles. Taylor and Francis Ltd.; 2020. | spa |
dc.relation.references | Shojaati G, Khandaker I, Funderburgh ML, Mann MM, Basu R, Stolz DB, et al. Mesenchymal Stem Cells Reduce Corneal Fibrosis and Inflammation via Extracellular Vesicle-Mediated Delivery of miRNA. Stem Cells Transl Med. 2019 Nov 1;8(11):1192–201. | spa |
dc.relation.references | Colombo M, Moita C, Van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013 Dec 15;126(24):5553–65. | spa |
dc.relation.references | Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Vol. 12, Frontiers in Immunology. Frontiers Media S.A.; 2021. | spa |
dc.relation.references | Xu C, Hou L, Zhao J, Wang Y, Jiang F, Jiang Q, et al. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. Ecotoxicol Environ Saf. 2022 Mar 15;233. | spa |
dc.relation.references | Cao L, Xu H, Wang G, Liu M, Tian D, Yuan Z. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019 Jul 1;72:264–74. | spa |
dc.relation.references | Rui K, Hong Y, Zhu Q, Shi X, Xiao F, Fu H, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate murine Sjögren’s syndrome by modulating the function of myeloid-derived suppressor cells. Cell Mol Immunol. 2021 Feb 1;18(2):440–51. | spa |
dc.relation.references | Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol. 2018 Nov 9;9(NOV). | spa |
dc.relation.references | Favaro E, Carpanetto A, Caorsi C, Giovarelli M, Angelini C, Cavallo-Perin P, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia. 2016 Feb 1;59(2):325–33. | spa |
dc.relation.references | Shigemoto-Kuroda T, Oh JY, Kim D ki, Jeong HJ, Park SY, Lee HJ, et al. MSC-derived Extracellular Vesicles Attenuate Immune Responses in Two Autoimmune Murine Models: Type 1 Diabetes and Uveoretinitis. Stem Cell Reports. 2017 May 9;8(5):1214–25. | spa |
dc.relation.references | Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Vol. 28, Leukemia. Nature Publishing Group; 2014. p. 970–3. | spa |
dc.relation.references | Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res. 2016 Aug 1;64(4):831–40. | spa |
dc.relation.references | Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Álvarez V, Tarazona R, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5(NOV). | spa |
dc.relation.references | Tian J, Zhu Q, Zhang Y, Bian Q, Hong Y, Shen Z, et al. Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Front Immunol. 2020 Dec 10;11. | spa |
dc.relation.references | Adamo A, Brandi J, Caligola S, Delfino P, Bazzoni R, Carusone R, et al. Extracellular vesicles mediate mesenchymal stromal cell-dependent regulation of B cell PI3K-Akt signaling pathway and actin cytoskeleton. Front Immunol. 2019;10(MAR). | spa |
dc.relation.references | Hu W, Song X, Yu H, Sun J, Zhao Y. Released Exosomes Contribute to the Immune Modulation of Cord Blood-Derived Stem Cells. Front Immunol. 2020 Feb 25;11. | spa |
dc.relation.references | Hagey DW, Ojansivu M, Bostancioglu BR, Saher O, Bost JP, Gustafsson MO, et al. The cellular response to extracellular vesicles is dependent on their cell source and dose [Internet]. 2023. | spa |
dc.relation.references | Mercier V, Larios J, Molinard G, Goujon A, Matile S, Gruenberg J, et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat Cell Biol. 2020 Aug 1;22(8):947–59. | spa |
dc.relation.references | Gupta S, Bendjennat M, Saffarian S. Abrogating ALIX interactions results in stuttering of the ESCRT machinery. Viruses. 2020 Sep 1;12(9). | spa |
dc.relation.references | Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO Journal. 2007 Oct 3;26(19):4215–27. | spa |
dc.relation.references | Xu K, Feng H, Zhao R, Huang Y. Targeting Tetraspanins at Cell Interfaces: Functional Modulation and Exosome-Based Drug Delivery for Precise Disease Treatment. ChemMedChem [Internet]. 2024; | spa |
dc.relation.references | Espenel C, Margeat E, Dosset P, Arduise C, Le Grimellec C, Royer CA, et al. Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. Journal of Cell Biology. 2008 Aug 25;182(4):765–76. | spa |
dc.relation.references | Oosterheert W, Xenak KT, Neviani V, Pos W, Doulkeridou S, Manshande J, et al. Implications for tetraspanin-enriched microdomain assembly based on structures of CD9 with EWI-F. Life Sci Alliance. 2020 Sep 21;3(11). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | Autoimmune Diseases | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Vesículas Extracelulares | spa |
dc.subject.decs | Extracellular Vesicles | eng |
dc.subject.decs | Comunicación Celular | spa |
dc.subject.decs | Cell Communication | eng |
dc.subject.decs | Homeostasis | spa |
dc.subject.decs | Homeostasis | eng |
dc.subject.decs | Enfermedades neurodegenerativas | spa |
dc.subject.decs | Neurodegenerative Diseases | eng |
dc.subject.decs | Enfermedades Autoinmunes | spa |
dc.subject.decs | Biogénesis de Organelos | spa |
dc.subject.decs | Organelle Biogenesis | eng |
dc.subject.decs | Sistema Inmunológico | spa |
dc.subject.decs | Immune System | eng |
dc.subject.decs | Autoimmune Diseases | eng |
dc.subject.proposal | Células de linajes mesenquimal | spa |
dc.subject.proposal | Exosomas | spa |
dc.subject.proposal | Microvesículas | spa |
dc.subject.proposal | Nucleofección | spa |
dc.subject.proposal | Partículas lentivirales | spa |
dc.subject.proposal | Modificación genética | spa |
dc.subject.proposal | Silenciamiento génico | spa |
dc.subject.proposal | Inmunomodulación | spa |
dc.subject.proposal | Mesenchymal lineage cells | eng |
dc.subject.proposal | Exosomes | eng |
dc.subject.proposal | Microvesicles | eng |
dc.subject.proposal | Nucleofection | eng |
dc.subject.proposal | Lentiviral particles | eng |
dc.subject.proposal | Genetic modification | eng |
dc.subject.proposal | Gene silencing | eng |
dc.subject.proposal | Immunomodulation | eng |
dc.title | Caracterización del rol de ALIX y CD9 en la ruta de biogénesis de vesículas extracelulares en un modelo celular de linaje mesenquimal humano | spa |
dc.title.translated | Characterization of the role of ALIX and CD9 in the biogenesis pathway of extracellular vesicles in a human mesenchymal lineage cell model | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020733920.2024.pdf
- Tamaño:
- 11.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Genética Humana
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: