Diseño de dispositivo para adquisición de imágenes y transmisión de información por medios inalámbricos para monitoreo visual de cultivos

dc.contributor.advisorNiño Vásquez, Luis Fernando
dc.contributor.advisorRuiz Muñoz, José Francisco
dc.contributor.authorViveros Delgado, Cristhian Danilo
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.date.accessioned2023-10-24T20:08:04Z
dc.date.available2023-10-24T20:08:04Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractUna de las mayores necesidades para la humanidad es la comunicación e intercambio de información, la cual ha impulsado el desarrollo constante de tecnologías que mejoran la transmisión de datos. Entre ellas, las plataformas digitales destacan por su capacidad para impulsar la productividad en diversos sectores, especialmente en la agricultura rural. Las plataformas y tecnologías de trasmisión digitales tienen el potencial para impulsar de manera significativa la productividad y el desarrollo en el sector rural. No obstante, su implementación a gran escala sigue siendo limitada, especialmente en las zonas rurales, las cuales enfrentan la brecha digital, la cual limita el acceso a estas tecnologías. Para abordar este desafío, se propone el uso de tecnologías de automatización, robótica y domótica, combinadas con sistemas de monitoreo en tiempo real de actividades agrícolas. Con el propósito de ofrecer una solución efectiva y económicamente eficiente, este trabajo presenta el diseño de un dispositivo de comunicación inalámbrica, equipado con un sensor de imagen que permitirá monitorear los cultivos mediante la adquisición de imágenes, las cuales serán enviadas a la nube mediante tecnología Wi-Fi. El diseño es cimentado mediante un análisis metódico de las necesidades de las poblaciones rurales y las diferentes tecnologías disponibles para la aplicación del dispositivo. El diseño se valida mediante una prueba de concepto, obteniendo como resultado un prototipo funcional, delineando el camino para futuros desarrollos del dispositivo final. (Texto tomado de la fuente)spa
dc.description.abstractSharing information and communication are ones of the humanity's major needs which leads to the constantly development of technologies that enhance data transmission. Among them, digital platforms have proven their ability to boost productivity in various sectors, particularly in rural agriculture. Digital platforms and transmission technologies have the potential to increase productivity and development in the rural sectors, However, the implementation of these technologies is limited, especially in rural areas, which face with a digital divide and technological backwardness that restricts the rural development. To address this challenge, the integration of automation, robotics, and domotics technologies is considered, along with real-time monitoring systems for agricultural activities. With the purpose of an effective and cost-efficient proposal, this work presents the design of a wireless communication device, equipped with an image sensor enabling crop monitoring through image acquisition. This information is sent to the cloud via Wi-Fi technology. The design is based on a methodical analysis of the rural population needs and various technologies available for the device’s application. The design is validated through a proof of concept, resulting in a functional prototype with low data loss, delineating the future development way of the final devicespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Telecomunicacionesspa
dc.description.researchareaRedes y Sistemas de Telecomunicacionesspa
dc.format.extent86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84829
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicacionesspa
dc.relation.referencesAI-Thinker. (2020). AI-Thinker ESP32-CAM. https://docs.ai-thinker.com/_media/esp32/docs/esp32-cam_product_specification_zh.pdfspa
dc.relation.referencesAnastasiou, E., Manika, S., Ragazou, K., & Katsios, I. (2021). Territorial and human geography challenges: How can smart villages support rural development and population inclusion? Social Sciences, 10(6). https://doi.org/10.3390/socsci10060193spa
dc.relation.referencesAugustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A study of Lora: Long range & low power networks for the internet of things. Sensors (Switzerland), 16(9). https://doi.org/10.3390/s16091466spa
dc.relation.referencesBarbedo, J. G. A. (2016). A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Engineering, 144, 52–60. https://doi.org/10.1016/J.BIOSYSTEMSENG.2016.01.017spa
dc.relation.referencesBeaunoyer, E., Dupéré, S., & Guitton, M. J. (2020). COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Computers in Human Behavior, 111. https://doi.org/10.1016/j.chb.2020.106424spa
dc.relation.referencesBirner, R., Daum, T., & Pray, C. (2021). Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Applied Economic Perspectives and Policy, 43(4), 1260–1285. https://doi.org/10.1002/aepp.13145spa
dc.relation.referencesCavalcante, A. M., Marquezini, M. V., Mendes, L., & Moreno, C. S. (2021). 5G for Remote Areas: Challenges, Opportunities and Business Modeling for Brazil. IEEE Access, 9, 10829–10843. https://doi.org/10.1109/ACCESS.2021.3050742spa
dc.relation.referencesChambers, A. H., Moon, P., Edmond, V., & Bassil, E. (2019). Vanilla Cultivation in Southern Florida. EDIS, 2019(6). https://doi.org/10.32473/edis-hs1348-2019spa
dc.relation.referencesChiha, A., van der Wee, M., Colle, D., & Verbrugge, S. (2020). Techno-economic viability of integrating satellite communication in 4G networks to bridge the broadband digital divide. Telecommunications Policy, 44(3). https://doi.org/10.1016/j.telpol.2019.101874spa
dc.relation.referencesChiles, R. M., Broad, G., Gagnon, M., Negowetti, N., Glenna, L., Griffin, M. A. M., Tami-Barrera, L., Baker, S., & Beck, K. (2021). Democratizing ownership and participation in the 4th Industrial Revolution: challenges and opportunities in cellular agriculture. Agriculture and Human Values, 38(4), 943–961. https://doi.org/10.1007/s10460-021-10237-7spa
dc.relation.referencesClare, C. A. (2021). Telehealth and the digital divide as a social determinant of health during the COVID-19 pandemic. Network Modeling Analysis in Health Informatics and Bioinformatics, 10(1). https://doi.org/10.1007/s13721-021-00300-yspa
dc.relation.referencesClodoveo, M. L., Paduano, A., Di Palmo, T., Crupi, P., Moramarco, V., Distaso, E., Tamburrano, P., Amirante, R., Sacchi, R., Corbo, F., & Pesce, V. (2017). Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis. Ultrasonics Sonochemistry, 37, 169–181. https://doi.org/10.1016/j.ultsonch.2017.01.004spa
dc.relation.referencesCodeluppi, G., Cilfone, A., Davoli, L., & Ferrari, G. (2020). LoraFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors (Switzerland), 20(7). https://doi.org/10.3390/s20072028spa
dc.relation.referencesCurioso, W. H. (2019). Building capacity and training for digital health: Challenges and opportunities in Latin America. Journal of Medical Internet Research, 21(12). https://doi.org/10.2196/16513spa
dc.relation.referencesDuncan, E., Glaros, A., Ross, D. Z., & Nost, E. (2021). New but for whom? Discourses of innovation in precision agriculture. Agriculture and Human Values, 38(4), 1181–1199. https://doi.org/10.1007/s10460-021-10244-8spa
dc.relation.referencesDwivedi, Y. K., Hughes, D. L., Coombs, C., Constantiou, I., Duan, Y., Edwards, J. S., Gupta, B., Lal, B., Misra, S., Prashant, P., Raman, R., Rana, N. P., Sharma, S. K., & Upadhyay, N. (2020). Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life. International Journal of Information Management, 55. https://doi.org/10.1016/j.ijinfomgt.2020.102211spa
dc.relation.referencesEllis, K., & Berry, D. M. (2013). Quantifying the impact of requirements definition and management process maturity on project outcome in large business application development. Requirements Engineering, 18(3). https://doi.org/10.1007/s00766-012-0146-3spa
dc.relation.referencesEspressif. (2020). ESP8266. In Datasheet. https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdfspa
dc.relation.referencesEspressif. (2021). ESP32-C3-DevKitC-02. In Product Page. https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.htmlspa
dc.relation.referencesEspressif. (2022). ESP32-WROOM. In Datasheet. https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdfspa
dc.relation.referencesEsteban-Navarro, M.-Á., García-Madurga, M.-Á., Morte-Nadal, T., & Nogales-Bocio, A.-I. (2020). The Rural Digital Divide in the Face of the COVID-19 Pandemic in Europe—Recommendations from a Scoping Review. Informatics, 7(4), 54. https://doi.org/10.3390/informatics7040054spa
dc.relation.referencesFarooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. In IEEE Access (Vol. 7, pp. 156237–156271). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2019.2949703spa
dc.relation.referencesFeltrin, L., Jaldén, N., Trojer, E., & Wikström, G. (2021). Potential for Deep Rural Broadband Coverage With Terrestrial and Non-Terrestrial Radio Networks. Frontiers in Communications and Networks, 2. https://doi.org/10.3389/frcmn.2021.691625spa
dc.relation.referencesFerreira, B., Morais, D., Szabo, A., Bowen, B., & Jakes, S. (2020). A gap analysis of farm tourism microentrepreneurial mentoring needs in North Carolina, USA. Journal of Agriculture, Food Systems, and Community Development, 1–17. https://doi.org/10.5304/jafscd.2020.101.025spa
dc.relation.referencesFoster, S. P. (2000). The digital divide: Some reflections. International Information and Library Review, 32(3–4). https://doi.org/10.1006/iilr.2000.0136spa
dc.relation.referencesFountas, S., Espejo-Garcia, B., Kasimati, A., Mylonas, N., & Darra, N. (2020). The Future of Digital Agriculture: Technologies and Opportunities. IT Professional, 22(1), 24–28. https://doi.org/10.1109/MITP.2019.2963412spa
dc.relation.referencesGe, L., Zou, K., Zhou, H., Yu, X., Tan, Y., Zhang, C., & Li, W. (2021). Three dimensional apple tree organs classification and yield estimation algorithm based on multi-features fusion and support vector machine. Information Processing in Agriculture. https://doi.org/10.1016/J.INPA.2021.04.011spa
dc.relation.referencesGeetharamani, G., & J., A. P. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 76, 323–338. https://doi.org/10.1016/J.COMPELECENG.2019.04.011spa
dc.relation.referencesGerli, P., & Whalley, J. (2021). Fibre to the countryside: A comparison of public and community initiatives tackling the rural digital divide in the UK. Telecommunications Policy, 45(10). https://doi.org/10.1016/j.telpol.2021.102222spa
dc.relation.referencesGinossar, T., Brakey, H. R., Sussman, A. L., Price, B., Kano, M., Davis, S., & Blair, C. K. (2021). “You’re going to have to think a little bit different” barriers and facilitators to using mhealth to increase physical activity among older, rural cancer survivors. International Journal of Environmental Research and Public Health, 18(17). https://doi.org/10.3390/ijerph18178929spa
dc.relation.referencesGreenberg, A. J., Haney, D., Blake, K. D., Moser, R. P., & Hesse, B. W. (2018). Differences in Access to and Use of Electronic Personal Health Information Between Rural and Urban Residents in the United States. Journal of Rural Health, 34, s30–s38. https://doi.org/10.1111/jrh.12228spa
dc.relation.referencesGreenberg-Worisek, A., Ferede, L., Balls-Berry, J., Marigi, I., Mendez, E. V., Bajwa, N., Ouk, M., Orellana, M., & Enders, F. (2020). Differences in electronic personal health information tool use between rural and urban cancer patients in the United States: Secondary data analysis. JMIR Cancer, 6(2). https://doi.org/10.2196/17352spa
dc.relation.referencesGu, J. (2021). Family conditions and the accessibility of online education: The digital divide and mediating factors. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158590spa
dc.relation.referencesGüldenring, R., & Nalpantidis, L. (2021). Self-supervised contrastive learning on agricultural images. Computers and Electronics in Agriculture, 191. https://doi.org/10.1016/j.compag.2021.106510spa
dc.relation.referencesGutiérrez, J. A. (2012). Diseño y construcción de un sistema de medición y transmisión de información inalámbrico para la apicultura. Universidad Nacional de Colombia.spa
dc.relation.referencesHan, H., Xiong, J., & Zhao, K. (2021). Digital inclusion in social media marketing adoption: the role of product suitability in the agriculture sector. Information Systems and E-Business Management. https://doi.org/10.1007/s10257-021-00522-7spa
dc.relation.referencesIevoli, C., Belliggiano, A., Marandola, D., Milone, P., & Ventura, F. (2019). Information and Communication Infrastructures and New Business Models in Rural Areas: The Case of Molise Region in Italy. European Countryside, 11(4), 475–496. https://doi.org/10.2478/euco-2019-0027spa
dc.relation.referencesKawai, T. (2021). Video slice: image compression and transmission for agricultural systems. Sensors, 21(11). https://doi.org/10.3390/s21113698spa
dc.relation.referencesKim, B., & Joines, S. (2020). The Role of Design in Technology Driven Ergonomics Product Development. Advances in Intelligent Systems and Computing, 955, 3–14. https://doi.org/10.1007/978-3-030-20227-9_1spa
dc.relation.referencesKlerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. In NJAS - Wageningen Journal of Life Sciences (Vols. 90–91). https://doi.org/10.1016/j.njas.2019.100315spa
dc.relation.referencesKormos, E., & Wisdom, K. (2021). Rural Schools and the Digital Divide. Theory & Practice in Rural Education, 11(1). https://doi.org/10.3776/tpre.2021.v11n1p25-39spa
dc.relation.referencesKurmi, Y., & Gangwar, S. (2021). A leaf image localization based algorithm for different crops disease classification. Information Processing in Agriculture. https://doi.org/10.1016/J.INPA.2021.03.001spa
dc.relation.referencesLai, J., & Widmar, N. O. (2021). Revisiting the Digital Divide in the COVID-19 Era. Applied Economic Perspectives and Policy, 43(1), 458–464. https://doi.org/10.1002/aepp.13104spa
dc.relation.referencesLajoie-O’Malley, A., Bronson, K., van der Burg, S., & Klerkx, L. (2020). The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosystem Services, 45. https://doi.org/10.1016/j.ecoser.2020.101183spa
dc.relation.referencesLi, J., & Kim, K. S. (2023). Kano-QFD-based analysis of the influence of user experience on the design of handicraft intangible cultural heritage apps. Heritage Science, 11(1). https://doi.org/10.1186/s40494-023-00903-wspa
dc.relation.referencesLiu, J., Zhang, L., & Tian, Z. (2019). Social And Economic Effect Study of China’s Urban-rural Digital Divide Based on Project Management Theory. DEStech Transactions on Social Science, Education and Human Science, esem. https://doi.org/10.12783/dtssehs/esem2019/29776spa
dc.relation.referencesLuján Soto, R., de Vente, J., & Cuéllar Padilla, M. (2021). Learning from farmers’ experiences with participatory monitoring and evaluation of regenerative agriculture based on visual soil assessment. Journal of Rural Studies, 88, 192–204. https://doi.org/10.1016/j.jrurstud.2021.10.017spa
dc.relation.referencesLynggaard, P. (2015). Improving Internet Coverage in Rural Africa by Using Passive Repeaters in the Home. Nordic and Baltic Journal of Information and Communications Technologies (2016) 2016(1) 65-80. https://doi.org/10.13052/nbict.2016.004spa
dc.relation.referencesMartínez-Domínguez, M., & Mora-Rivera, J. (2020). Internet adoption and usage patterns in rural Mexico. Technology in Society, 60. https://doi.org/10.1016/j.techsoc.2019.101226spa
dc.relation.referencesMatamala, C. (2021). Digital capital in higher education: Digital strengths and weaknesses to face distance education. International Journal of Sociology of Education, 10(2), 115–142. https://doi.org/10.17583/rise.2021.5964spa
dc.relation.referencesMendoza-Lozano, F. A., Quintero-Peña, J. W., & García-Rodríguez, J. F. (2021). The digital divide between high school students in Colombia. Telecommunications Policy, 45(10). https://doi.org/10.1016/j.telpol.2021.102226spa
dc.relation.referencesMesa, J. E. C., Lombana, N. B., & Socha, F. A. L. (2021). Remote terminal module, for data acquisition, monitoring and control of agro-industrial processes-agricultic. Ingeniare, 29(2). https://doi.org/10.4067/S0718-33052021000200245spa
dc.relation.referencesMichels, M., Fecke, W., Feil, J. H., Musshoff, O., Lülfs-Baden, F., & Krone, S. (2020). “Anytime, anyplace, anywhere”—A sample selection model of mobile internet adoption in german agriculture. Agribusiness, 36(2). https://doi.org/10.1002/agr.21635spa
dc.relation.referencesMizrach, A. (2008). Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre- and postharvest processes. Postharvest Biology and Technology, 48(3), 315–330. https://doi.org/10.1016/j.postharvbio.2007.10.018spa
dc.relation.referencesMolla, D. M., Badis, H., George, L., & Berbineau, M. (2022). Software Defined Radio Platforms for Wireless Technologies. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3154364spa
dc.relation.referencesMurad, M., Bayat, O., & Marhoon, H. M. (2021). Design and implementation of a smart home system with two levels of security based on IoT technology. Indonesian Journal of Electrical Engineering and Computer Science, 21(1), 546–557. https://doi.org/10.11591/ijeecs.v21.i1.pp546-557spa
dc.relation.referencesMurciego, A. L., Jiménez-Bravo, D. M., Martínez, D. P., Román, A. V., & Lazo, G. L. (2020). Voice assistant and route optimization system for logistics companies in depopulated rural areas. Sustainability (Switzerland), 12(13). https://doi.org/10.3390/su12135377spa
dc.relation.referencesNigam, R., Rao, M., Dias, N. R., Hariharan, A., Choraria, A., Tendolkar, A., & Manohara Pai, M. M. (2022). Grow-IoT (smart analytics app for comprehensive plant health analysis and remote farm monitoring using smart sensors). Journal of Physics: Conference Series, 2161(1). https://doi.org/10.1088/1742-6596/2161/1/012059spa
dc.relation.referencesNourildean, S. W., Mohammed, Y. A., & Abdulhadi, M. T. (2022). INVESTIGATING THE IMPACT OF NETWORK TOPOLOGIES ON THE IOT-BASED WSN IN SMART HOME MONITORING SYSTEM. Eastern-European Journal of Enterprise Technologies, 6(9–120), 6–14. https://doi.org/10.15587/1729-4061.2022.266990spa
dc.relation.referencesOCDE. (2019). Colombia in the digital transformation: Opportunities and challenges (pp. 13–27). https://doi.org/10.1787/5b895408-enspa
dc.relation.referencesOinas-Kukkonen, H., Karppinen, P., & Kekkonen, M. (2021). 5G and 6G Broadband Cellular Network Technologies as Enablers of New Avenues for Behavioral Influence with Examples from Reduced Rural-Urban Digital Divide. Urban Science, 5(3). https://doi.org/10.3390/urbansci5030060spa
dc.relation.referencesOmnivision. (2006). OV26402 MPixel product brief. In Datasheet. https://www.ovt.com/search-results/?search=OV2640spa
dc.relation.referencesOn Semiconductor. (2014). 1.0 A Low-Dropout Positive Fixed and Adjustable Voltage Regulators. In Datasheet. https://www.sigmaelectronica.net/manuals/NCP1117L.pdfspa
dc.relation.referencesPacheco, C. A., Quintero, B. T., & Coronel-Rojas, L. A. (2020). Advance in the computational tools that support the cooperative sector in Colombia. Journal of Physics: Conference Series, 1513(1). https://doi.org/10.1088/1742-6596/1513/1/012017spa
dc.relation.referencesPattnayak, T., & Thanikachaiam, G. (2018). Antenna Design and RF Layout Guidelines. Cypress Semiconductor. http://www.cypress.com/go/AN91445spa
dc.relation.referencesPeterson, Z. (2020). PCB Trace and Pad Clearance: Low vs. High Voltage. Altium Ltd. https://resources.altium.com/p/pcb-trace-and-pad-clearance-low-vs-high-voltagespa
dc.relation.referencesPrieger, J. E. (2013). The broadband digital divide and the economic benefits of mobile broadband for rural areas. Telecommunications Policy, 37(6–7), 483–502. https://doi.org/10.1016/j.telpol.2012.11.003spa
dc.relation.referencesPrieto-Egido, I., Aragon Valladares, J., Muñoz, O., Cordova Bernuy, C., Simo-Reigadas, J., Auccapuri Quispetupa, D., Bravo Fernández, A., & Martinez-Fernandez, A. (2020). Small rural operators techno-economic analysis to bring mobile services to isolated communities: The case of Peru Amazon rainforest. Telecommunications Policy, 44(10). https://doi.org/10.1016/j.telpol.2020.102039spa
dc.relation.referencesProlific. (2012). PL2303TA USB to Serial Bridge Controller. In Datasheet. https://www.prolific.com.tw/US/ShowProduct.aspx?p_id=153&pcid=41spa
dc.relation.referencesRahimoon, A. A., Abdullah, M. N., & Taib, I. (2020). Design of a contactless body temperature measurement system using Arduino. Indonesian Journal of Electrical Engineering and Computer Science, 19(3). https://doi.org/10.11591/ijeecs.v19.i3.pp1251-1258spa
dc.relation.referencesRäisänen, J., & Tuovinen, T. (2020). Digital innovations in rural micro-enterprises. Journal of Rural Studies, 73, 56–67. https://doi.org/10.1016/j.jrurstud.2019.09.010spa
dc.relation.referencesRasti, S., Bleakley, C. J., Holden, N. M., Whetton, R., Langton, D., & O’Hare, G. (2021). A survey of high resolution image processing techniques for cereal crop growth monitoring. Information Processing in Agriculture. https://doi.org/10.1016/J.INPA.2021.02.005spa
dc.relation.referencesRijswijk, K., Klerkx, L., Bacco, M., Bartolini, F., Bulten, E., Debruyne, L., Dessein, J., Scotti, I., & Brunori, G. (2021). Digital transformation of agriculture and rural areas: A socio-cyber-physical system framework to support responsibilisation. Journal of Rural Studies, 85, 79–90. https://doi.org/10.1016/j.jrurstud.2021.05.003spa
dc.relation.referencesRosario, P.-M., Carolina, P.-R., Montserrat, N.-C., & Elena, M.-M. (2021). Determinant factors of individuals’ decision to emigrate in rural Spain: The role of ICT-based public policies. Technology in Society, 67. https://doi.org/10.1016/j.techsoc.2021.101777spa
dc.relation.referencesSchmilovitch, Z., & Mizrach, A. (2013). Instrumental assessment of the sensory quality of fruits and vegetables. Instrumental Assessment of Food Sensory Quality, 446–466e. https://doi.org/10.1533/9780857098856.3.446spa
dc.relation.referencesSingh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. Artificial Intelligence in Agriculture, 4, 229–242. https://doi.org/10.1016/J.AIIA.2020.10.002spa
dc.relation.referencesSuppipat, S., & Hu, A. H. (2022). A scoping review of design for circularity in the electrical and electronics industry. In Resources, Conservation and Recycling Advances (Vol. 13). Elsevier Inc. https://doi.org/10.1016/j.rcradv.2022.200064spa
dc.relation.referencesTaşkin, D., Taşkin, C., & Yazar, S. (2021). Container-based virtualization for bluetooth low energy sensor devices in internet of things applications. Tehnicki Vjesnik, 28(1). https://doi.org/10.17559/TV-20180528134139spa
dc.relation.referencesTIMCO. (2020). ESP32 Radio Equipment Certification. https://www.espressif.com/sites/default/files/2743-20_TIMCO%C2%A0MIC%C2%A0Radio%C2%A0Certificate%20ESP32-WROOM-32E.pdfspa
dc.relation.referencesVancea, A. P., & Orha, I. (2018). Smart home automation and monitoring system. Carpathian Journal of Electronic and Computer Engineering, 11(1), 40–43. https://doi.org/10.2478/cjece-2018-0007spa
dc.relation.referencesVárallyai, L., Herdon, M., & Botos, S. (2015). Statistical Analyses of Digital Divide Factors. Procedia Economics and Finance, 19. https://doi.org/10.1016/s2212-5671(15)00037-4spa
dc.relation.referencesVelasquez, A. (2013). Digital Divide in Colombia: The Role of Motivational and Material Access in the Use and Types of ICTs. International Journal of Communication, 7(0), 16.spa
dc.relation.referencesWang, Y., Zhao, W., Zhao, L., Nie, L., Zhong, G., Watts, C., & Gunn, J. P. (2020). Design of electronics system for Langmuir probes on ITER. Fusion Engineering and Design, 152. https://doi.org/10.1016/j.fusengdes.2019.111429spa
dc.relation.referencesWibowo, F. W. (2020). Wireless communication design of internet of things based on FPGA and WiFi Module. Journal of Physics: Conference Series, 1577(1). https://doi.org/10.1088/1742-6596/1577/1/012035spa
dc.relation.referencesWu, M., Kozanoglu, D. C., Min, C., & Zhang, Y. (2021). Unraveling the capabilities that enable digital transformation: A data-driven methodology and the case of artificial intelligence. Advanced Engineering Informatics, 50. https://doi.org/10.1016/j.aei.2021.101368spa
dc.relation.referencesYan, F., & Wang, F. (2018). Intelligent fish tank based on WiFi module. Journal of Autonomous Intelligence, 1(1). https://doi.org/10.32629/jai.v1i1.16spa
dc.relation.referencesYates, S. J., & Carmi, E. (2020). What do digital inclusion and data literacy mean today? Internet Policy Review, 9(2), 1–14. https://doi.org/10.14763/2020.2.1474spa
dc.relation.referencesYe, L., & Yang, H. (2020). From digital divide to social inclusion: A tale of mobile platform empowerment in rural areas. Sustainability (Switzerland), 12(6). https://doi.org/10.3390/su12062424spa
dc.relation.referencesYong, L., Xiushan, L., Degui, Z., & Fu, L. (2002). The main content, technical support and enforcement strategy of digital agriculture. Geo-Spatial Information Science, 5(1). https://doi.org/10.1007/BF02863497spa
dc.relation.referencesYuan, Y., Chen, L., Wu, H., & Li, L. (2021). Advanced agricultural disease image recognition technologies: A review. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2021.01.003spa
dc.relation.referencesZaidi, Z. (2013). On the reliability of WiFi multihop backhaul connections for rural areas. IEEE Wireless Communications and Networking Conference, WCNC. https://doi.org/10.1109/WCNC.2013.6554934spa
dc.relation.referencesZerrer, N., & Sept, A. (2020). Smart villagers as actors of digital social innovation in rural areas. Urban Planning, 5(4), 78–88. https://doi.org/10.17645/up.v5i4.3183spa
dc.relation.referencesZhang, J., & Wang, Y. (2021). Design of remote control device using wireless sensor network and its use in intelligent monitoring of farmland information. Eurasip Journal on Wireless Communications and Networking, 2021(1). https://doi.org/10.1186/s13638-021-01997-1spa
dc.relation.referencesZhang Y, Love DJ, Krogmeier JV, Anderson CR, Heath RW, & Buckmaster DR. (2021). Challenges and Opportunities of rural wireless communications. Electrical Engineering and Systems Science > Signal Processing. https://arxiv.org/abs/2108.05405v1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalTecnologías de la informaciónspa
dc.subject.proposalMonitoreo visualspa
dc.subject.proposalVariables agrícolasspa
dc.subject.proposalZona ruralspa
dc.subject.proposalDigitalizaciónspa
dc.titleDiseño de dispositivo para adquisición de imágenes y transmisión de información por medios inalámbricos para monitoreo visual de cultivosspa
dc.title.translatedDesign of an image acquisition and wireless information transmission device for visual crop monitoringeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053853313.2023.pdf
Tamaño:
2.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Telecomunicaciones

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: