Endurecimiento térmico en Pristimantis medemi (Anura: Craugastoridae), en coberturas boscosas del Municipio de Villavicencio (Meta)

dc.contributor.advisorVargas Ramírez, Mariospa
dc.contributor.advisorWatling, James Ianspa
dc.contributor.authorAponte Gutiérrez, Andrés Felipespa
dc.date.accessioned2020-08-03T21:09:26Zspa
dc.date.available2020-08-03T21:09:26Zspa
dc.date.issued2020-05-07spa
dc.description.abstractLa Orinoquía colombiana presenta altas tasas de transformación de coberturas, estas modificaciones alteran los ambientes térmicos naturales, pudiendo causar procesos de migración o extinción local de las poblaciones de anfibios en la zona. La rana Pristimantis medemi es abundante, tiene una amplia distribución y es sensible a alteraciones térmicas. Por lo tanto, se evaluó el endurecimiento térmico (aclimatación a corto plazo) con respecto a tolerancias térmicas máximas y mínimas de individuos de P. medemi presentes en bosques en zonas altas y bajas de Villavicencio (Colombia). Se realizaron dos mediciones del máximo crítico térmico (CTmax) y el mínimo crítico térmico (CTmin) siguiendo metodologías estándar. Después de la primera prueba, se dejó reposar al individuo entre 24 y 48 horas, posteriormente se repitió el tratamiento para el ejemplar, esto con el fin de obtener una segunda prueba. Por prueba, cada tres minutos se registró la temperatura corporal y la longitud del mejor salto de tres. Se realizaron análisis estadísticos, gráficas y correlaciones para comparar los datos entre elevación y pruebas. Se analizaron datos de 67 individuos. No se encontraron diferencias significativas en los valores CTmax tanto entre pruebas, como por elevación, no obstante, para el CTmin sí existen diferencias entre pruebas y por elevación. No se evidencian diferencias entre las curvas de rendimiento al comparar por elevaciones y pruebas. El valor de endurecimiento de P. medemi es mayor a temperaturas bajas que a temperaturas elevadas. Los resultados obtenidos soportan la hipótesis de Brett denominada heat-invariant and cold variability. Frente a cambios de temperaturas ambientales, P. medemi no puede generar un cambio rápido en el desempeño del salto. Finalmente, el endurecimiento no es suficiente para generar una ventaja en cuanto a incrementos termicos rápidos, pero el endurecimiento a temperaturas bajas demuestra una ventaja en cuanto a eventos de enfriamiento repentinos en las temperaturas ambientales (Texto tomado de la fuente).spa
dc.description.abstractThe Colombian Orinoquia presents high rates of vegetation transformation. This modification alters natural thermal environments and promote migration or local extinction process of amphibian populations in the area. The frog Pristimantis medemi is abundant, widely distributed and sensitive to thermal change. Therefore, the thermal hardening (short term acclimation) of the species was evaluated with respect to high and low temperature tolerance for individuals of P. medemi from forest at high and low elevations around Villavicencio (Colombia). CTmax and CTmin measurements were performed following standard methodologies. After the first test, individuals were allowed to rest for 24 to 48 hours, then the treatment was repeated on the specimen in order to obtain test two. In each test, the body temperature and the length of the best of three jumps were recorded every three minutes. Statistical test, graphics and correlations were performed to compare differences between elevations and tests. Data from 67 individuals were analyzed. No significant differences were found in CTmax values between tests and by elevation, but for CTmin there were differences between tests and by elevation. There are no differences between performance curves when comparing elevations and tests. The hardening value of P. medemi is higher in CTmin, compared to CTmax. The results obtained at critical temperatures support the heat-invariant and cold variability hypothesis proposed by Brett. Faced with changes in ambient temperatures, P. medemi cannot generate a rapid change in jump performance. Finally, the hardening in CTmax is not sufficient to generate an advantage in terms of warming events, but the hardening in CTmin demonstrates a advantage in terms of cooling of ambient temperatures.eng
dc.description.additionalLínea de Investigación: Ecologíaspa
dc.description.degreelevelMaestríaspa
dc.format.extent44spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77904
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAngarita-Sierra, T. 2014. “Diagnosis Del Estado de Conservación Del Ensamble de Anfibios y Reptiles Presentes En Los Ecosistemas de Sabanas Inundables de La Cuenca Del Río Pauto, Casanare, Colombia.” Revista de la Academia Colombiana de Ciencias 38(146): 53–78.spa
dc.relation.referencesAngulo, A, J V Rueda-Almonacid, J V Rodríguez-Mahecha, and E La Marca. 2006. Técnicas de Inventario y Monitoreo Para Los Anfibios de La Región Tropical Andina. Bogotá: Conservación Internacional y Panamericana Formas e Impresos S.A.spa
dc.relation.referencesBernal, Manuel Hernando, and John D. Lynch. 2013. “Thermal Tolerance in Anuran Embryos with Different Reproductive Modes: Relationship to Altitude.” The Scientific World Journal 2013.spa
dc.relation.referencesBozinovic, Francisco, María J.M. Orellana, Sebastián I. Martel, and José M. Bogdanovich. 2014. “Testing the Heat-Invariant and Cold-Variability Tolerance Hypotheses across Geographic Gradients.” Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology 178: 46–50. http://dx.doi.org/10.1016/j.cbpa.2014.08.009.spa
dc.relation.referencesBrett, J. R. 1956. “Some Principles in the Thermal Requirements of Fishes.” The Quarterly Review of Biology 31(2): 75–87.spa
dc.relation.referencesCáceres-Andrade, S. P., and J. N. Urbina-Cardona. 2009. “Ensamblajes de Anuros de Sistemas Protuctivos y Bosques En El Piedemonte Llanero, Departamento Del Meta, Colombia.” Caldasia 31(1): 175–94.spa
dc.relation.referencesCatenazzi, Alessandro, and Sarah J. Kupferberg. 2017. “Variation in Thermal Niche of a Declining River-Breeding Frog: From Counter-Gradient Responses to Population Distribution Patterns.” Freshwater Biology 62(7): 1255–65.spa
dc.relation.referencesCatenazzi, Alessandro, Edgar Lehr, and Vance T. Vredenburg. 2014. “Thermal Physiology, Disease, and Amphibian Declines on the Eastern Slopes of the Andes.” Conservation Biology 28(2): 509–17.spa
dc.relation.referencesEtter, A., A. Andrade, P. Amaya, and P. Arévalo. 2015. ESTADO DE LOS ECOSISTEMAS COLOMBIANOS -2014 Una Aplicación de La Metodología Lista Roja de Ecosistemas -UICN. Bogotá: Pontificia Universidad Javeriana y Conservacion Internacional. https://iucnrle.org/static/media/uploads/references/published-assessments/etter-etal-2015-national-rle-assessment-final-report-colombia-sp.pdf.spa
dc.relation.referencesGhasemi, Asghar, and Saleh Zahediasl. 2012. “Normality Tests for Statistical Analysis: A Guide for Non-Statisticians.” International Journal of Endocrinology and Metabolism 10(2): 486–89.spa
dc.relation.referencesGunderson, Alex R., and Jonathon H. Stillman. 2015. “Plasticity in Thermal Tolerance Has Limited Potential to Buffer Ectotherms from Global Warming.” Proceedings of the Royal Society B: Biological Sciences 282(1808).spa
dc.relation.referencesHassani, Hossein, and Emmanuel Sirimal Silva. 2015. “A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts.” Econometrics 3(3): 590–609.spa
dc.relation.referencesLange, Z.. J. Watling. 2019. "Thermal quality explains shift in habitat association from forest to clearing for terrestrial breeding frogs along an elevation gradient in Colobia". Documento de tésis. Maestría en Ciencias Biológicas. Universidad John Carroll (USA).spa
dc.relation.referencesLynch, J. D. 1994. “Two New Species of the Eleutherodactylus Conspicillatus Group (Amphibia: Leptodactylidae) from the Cordillera Oriental of Colombia.” Revista de la Academia Colombiana de Ciencias 19(72): 187–93.spa
dc.relation.referencesManess, J. D., and V. H. Hutchison. 1980. “Exposure To Critical Thermal Maxima.” Journal of Thermal Biology 5.spa
dc.relation.referencesvon May, Rudolf et al. 2017. “Divergence of Thermal Physiological Traits in Terrestrial Breeding Frogs along a Tropical Elevational Gradient.” Ecology and Evolution 7(9): 3257–67.spa
dc.relation.references———. 2019. “Thermal Physiological Traits in Tropical Lowland Amphibians: Vulnerability to Climate Warming and Cooling.” Plos One 14(8): e0219759.spa
dc.relation.referencesNavas, C.A. 1996a. “International Association for Ecology Implications of Microhabitat Selection and Patterns of Activity on the Thermal Ecology of High Elevation Neotropical Anurans Implications of Microhabitat Selection and Patterns of Activity on the Thermal Ecology of Hi.” Oecologia 108(4): 617–26.spa
dc.relation.references———. 1996b. “Metabolic Physiology , Locomotor Performance , and Thermal Niche Breadth in Neotropical Anurans.” The University of Chicago Press Journals 69(6): 1481–1501.spa
dc.relation.references———. 2013. “The Body Temperature of Active Amphibians along a Tropical Elevation Gradient: Patterns of Mean and Variance and Inference from Environmental Data.” Functional Ecology 27(5): 1145–54.spa
dc.relation.referencesNowakowski, A. J. et al. 2017. “Tropical Amphibians in Shifting Thermal Landscapes under Land-Use and Climate Change.” Conservation Biology 31(1): 96–105.spa
dc.relation.referencesNowakowski, A. J., Luke O. Frishkoff, et al. 2018. “Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology.” Current Landscape Ecology Reports 3(4): 57–72.spa
dc.relation.referencesNowakowski, A. J., J. I. Watling, et al. 2018. “Thermal Biology Mediates Responses of Amphibians and Reptiles to Habitat Modification.” Ecology Letters 21(3): 345–55.spa
dc.relation.referencesPedroza-Banda, R. et al. 2014. “Estado Del Conocimiento de La Fauna de Anfibios y Reptiles Del Departamento de Casanare , Colombia.” Revista de la Academia Colombiana de Ciencias 38(146): 17–34.spa
dc.relation.referencesPintanel, Pol et al. 2019. “Elevational and Microclimatic Drivers of Thermal Tolerance in Andean Pristimantis Frogs.” Journal of Biogeography (November 2018): 1–12.spa
dc.relation.referencesRangel-Ch., J. O. 2014. Diversidad Biotica XIV. La Región de La Orinoquía de Colombia. Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesRestrepo, L. F., and J. González. 2007. “SELECCIONES De Pearson a Spearman.” Revista Colombiana de Ciencias Pecuarias 20: 183–92.spa
dc.relation.referencesRomero-Ruiz, M. H., S. G. A. Flantua, K. Tansey, and J. C. Berrio. 2012. “Landscape Transformations in Savannas of Northern South America: Land Use/Cover Changes since 1987 in the Llanos Orientales of Colombia.” Applied Geography 32(2): 766–76. http://dx.doi.org/10.1016/j.apgeog.2011.08.010.spa
dc.relation.referencesRomero, H., J. O. Rangel-Ch., and J. E. Carvajal-C. 2014. “Anfibios de La Orinoquía de Colombia, Lista Con Base En Los Registros Existentes.” In Diversidad Biótica XIV. La Región de La Orinoquía de Colombia, ed. Jesús Orlando Rangel-Ch. Bogotá: Universidad Nacional de Colombia, 665–90.spa
dc.relation.referencesRueda-Solano, Luis Alberto, Carlos A. Navas, Juan Manuel Carvajalino-Fernández, and Adolfo Amézquita. 2016. “Thermal Ecology of Montane Atelopus (Anura: Bufonidae): A Study of Intrageneric Diversity.” Journal of Thermal Biology 58: 91–98.spa
dc.relation.referencesSinclair, Brent J. et al. 2016. “Can We Predict Ectotherm Responses to Climate Change Using Thermal Performance Curves and Body Temperatures?” Ecology Letters 19(11): 1372–85.spa
dc.relation.referencesThompson, M. E., A. J. Nowakowski, and M. A. Donnelly. 2016. “The Importance of Defining Focal Assemblages When Evaluating Amphibian and Reptile Responses to Land Use.” Conservation Biology 30(2): 249–58.spa
dc.relation.referencesTurriago, J. L., C. A. Parra, and M. H. Bernal. 2015. “Upper Thermal Tolerance in Anuran Embryos and Tadpoles at Constant and Variable Peak Temperatures.” Canadian Journal of Zoology 93(4): 267–72.spa
dc.relation.referencesWatling, James I., and Lorenzo Braga. 2015. “Desiccation Resistance Explains Amphibian Distributions in a Fragmented Tropical Forest Landscape.” Landscape Ecology 30(8): 1449–59. http://dx.doi.org/10.1007/s10980-015-0198-0.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Ciencias de la vidaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc980 - Historia general de América del Surspa
dc.subject.proposalEcofisiologíaspa
dc.subject.proposalEcophysiologyeng
dc.subject.proposalCraugastoridaespa
dc.subject.proposalCraugastoridaeeng
dc.subject.proposalColombian Andeseng
dc.subject.proposalAndes colombianosspa
dc.subject.proposalHipótesis de Brettspa
dc.subject.proposalBrett´s hypothesiseng
dc.subject.proposalBiología térmicaspa
dc.subject.proposalThermal biologyeng
dc.titleEndurecimiento térmico en Pristimantis medemi (Anura: Craugastoridae), en coberturas boscosas del Municipio de Villavicencio (Meta)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016041351.2020.pdf
Tamaño:
1.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: