Métodos de Galerkin Discontinuos para Problemas de Convección-Difusión

dc.contributor.advisorAcosta Medina, Carlos Daniel (Thesis advisor)spa
dc.contributor.advisorBustinza Pariona, Rommel Andrés (Thesis advisor)spa
dc.contributor.authorRios Zuluaga, Nestor Jaimespa
dc.date.accessioned2019-07-02T12:52:31Zspa
dc.date.available2019-07-02T12:52:31Zspa
dc.date.issued2013spa
dc.description.abstractEn la naturaleza y en la industria, algunos procesos de transporte se modelan matemáticamente por la ecuación de convección-difusión. Tal es el caso del vertido de contaminante en un medio hídrico, la simulación del comportamiento de reservas de petróleo, la transferencia de calor y masa, entre otros. La ecuación de convección-difusión se expresa matemáticamente como una ecuación diferencial parcial de tipo parabólico, usualmente para modelar numéricamente este tipo de problemas, resulta eficaz discretizar (particionar) el dominio sobre el que se define la ecuación en derivadas parciales. En el presente trabajo se discretizaría el dominio espacial utilizando elementos finitos discontinuos, entre tanto se aplicará un esquema de diferencias finitas en el dominio temporal para resolver el sistema de ecuaciones diferenciales ordinarias resultante. En un contexto general, el método de elementos finitos se basa en tres etapas: Reescribir la forma débil del problema con valores inicial y en la frontera incluyendo allí implícitamente las condiciones de frontera. Se aplica el método de Galerkin "para resolver la ecuación sobre un subespacio de dimensión finita". Se elige una base conveniente del subespacio de dimensión finita, de tal modo que el sistema de ecuaciones asociado sea (en lo posible) fácil, rápido y barato de resolver. Los métodos de Galerkin discontinuo son técnicas numéricas que se utilizan frecuentemente para convertir problemas de operadores continuos (como una ecuación diferencial) en problemas discretos. En este trabajo se estudiarán los aspectos teóricos y las técnicas de implementación de los métodos Galerkin discontinuos apropiados para hallar la solución de Ecuaciones Diferenciales Parciales de tipo parabólico 1-Dimensionalspa
dc.description.abstractIn nature and industry, some transport processes are modeled mathematically by means of the convection-diffusion equation. Such is the case of pollution in hidric environment, the simulating the behavior of oil reserves, the heat and mass transfer, among others. The convection-diffusion equation is expressed mathematically as a partial differential equation of parabolic type. Usually in order to model numerically these problems, it is effective to find a partition of the domain on which the partial differential equation is defined. In this thesis the spatial domain is discretized by using discontinuous finite elements, whereas a finite difference scheme is applied in the time domain in order to solve the resulting system of ordinary differential equations. The finite elements method is based on the following stages: Rewrite the weak form of the problem with initial and boundary conditions, apply the Galerkin method “ to solve the equation on a finite-dimensional subspace” by choosing a convenient basiseng
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/53739/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/57470
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas y Estadísticaspa
dc.relation.ispartofDepartamento de Matemáticas y Estadísticaspa
dc.relation.referencesRios Zuluaga, Nestor Jaime (2013) Métodos de Galerkin Discontinuos para Problemas de Convección-Difusión. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalMétodos de Galerkin discontinuosspa
dc.subject.proposalEcuación Convección-difusiónspa
dc.subject.proposalProblemas parabólicosspa
dc.subject.proposalDiscontinuous Galerkin methodsspa
dc.subject.proposalConvection-diffusionspa
dc.subject.proposalParabolic problemsspa
dc.titleMétodos de Galerkin Discontinuos para Problemas de Convección-Difusiónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75101242.2013.pdf
Tamaño:
819.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada