Efectos negativos de los microorganismos halotolerantes y/o halófilos en alimentos con conservas salinas
| dc.contributor.advisor | Sánchez Nieves, Jimena | spa |
| dc.contributor.advisor | Leal Leal, María Angélica | spa |
| dc.contributor.author | Melo Rocha, Martha Liliana | spa |
| dc.contributor.researchgroup | Grupo de Ciencias Planetarias y Astrobiología (GCPA) | spa |
| dc.date.accessioned | 2021-01-15T20:10:54Z | spa |
| dc.date.available | 2021-01-15T20:10:54Z | spa |
| dc.date.issued | 2020-06-01 | spa |
| dc.description.abstract | Crystalline salt has been used for many years as a food preservative to retard, inhibit or prevent the growth of some fungi and bacteria in the food system. This is done in a process called salting, an ancient technique but still used today for preservation mainly in meats such as fish and some meat products. However, in this type of food there are halophiles that can survive at different concentrations of salt and can affect human health. In addition, there may be changes at the sensory level in the food product due to the presence of halophilic and halotolerant microorganisms, such as the appearance of unpleasant tastes, odours and colours for the consumer resulting from growth, microbial metabolism and the production of extracellular enzymes. This paper presents the literature review conducted to document the negative effects of the presence and growth of halophilic and halotolerant microorganisms in foods that have been preserved with salt, as well as the management perspectives from the use of naturally occurring antimicrobials that may contribute to a more effective salting process to inhibit the growth of halophilic and halotolerant microorganisms. | spa |
| dc.description.abstract | La sal cristalina ha sido utilizada por años como conservante en los alimentos para retrasar, inhibir o prevenir el crecimiento de ciertos hongos y bacterias en un sistema alimentario. Esto es llevado a cabo en el proceso conocido como salazón, una técnica antigua pero que hoy en día aún es usada para la conservación principalmente de carnes como el pescado y algunos derivados cárnicos, sin embargo, en este tipo de alimentos existen halófilos que pueden sobrevivir a diferentes concentraciones de sal y pueden llegar a afectar la salud humana. Adicionalmente, pueden existir cambios a nivel sensorial en el producto alimenticio por la presencia de microorganismos halófilos y halotolerantes tales como la aparición de sabores, olores y colores que son desagradables para el consumidor y son resultantes del crecimiento, metabolismo microbiano y de la producción de enzimas extracelulares. En este trabajo se presenta la revisión bibliográfica realizada para documentar los efectos negativos que tiene la presencia y el crecimiento de microorganismos halófilos y halotolerantes en alimentos que han sido conservados con sal, así como las perspectivas de manejo desde el uso de antimicrobianos naturales que podrían contribuir a un proceso de salazón más efectivo para inhibir la proliferación de microorganismos halófilos y halotolerantes. | spa |
| dc.description.additional | Línea de Investigación: Microorganismos de ambientes extremos | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 115 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78777 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Química | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
| dc.relation.references | Adsersen, A., Gauguin, B., Gudiksen, L., & Jäger, A. (2006). Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 104(3), 418–422. | spa |
| dc.relation.references | Aljohny, B. (2015). Halophilic bacterium-A review of new studies. Biosciences Biotechnology Research Asia, 12(3), 2061–2069. https://doi.org/10.13005/bbra/1874 | spa |
| dc.relation.references | Álvarez, C., Castro, A., de González, M., & Jiménez, M. (2005). Mecanismos de resistencia en Pseudomonas aeruginosa: entendiendo a un peligroso enemigo. Revista de La Facultad de Medicina, 27–34. | spa |
| dc.relation.references | Arense, P., Bernal, V., Iborra, J. L., & Cánovas, M. (2010). Metabolic adaptation of Escherichia coli to long-term exposure to salt stress. Process Biochemistry, 45(9), 1459–1467. https://doi.org/10.1016/j.procbio.2010.05.022 | spa |
| dc.relation.references | Arévalo, S. (2017). Agua En Los Alimentos [Universidad Nacional de la amazonia peruana]. http://www.qo.fcen.uba.ar/quimor/wp-content/uploads/12-8 el agua en los alimentos.pdf | spa |
| dc.relation.references | Bastos Oyarzabal, M., Damé Schuch, L., de Souza Prestes, L., Bender Almeida Schiavon, D., Alves Rodrigues, M., & Braga de Mello, J. (2011). Actividad antimicrobiana de aceite esencial de Origanum vulgare L. ante bacterias aisladas en leche de bovino. Revista Cubana de Plantas Medicinales, 16(3), 260–266. | spa |
| dc.relation.references | Baxter, R. (1960). Carotenoid pigments of halophilic bacteria. Canadian Journal of Microbiology, 6(5721), 417–424. https://doi.org/10.1139/m60-047 | spa |
| dc.relation.references | Becerra, D., Cortés, D., & Giraldo, J. (2003). Identificación de microorganismos pertenecientes a la familia Halobacteríaceae. Acta Biológica Colombiana. | spa |
| dc.relation.references | Belessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85(8), 1665–1691. https://doi.org/10.1016/j.solener.2009.10.001 | spa |
| dc.relation.references | Ben-Amotz, A. (1981). Glycerol and ß-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends in Biochemical energy conversion, 6, 297-299. | spa |
| dc.relation.references | Berga, A. (2009). Infecciones producidas por Staphylococcus aureus (Marge Book), 8, 169. | spa |
| dc.relation.references | Bhat, R., Alias, A., & Paliyath, G. (2012). Progress in food preservation. (John Wiley & Sons (ed.)), 8, 161-186. | spa |
| dc.relation.references | Bhaumik, S., & Sonawat, H. (1999). Kinetic mechanism of glucose dehydrogenase from Halobacterium salinarum. Indian Journal of Biochemistry and Biophysics, 36(3), 143–149. | spa |
| dc.relation.references | Bidlas, E., & Lambert, R. (2008). Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. International Journal of Food Microbiology, 124(1), 98–102. | spa |
| dc.relation.references | Biscola, V., Todorov, S., Capuano, V., Abriouel, H., Gálvez, A., & Franco, B. (2013). Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Science, 93(3), 607–613. https://doi.org/10.1016/j.meatsci.2012.11.021 | spa |
| dc.relation.references | Bjørkevoll, I., Olsen, R., & Skjerdal, O. (2003). Origin and spoilage potential of the microbiota dominating genus Psychrobacter in sterile rehydrated salt-cured and dried salt-cured cod (Gadus morhua). International Journal of Food Microbiology, 84(2), 175–187. https://doi.org/10.1016/S0168-1605(02)00418-X | spa |
| dc.relation.references | Blackburn, C. (2006). Food spoilage microorganisms (Woodhead Publishing (ed.)), 9, 213-286. | spa |
| dc.relation.references | Blohs, M., Moissl-Eichinger, C., Mahnert, A., Spang, A., Dombrowski, N., Krupovic, M., & Klingl, A. (2019). Archaea-an introduction. In Encyclopedia of Microbiology (4th ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809633-8.20884-4 | spa |
| dc.relation.references | Boziaris, I. (2013). Seafood processing: technology, quality and safety (John Wiley & Sons (ed.)), 6, 126-175. | spa |
| dc.relation.references | Breidenstein, E., de la Fuente-Núñez, C., & Hancock, R. (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends in Microbiology, 419–426. | spa |
| dc.relation.references | Brininger, C. (2018). The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles. In Seminars in cell & developmental biology, 84, 158-169. | spa |
| dc.relation.references | Cánovas López, D. (1998). Bases moleculares de los mecanismos de osmorregulación en bacterias halófilas moderadas (Issue May, pp. 1–25). | spa |
| dc.relation.references | Carocho, M., Morales, P., & Ferreira, I. (2015). Natural food additives: Quo vadis? Trends in Food Science and Technology, 45(2), 284–295. https://doi.org/10.1016/j.tifs.2015.06.007 | spa |
| dc.relation.references | Carson, L., Favero, M., Bond, W., & Petersen, N. (1973). Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl. Environ. Microbiol, 476–483. | spa |
| dc.relation.references | Castañón-Sánchez, C. (2012). Patogenia molecular de Staphylococcus aureus. Evidencia Médica e Investigación En Salud, 79–84. | spa |
| dc.relation.references | Cervantes-García, E., García-González, R., & Salazar-Schettino, P. (2014). Características generales del Staphylococcus aureus. Revista Mexicana de Patología Clínica y Medicina de Laboratorio, 28–40. | spa |
| dc.relation.references | Chandler, R. (1988). The Effect of Temperature and Water Activity on Microbial Growth Rate and Food Spoilage. 17, 20. https://core.ac.uk/download/pdf/33329151.pdf | spa |
| dc.relation.references | Cherroud, S., Cachaldora, A., Fonseca, S., Laglaoui, A., Carballo, J., & Franco, I. (2014). Microbiological and physicochemical characterization of dry-cured Halal goat meat. Effect of salting time and addition of olive oil and paprika covering. Meat Science, 98(2), 129–134. https://doi.org/10.1016/j.meatsci.2014.05.018 | spa |
| dc.relation.references | Chiralt, A., Fito, P., Barat, J. M., Andrés, A., González-Martínez, C., Escriche, I., & Camacho, M. (2001). Use of vacuum impregnation in food salting process. Journal of Food Engineering, 49(2–3), 141–151. https://doi.org/10.1016/S0260-8774(00)00219-3 | spa |
| dc.relation.references | Conway, T. (1992). The Entner-Doudoroff pathway : history , physiology and molecular biology. 103. | spa |
| dc.relation.references | Corcelli, A., & Lobasso, S. (2006). Characterization of Lipids of Halophilic Archaea. Methods in Microbiology, 35(05), 585–613. https://doi.org/10.1016/S0580-9517(08)70028-X | spa |
| dc.relation.references | Corral, P., Amoozegar, M., & Ventosa, A. (2020). Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine Drugs, 18(1). https://doi.org/10.3390/md18010033 | spa |
| dc.relation.references | Cuadra, A. (2010). Nutrición saludable y prevención de los trastornos alimentarios. (Ministerio), 4, 79-85 | spa |
| dc.relation.references | DasSarma, S., & DasSarma, P. (2017). Halophiles. ELS, 1–13. https://doi.org/10.1002/9780470015902.a0000394.pub4 | spa |
| dc.relation.references | Dave, D., & Ghaly, A. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Science, 6(4), 486–510. https://doi.org/10.3844/ajabssp.2011.486.510 | spa |
| dc.relation.references | De Abreu, P., Farias, P., Paiva, G., Almeida, A., & Morais, P. (2014). Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiology, 118. | spa |
| dc.relation.references | De Souza, L., Müller-Santos, M., Iacomini, M., Gorin, P., & Sassaki, G. (2009). Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic Archaea Haloarcula marismortui. Journal of Lipid Research, 50(7), 1363–1373. | spa |
| dc.relation.references | Delgado‐García, M., Valdivia‐Urdiales, B., Aguilar‐González, C., Contreras‐Esquivel, J., & Rodríguez‐Herrera, R. (2012). Halophilic hydrolases as a new tool for the biotechnological industries. Journal of the Science of Food and Agriculture, 92(13), 2575–2580. | spa |
| dc.relation.references | Díaz-Cárdenas, C., & Baena, S. (2015). Manantiales salinos: Inventarios de Diversidad Metabólica y filogenética de microorganismos de ambientes salinos. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 358. https://doi.org/10.18257/raccefyn.199 | spa |
| dc.relation.references | Díaz, L. (2010). Principios básicos de bioquímica de los alimentos (Editorial), 3, 85. | spa |
| dc.relation.references | Díaz Ruiz, G., & Wacher Rodarte, C. (2003). Métodos para el estudio de comunidades microbianas en alimentos fermentados. Revista Latinoamericana de Microbiologia, 45(1–2), 30–40. | spa |
| dc.relation.references | Durruty, M. (2013). Análisis físico-químico, sensorial y consumo de productos pesqueros ahumados. Tesis. | spa |
| dc.relation.references | Emborg, J., Dalgaard, P., & Ahrens, P. (2006). Morganella psychrotolerans sp. nov., a histamine-producing bacterium isolated from various seafoods. International Journal of Systematic and Evolutionary Microbiology, 2473–2479. | spa |
| dc.relation.references | Enquahone, S., van Marle, G., Gessesse, A., & Simachew, A. (2020). Molecular identification and evaluation of the impact of red heat damage causing halophilic microbes on salted hide and skin. International Biodeterioration and Biodegradation, 150 (December 2019), 104940. https://doi.org/10.1016/j.ibiod.2020.104940 | spa |
| dc.relation.references | Esaú López-Jácome, L., Hernández-Durán, M., Colín-Castro, C. A., Ortega-Peña, S., Cerón-González, G., & Franco-Cendejas, R. (2014). Las tinciones básicas en el laboratorio de microbiología. 3. www.medigraphic.org.mxwww.medigraphic.org.mx | spa |
| dc.relation.references | Falb, M., Müller, K., Königsmaier, L., Oberwinkler, T., Horn, P., Von Gronau, S., Gonzalez, O., Pfeiffer, F., Bornberg-Bauer, E., & Oesterhelt, D. (2008). Metabolism of halophilic archaea. Extremophiles, 12(2), 177–196. https://doi.org/10.1007/s00792-008-0138-x | spa |
| dc.relation.references | FAO. (1989). Norma para pescado salado y pescado seco salado de la familia gadida. | spa |
| dc.relation.references | FAO. (2018). The state of the world fisheries and aquaculture. | spa |
| dc.relation.references | Farkas, J. (2007). Physical methods of food preservation. In Food Microbiology. In American Society of Microbiology. (Ed.), Fundamentals and Frontiers, Third Edition (pp. 685–712). | spa |
| dc.relation.references | Fendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F., & Stan-Lotter, H. (2006). Extremely halophilic archaea and the issue of long-term microbial survival. Reviews in Environmental Science and Biotechnology, 5(2–3), 203–218. https://doi.org/10.1007/s11157-006-0007-y | spa |
| dc.relation.references | Fiszman, S., & Tarrega, A. (2020). Textural Characteristics of Spanish Foods: Dry‐Cured Ham. Textural Characteristics of World Foods, 319–334. | spa |
| dc.relation.references | Flores-gallegos, A. C., Delgado-garcía, M., Ascacio-valdés, J. A., Villareal-morales, S., Michel-michel, M. R., & Aguilar-gonzález, C. (2019). Hydrolases of Halophilic Origin With Importance for the Food Industry. In Enzymes in Food Biotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00013-X | spa |
| dc.relation.references | Flores, T., & Herrera, R. (2005). Enfermedades transmitidas por alimentos y PCR: prevención y diagnóstico. Salud Pública de México, 388–390. | spa |
| dc.relation.references | Fuentes, S; Moreno, E. (2011). Perfil de riesgo Salmonella spp.(no tifoideas) en pollo entero y en piezas. Ministerio de Protección social. | spa |
| dc.relation.references | Fuentes Sánchez, G., & Arredondo Peter, R. (2018). La dihidrolipoamida deshidrogenasa: estructura, función y patología. Revista de Educación Bioquímica, 36(3), 82–88. | spa |
| dc.relation.references | Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., & Nishikawa, K. (2003). Unique amino acid composition of proteins in halophilic bacteria. Journal of molecular biology, 327(2), 347-357. | spa |
| dc.relation.references | García, R; Palou-García, E. (2008). Mecanismos de acción antimicrobiana de timol y carvacrol sobre microorganismos de interés en alimentos. Temas Selectos de Ingienería de Alimentos, 41–51. | spa |
| dc.relation.references | García, V. (2004). Introduccion a la microbiologia (Universidad Estatal a Distancia (ed.)), 52. | spa |
| dc.relation.references | Garibyan, L., & Avashia, N. (2013). Research techniques made simple: polymerase chain reaction (PCR). The Journal of Investigative Dermatology. 133 (3). | spa |
| dc.relation.references | Garzón, V. (2015). Aislamiento e identificación de bacterias halófilas con potencial bioactivo aisladas de las Salinas de Zipaquirá, Colombia. Tesis, 103. https://doi.org/10.1590/S0124-00642012000800004 | spa |
| dc.relation.references | Ghaly, a E., Dave, D., Budge, S., & Brooks, M. (2010). Fish Spoilage Mechanisms and Preservation Techniques : Review Department of Process Engineering and Applied Science , Dalhousie University Halifax , Nova Scotia , Canada. American Journal of Applied Sciences, 7(7), 859–877. https://doi.org/10.3844/ajassp.2010.859.877 | spa |
| dc.relation.references | Ghosh, M., & Sonawat, H. (1998). Kreb’s TCA cycle in Halobacterium salinarum investigated by 13C nuclear magnetic resonance spectroscopy. Extremophiles, 2(4), 427–433. https://doi.org/10.1007/s007920050088 | spa |
| dc.relation.references | Gochnauer, M., & Kushner, D. (1969). Growth and nutrition of extremely halophilic bacteria. Canadian Journal of Microbiology, 15(10), 1157–1165. https://doi.org/10.1139/m69-211 | spa |
| dc.relation.references | González-Hernández, J., & Peña, A. (2002). Estrategias de adaptación de microorganismos halófilos y Debaryomyces hansenii (levadura halófila). Revista Latinoamericana de Microbiologia, 44(3–4), 137–156. | spa |
| dc.relation.references | Gonzalez, O. (2009). Reconstruction, Modeling & Analysis of Haloarchaeal Metabolic Networks. 222. | spa |
| dc.relation.references | Gonzalez, O., Gronau, S., Falb, M., Pfeiffer, F., Mendoza, E., Zimmer, R., & Oesterhelt, D. (2008). Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. Molecular BioSystems, 4(2), 148–159. https://doi.org/10.1039/b715203e | spa |
| dc.relation.references | Gram, L. (2009). Microbiological spoilage of fish and seafood products. In Springer (Ed.), Compendium of the microbiological spoilage of foods and beverages (pp. 87–119). | spa |
| dc.relation.references | Gram, Lone, Ravn, L., Rasch, M., Bruhn, J., Christensen, A., & Givskov, M. (2002). Food spoilage - Interactions between food spoilage bacteria. International Journal of Food Microbiology, 78(1–2), 79–97. https://doi.org/10.1016/S0168-1605(02)00233-7 | spa |
| dc.relation.references | Guimarães, A., Meireles, L., Lemos, M., Guimarães, M., Endringer, D., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24 (13), 2471. | spa |
| dc.relation.references | Gupta, C., Garg, A., Uniyal, R., & Kumari, A. (2008). Antimicrobial activity of some herbal oils against common food-borne pathogens. African Journal of Microbiology Research, 2(10), 258–261. | spa |
| dc.relation.references | Hamid, A., Risikat, A., Abdulmumeen, H., Risikat, A., & Sururah, A. (2012). Chemistry View project Review on Antioxidants View project Food: Its preservatives, additives and applications. Ijcbs, 1, 36–47. https://doi.org/10.13140/2.1.1623.5208 | spa |
| dc.relation.references | Henriet, O., Fourmentin, J., Delincé, B., & Mahillon, J. (2014). Exploring the diversity of extremely halophilic archaea in food-grade salts. International Journal of Food Microbiology, 191, 36–44. https://doi.org/10.1016/j.ijfoodmicro.2014.08.019 | spa |
| dc.relation.references | Hernández Nazario, L. (2000). Obtención de glicerol a partir de la Microalga Dunaliella Salina. Revista Cubana de Farmacia, 34(2), 134-137. | spa |
| dc.relation.references | Hill, C., Cotter, P., Sleator, R., & Gahan, C. (2002). Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing. International Dairy Journal, 12(2–3), 273–283. https://doi.org/10.1016/S0958-6946(01)00125-X | spa |
| dc.relation.references | Horikoshi, K., Antranikian, G., Bull, A., Robb, F., & Stetter, K. (2010). Extremophiles handbook. Springer Science & Business Media.19-139. | spa |
| dc.relation.references | Hurtado, M., De la Parte, M., & Brito, A. (2002). Staphylococcus aureus: Revisión de los mecanismos de patogenicidad y la fisiopatología de la infección estafilocócica. Revista de La Sociedad Venezolana de Microbiología, 112–118. | spa |
| dc.relation.references | Hyldgaard, M., Mygind, T., & Meyer, R. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12. | spa |
| dc.relation.references | Ibrahim, I., Konnova, S., Sigida, E., Lyubun, E., Muratova, A., Fedonenko, Y., & Elbanna, К. (2020). Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles, 24(1), 157–166. https://doi.org/10.1007/s00792-019-01143-2 | spa |
| dc.relation.references | Ishibashi, M., Tokunaga, H., Hiratsuka, K., Yonezawa, Y., Tsurumaru, H., Arakawa, T., & Tokunaga, M. (2001). NaCl‐activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt. FEBS Letters, 493(2–3), 134–138. | spa |
| dc.relation.references | Iturriaga, G., & Rodríguez, S. (2010). La acumulación de trehalosa en azospirillum brasilence mejora la tolerancia a la sequía y la biomasa en plantas de maíz. Revista Claridades Agropecuarias. 142, 32-41. | spa |
| dc.relation.references | Jabor, B. (2002). Industrial microbiology of solar salt production. Journal of Industrial Microbiology and Biotechnology, 42–47. | spa |
| dc.relation.references | Jančič, S., Frisvad, J., Kocev, D., Gostinčar, C., Džeroski, S., & Gunde-Cimerman, N. (2016). Production of secondary metabolites in extreme environments: Food- and airborne wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS ONE, 11(12), 1–20. https://doi.org/10.1371/journal.pone.0169116 | spa |
| dc.relation.references | Jay, M. (2005). Intrinsic and extrinsic parameters of foods that affect microbial growth. In Springer (Ed.), Modern food microbiology (pp. 38–66). | spa |
| dc.relation.references | Jehlička, J., Edwards, H., & Oren, A. (2013). Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: A Raman spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 106, 99–103. https://doi.org/10.1016/j.saa.2012.12.081 | spa |
| dc.relation.references | Jeon, C., Lim, J., Lee, J., Xu, L., Jiang, C., & Kim, C. (2005). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. International Journal of Systematic and Evolutionary Microbiology, 1891–1896. | spa |
| dc.relation.references | Jeong, S., Lee, J., Jung, J., Lee, S., Park, M., & Jeon, C. (2013). Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 103(3), 503–512. https://doi.org/10.1007/s10482-012-9832-x | spa |
| dc.relation.references | Jin, G., Zhang, J., Yu, X., Zhang, Y., Lei, Y., & Wang, J. (2010). Lipolysis and lipid oxidation in bacon during curing and drying–ripening. Food Chemistry, 465–471. Joardder, M., & Masud, M. (2019). Food preservation in developing countries: Challenges and solutions. In Food Preservation in Developing Countries: Challenges and Solutions. https://doi.org/10.1007/978-3-030-11530-2 | spa |
| dc.relation.references | Jung, J., Lee, S., Lee, H., & Jeon, C. (2013). Microbial succession and metabolite changes during fermentation of saeu-jeot: Traditional Korean salted seafood. Food Microbiology, 34(2), 360–368. https://doi.org/10.1016/j.fm.2013.01.009 | spa |
| dc.relation.references | Jung, M., Kim, M., Roh, S., Shin, K., & Bae, J. (2010). Salinicoccus carnicancri sp. nov., a halophilic bacterium isolated from a Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 60(3), 653–658. https://doi.org/10.1099/ijs.0.012047-0 | spa |
| dc.relation.references | Jung, M., Roh, S., Kim, M., & Bae, J. (2010). Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1017–1022. https://doi.org/10.1099/ijs.0.013565-0 | spa |
| dc.relation.references | Kastritis, P., Papandreou, N., & Hamodrakas, S. (2007). Haloadaptation: Insights from comparative modeling studies of halophilic archaeal DHFRs. International Journal of Biological Macromolecules, 41(4), 447–453. https://doi.org/10.1016/j.ijbiomac.2007.06.005 | spa |
| dc.relation.references | KEFIR, I. (2014). Caracterización e identificación molecular de bacterias aisladas de Kefir. | spa |
| dc.relation.references | Killham, K., & Prosser, J. (2015). The Bacteria and Archaea. In Soil Microbiology, Ecology and Biochemistry (4th ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-415955-6.00003-7 | spa |
| dc.relation.references | Kim, K., Lee, J., & Stevens, D. (2013). Microbiology and epidemiology of Halomonas species. Future Microbiology, 8(12), 1559–1573. https://doi.org/10.2217/fmb.13.108 | spa |
| dc.relation.references | Kim, M., Roh, S., & Bae, J. (2010). Halomonas jeotgali sp. nov., a new moderate halophilic bacterium isolated from a traditional fermented seafood. Journal of Microbiology, 48(3), 404–410. https://doi.org/10.1007/s12275-010-0032-y | spa |
| dc.relation.references | Kim, N., Cho, T., & Rhee, M. (2017). Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. Advances in Applied Microbiology, 101, 1–47. https://doi.org/10.1016/bs.aambs.2017.05.001 | spa |
| dc.relation.references | Kivistö, A & Karp, M. (2011). Halophilic anaerobic fermentative bacteria. Journal of Biotechnology, 114–124. | spa |
| dc.relation.references | Konings, W., Albers, S., Koning, S., & Driesen, A. (2002). The Cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 61–72. https://doi.org/10.1023/A:1020573408652 | spa |
| dc.relation.references | Kovacova-Hanuskova, E., Buday, T., Gavliakova, S., & Plevkova, J. (2015). Histamine, histamine intoxication and intolerance. Allergologia et Immunopathologia, 498–506. | spa |
| dc.relation.references | Kumar, M., & Berwal, J. (1998). Sensitivity of food pathogens to garlic (Allium sativum). Journal of Applied Microbiology, 84(2), 213–215. | spa |
| dc.relation.references | Kumar, S., Karan, R., Kapoor, S., Singh, S., & Khare, S. (2012). Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazilian Journal of Microbiology, 43(4), 1595–1603. | spa |
| dc.relation.references | Kushner, D. (1968). Halophilic bacteria (Adv Appl Microbiol (ed.)), 10, 73-99. | spa |
| dc.relation.references | Kushner, D. (1985). The Halobacteriaceae. In Archabacteria: Vol. VIII. 3, 171-214. https://doi.org/10.1016/b978-0-12-307208-5.50009-x | spa |
| dc.relation.references | LaBauve, A., & Wargo, M. (2012). Growth and laboratory maintenance of Pseudomonas aeruginosa. Current Protocols in Microbiology, SUPPL.25, 1–8. https://doi.org/10.1002/9780471729259.mc06e01s25 | spa |
| dc.relation.references | Lakshmanan, R., Shakila, R., & Jeyasekaran, G. (2002). Changes in the halophilic amine forming bacterial flora during salt-drying of sardines (Sardinella gibbosa). Food Research International, 35(6), 541–546. https://doi.org/10.1016/S0963-9969(01)00154-5 | spa |
| dc.relation.references | Langworthy, T.;Tornabene, T.; & Holzer, G. (1982). Lipids of archaebacteria. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 3(2), 228–244. | spa |
| dc.relation.references | Lanyi, J. (2012). Light capture and energy transduction in bacterial rhodopsins and related proteins. In Comprehensive Biophysics (Vol. 8). 206-227. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374920-8.00816-X | spa |
| dc.relation.references | Larsen, H. (1981). The family Halobacteriaceae. In The procaryotes (pp. 985–994). | spa |
| dc.relation.references | Lee, H., Yim, K., Song, H., Nam, Y. Do, Choi, H., Seo, M., Kim, K., Kim, D., Roh, S., & Rhee, J. (2014). Draft genome sequence of Halorubrum halophilum B8T, an extremely halophilic archaeon isolated from salt-fermented seafood. Marine Genomics, 18(PB), 117–118. https://doi.org/10.1016/j.margen.2014.08.005 | spa |
| dc.relation.references | Lin, C., Liu, F., Lee, Y., Hwang, C., & Tsai, Y. (2012). Histamine contents of salted seafood products in Taiwan and isolation of halotolerant histamine-forming bacteria. Food Chemistry, 574–579. | spa |
| dc.relation.references | LitchWeld, C. (2011). Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology, 38(10), 1635–1647. https://doi.org/10.1007/s10295-011-1021-9 | spa |
| dc.relation.references | Londoño, N., Taborda, M., López, C., & Acosta, L. (2005). Bacteriocinas producidas por bacterias ácido lácticas y su aplicación en la industria de alimentos. Alimentos Hoy, 186–205. | spa |
| dc.relation.references | López Fernández, D. (2015). Análisis de la actividad de catepsinas b, b+ lyh en carne de cerdo en diferentes genéticas. Tesis. | spa |
| dc.relation.references | López-Jácome, L. (2014). Las tinciones básicas en el laboratorio de microbiología. Investig. en discapacidades, 3(1), 10-18. | spa |
| dc.relation.references | Lorentzen, G., Egeness, F. A., Pleym, I., & Ytterstad, E. (2016). Shelf life of packaged loins of dried salt-cured cod (Gadus morhua L.) stored at elevated temperatures. Food Control, 64, 65–69. https://doi.org/10.1016/j.foodcont.2015.12.027 | spa |
| dc.relation.references | Lorentzen, G., Wesmajervi Breiland, M., Østli, J., Wang-Andersen, J., & Olsen, R. (2015). Growth of halophilic microorganisms and histamine content in dried salt-cured cod (Gadus morhua L.) stored at elevated temperature. LWT - Food Science and Technology, 60(1), 598–602. https://doi.org/10.1016/j.lwt.2014.08.035 | spa |
| dc.relation.references | Ma, Y., Galinski, E., Grant, W., Oren, A., & Ventosa, A. (2010). Halophiles 2010: Life in saline environments. Applied and Environmental Microbiology, 76(21), 6971–6981. https://doi.org/10.1128/AEM.01868-10 | spa |
| dc.relation.references | Madern, D., Ebel, C., & Zaccai, G. (2000). Halophilic adaptation of enzymes. Extremophiles, 4(2), 91–98. https://doi.org/10.1007/s007920050142 | spa |
| dc.relation.references | Madigan, M., & Martinko, J. (2005). Brock biología de los microorganismos (11th ed.). 27-604. | spa |
| dc.relation.references | Maheshwari, D. (2015). Halophiles. Biodiversity and sustainable exploitation (Springer).173-188. | spa |
| dc.relation.references | Mandal, S., & DebMandal, M. (2016). Thyme (Thymus vulgaris L.) oils. In Essential Oils in Food Preservation, Flavor and Safety (Issue 1998). 825-834. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00094-8 | spa |
| dc.relation.references | Maps, K. (2020). No Title. https://www.genome.jp/kegg-bin/show_pathway?select_scale=0.82&query=&map=pae01230&scale=0.82&orgs=&auto_image=&nocolor=&show_description=hide&multi_query=&module=&show_module_list=show&link_mode= | spa |
| dc.relation.references | Mathabatha, E. (2010). Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. African Journal of Biotechnology, 9(11), 1555–1560. https://doi.org/10.5897/ajb10.051 | spa |
| dc.relation.references | Melani, N., Tambourgi, E., & Silveira, E. (2020). Lipases: From production to applications. Separation & Purification Reviews, 49(2), 143–158. | spa |
| dc.relation.references | Melgar-Lalanne, G., Rivera-Espinoza, Y., Farrera-Rebollo, R., & Hernández-Sánchez, H. (2014). Survival under stress of halotolerant lactobacilli with probiotic properties. Revista Mexicana de Ingeniería Química, 323–335. | spa |
| dc.relation.references | Meyer, A., Suhr, K., Nielsen, P., & Holm, F. (2002). Natural food preservatives. In Minimal processing technologies in the food industry (pp. 124–174). | spa |
| dc.relation.references | Michailidis, P., & Krokida, M. (2014). Drying and dehydration processes in food preservation and processing. In Conventional and Advanced Food Processing Technologies (pp. 1–32). | spa |
| dc.relation.references | Ministerio de salud y protección. (n.d.). | spa |
| dc.relation.references | Morales, C. (2004). Alimentación y vida saludable:¿somos lo que comemos? (U. P. Comillas (ed.)). | spa |
| dc.relation.references | Moreno, M. de L., Pérez, D., García, M., & Mellado, E. (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3(1), 38–51. https://doi.org/10.3390/life3010038 | spa |
| dc.relation.references | Mukhopadhyay, S., & Ramaswamy, R. (2012). Application of emerging technologies to control Salmonella in foods: A review. Food Research International, 45(2), 666–677. https://doi.org/10.1016/j.foodres.2011.05.016 | spa |
| dc.relation.references | Müller, V., & Oren, A. (2003). Metabolism of chloride in halophilic prokaryotes. Extremophiles, 7(4), 261–266. https://doi.org/10.1007/s00792-003-0332-9 | spa |
| dc.relation.references | Nair, M., Nair, D., Kollanoor Johny, A., & Venkitanarayanan, K. (2019). Use of food preservatives and additives in meat and their detection techniques. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819233-7.00012-4 | spa |
| dc.relation.references | Nations, F. (1999). Aseguramiento de la calidad de los productos pesqueros. | spa |
| dc.relation.references | Nazareth, S. (2014). The world of halophilic fungi. 42, 131–144. http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2821/Kavaka_42_2014_131-144.pdf?sequence=1&isAllowed=y | spa |
| dc.relation.references | Ng, W. (2000). Genome sequence of Halobacterium species NRC-1. Proceedings of the National Academy of Sciences, 12176-12181 | spa |
| dc.relation.references | Nin, G. (2000). Introducción a la microscopía electrónica aplicada a las ciencias biológicas. (UNAM (ed.)). | spa |
| dc.relation.references | Odeyemi, O., Alegbeleye, O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 311–331. | spa |
| dc.relation.references | Oesterhelt, D. (1998). The structure and mechanism of the family of retinal proteins from halophilic archaea. Current Opinion in Structural Biology, 8(4), 489–500. | spa |
| dc.relation.references | Ogur, S., & Erkan, N. (2020). Microbiological and chemical quality of different types of salted pearl mullet (Chalcalburnus tarichi Pallas, 1811). Journal of Food Safety. 40(1). 12717. | spa |
| dc.relation.references | Ohlsson, T., & Bengtsson, N. (2002). Minimal processing technologies in the food industries. (Elsevier (ed.)). 6, 124-161. | spa |
| dc.relation.references | Oren, A. (2000). Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology & Biotechnology, 28(1), 56–63. | spa |
| dc.relation.references | Oren, A. (2004). Convergent evolution in extremely halophilic prokaryotes: a comparison between Salinibacter ruber (Bacteria) and the Halobacteriaceae (Archaea). In D. Springer (Ed.), Evolutionary Theory and Processes: Modern Horizons (pp. 43–64). | spa |
| dc.relation.references | Oren, A. (2006). Halophilic microorganisms and their environments (Springer Science & Business Media (ed.)). 3-299. | spa |
| dc.relation.references | Oren, A. (2015). Halanaerobium. In Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 1–8). | spa |
| dc.relation.references | Oren, A. (2002). Chapter 4 Adaptation of Halophilic Archaea To Life At High Salt Concentrations. 81–96. | spa |
| dc.relation.references | Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8–9), 825–834. https://doi.org/10.1080/09593330903370026 | spa |
| dc.relation.references | Oren, A. (2017). Halococcus . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–15. https://doi.org/10.1002/9781118960608.gbm00484.pub2 | spa |
| dc.relation.references | Oren, A., & Ventosa, A. (2017). Halobacterium . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–12. https://doi.org/10.1002/9781118960608.gbm00482.pub2 | spa |
| dc.relation.references | Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236–244. https://doi.org/10.1016/j.meatsci.2005.11.019 | spa |
| dc.relation.references | Pakdeeto, A., Tanasupawat, S., Thawai, C., Moonmangmee, S., Kudo, T., & Itoh, T. (2007). Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. International Journal of Systematic and Evolutionary Microbiology, 364–369. | spa |
| dc.relation.references | Palleroni, N. (2015). Pseudomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria. | spa |
| dc.relation.references | Paramasivam, S., Thangaradjou, T., & Kannan, L. (2007). Effect of natural preservatives on the growth of histamine producing bacteria. Journal of Environmental Biology, 28(2), 271–274. | spa |
| dc.relation.references | Pascual Anderson, M., & Calderón y Pascual, V. (2000). Microbiología alimentaria: metodología analítica para alimentos y bebidas. 77-80. | spa |
| dc.relation.references | Paz-Zarza, V., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 180–189. | spa |
| dc.relation.references | Pellissery, A., Vinayamohan, P., Amalaradjou, M., & Venkitanarayanan, K. (2019). Spoilage bacteria and meat quality. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819233-7.00017-3 | spa |
| dc.relation.references | Perez, S., Czerner, M., Patat, M., Zaritzky, N., Murialdo, S., & Yeannes, M. (2018). Monitoring the characteristics of cultivable halophilic microbial community during salted-ripened anchovy (Engraulis anchoita) production. International Journal of Food Microbiology, 286, 179–189. https://doi.org/10.1016/j.ijfoodmicro.2018.08.013 | spa |
| dc.relation.references | Perinbam, K., Chacko, J., Kannan, A., Digman, M. & Siryaporn, A. (2020). A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa. American Society for Microbiology, 11(2). | spa |
| dc.relation.references | Pfeiffer, F., Losensky, G., Marchfelder, A., Habermann, B., & Dyall‐Smith, M. (2020). Whole‐genome comparison between the type strain of Halobacterium salinarum (DSM 3754T) and the laboratory strains R1 and NRC‐1. Microbiologyopen. 9(2), 974. | spa |
| dc.relation.references | Pierson, M., Smoot, L., & Robach, M. (1983). Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats. Critical Reviews in Food Science & Nutrition, 141–187. | spa |
| dc.relation.references | Pinto, M., Ponsano, E., Franco, B., & Shimokomaki, M. (2002). Charqui meats as fermented meat products: Role of bacteria for some sensorial properties development. Meat Science, 61(2), 187–191. https://doi.org/10.1016/S0309-1740(01)00184-X | spa |
| dc.relation.references | Podolak, R., Black, D., & Wiley, J. (2017). Control of Salmonella and other bacterial pathogens in low-moisture foods (Wiley Blac). 4, 67-80. | spa |
| dc.relation.references | Prasad, M., & Seenayya, G. (2000). Effect of spices on the growth of red halophilic cocci isolated from salt cured fish and solar salt. Food Research International, 33(9), 793–798. https://doi.org/10.1016/S0963-9969(00)00100-9 | spa |
| dc.relation.references | Preetha, S., & Narayanan, R. (2020). Factors Influencing the Development of Microbes in Food. Shanlax International Journal of Arts, Science and Humanities, 7(3), 57–77. https://doi.org/doi.org/10.34293/sijash.v7i3.473 | spa |
| dc.relation.references | Qin, Q., Ling, C., Zhao, Y., Yang, T., Yin, J., Guo, Y., & Chen, G. (2018). CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metabolic Engineering, 47, 219–229. https://doi.org/10.1016/j.ymben.2018.03.018 | spa |
| dc.relation.references | Rahman, M. (2007). Handbook of food preservation (CRC press. (ed.)). 1-299. | spa |
| dc.relation.references | Ramirez, E., & Yeannes, M. (2012). Deterioro de los productos de la pesca salados y sus causas. 50, 58-62. | spa |
| dc.relation.references | Ramirez, L., & Castaño, D. (2009). Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal. Scientia et Technica, 15(42), 263–268. | spa |
| dc.relation.references | Ramírez, N., Sandoval, A., & Serrano, J. (2004). Las bacterias halófilas y sus aplicaciones biotecnológicas. Revista de La Sociedad Venezolana de Microbiología, 24(1–2), 12–23. | spa |
| dc.relation.references | Ramírez D., Serrano R., & Sandoval T. (2006). Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmacéuticas, 37, 56–71. | spa |
| dc.relation.references | Rastelli, E., Giraffa, G., Carminati, D., Parolari, G., & Barbuti, S. (2005). Identification and characterisation of halotolerant bacteria in spoiled dry-cured hams. Meat Science, 70(2), 241–246. https://doi.org/10.1016/j.meatsci.2005.01.008 | spa |
| dc.relation.references | Rautenstrauss, B. & Liehr, T. (2012). FISH technology (Springer S).1-42. | spa |
| dc.relation.references | Reyes-Martínez, M., & Zavaleta, A. (2005). Bacteriorrodopsina: una molécula peculiar. Ciencia e Investigación, 8(1), 48–58. | spa |
| dc.relation.references | Rodríguez, R. (2008). Fundamentos teóricos y prácticos de la histoquímica (CSIC-CSIC). | spa |
| dc.relation.references | Roh, S., & Bae, J. (2009). Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. Journal of Microbiology, 47(2), 162–166. https://doi.org/10.1007/s12275-009-0016-y | spa |
| dc.relation.references | Roh, S., Nam, Y. Do, Chang, H., Sung, Y., Kim, K., Oh, H., & Bae, J. (2007). Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2296–2298. https://doi.org/10.1099/ijs.0.65121-0 | spa |
| dc.relation.references | Rosa, M. De, & Gambacorta, A. (1986). Lipid biogenesis in archaebacteria. Systematic and Applied Microbiology, 7(2–3), 278–285. https://doi.org/10.1016/S0723-2020(86)80020-0 | spa |
| dc.relation.references | Rosenberg, E; DeLong, E. F.; Lory, S.; Stackebrandt, E., & Thompson, F. (2006). The Prokaryotes (Springer B). | spa |
| dc.relation.references | Russell, N. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, 21(1), 93–113. https://doi.org/10.1007/BF00762214 | spa |
| dc.relation.references | Salma, M., Abdulla, M. K., & Samina, M. (2020). Osmoadaptation in halophilic bacteria and archaea. July. | spa |
| dc.relation.references | Sasmal, D., Babu, C., & Abraham, T. (2005). Effect of garlic (Allium sativum) extract on the growth and disease resistance of Carassius auratus (Linnaeus, 1758). Indian J. Fish, 207–214. | spa |
| dc.relation.references | Sauceda, E. (2011). Uso de agentes antimicrobianos naturales en la conservación de frutas y hortalizas. Ra Ximhai: revista científica de sociedad, cultura y desarrollo sostenible, 153-170. | spa |
| dc.relation.references | Schmid, A. (2009). A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Molecular systems biology, 5(1). | spa |
| dc.relation.references | Schaechter, M. (2010). Desk encyclopedia of microbiology (Academic Press. (ed.)). | spa |
| dc.relation.references | Sebranek, J. (2009). Basic curing ingredients. In Springer (Ed.), In Ingredients in meat products. | spa |
| dc.relation.references | Sepcic, K., Zalar, P., & Gunde-Cimerman, N. (2011). Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Marine Drugs, 9(1), 43–58. https://doi.org/10.3390/md9010043 | spa |
| dc.relation.references | Sharif, Z., & Mustapha, F. (2017). Revisión de métodos de preservación y conservantes naturales para extender la longevidad de los alimentos. Ingeniería Química ..., 19, 145–153. https://www.banglajol.info/index.php/CERB/article/view/33809 | spa |
| dc.relation.references | Shivanand, P., & Mugeraya, G. (2011). Halophilic bacteria and their compatible solutes -osmoregulation and potential applications. Current Science, 100(10), 1516–1521. | spa |
| dc.relation.references | Siddhnath, Ranjan, A., Mohanty, B., Saklani, P., Dora, K., & Chowdhury, S. (2020). Dry Fish and Its Contribution Towards Food and Nutritional Security. Food Reviews International, 1–29. | spa |
| dc.relation.references | Singh, O. (2013). Extremophiles: sustainable resources and biotechnological implications (John Wiley & Sons (ed.)). | spa |
| dc.relation.references | Siroya, H., Patel, S., & Upadhyay, D. (2020). Industrial Applications of Protease: A Review. Studies in Indian Place Names, 40(71), 224–232. | spa |
| dc.relation.references | Sivaraman, G., & Siva, V. (2015). Microbiological spoilage of dried fishes. | spa |
| dc.relation.references | Sokovic, M., Marin, P., Brkic, D., & van Griensven, L. (2008). Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria. Food Global Science, 220–226. | spa |
| dc.relation.references | Sonawat, H., Srivastava, S., Swaminathan, S., & Govil, G. (1990). Glycolysis and Entner-Doudoroff pathways in Halobacterium halobium: some new observations based on 13C NMR spectroscopy. Biochemical and Biophysical Research Communications, 173(1), 358–362. | spa |
| dc.relation.references | Soria, I. M. (2004). Los microorganismos halófilos y su potencial aplicado en biotecnología. Ciencia e Investigación, 7(2), 13–17. | spa |
| dc.relation.references | Soto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacteria causing of foodborne diseases: an overview at Colombia. Revista Salud Uninorte, 105–122. | spa |
| dc.relation.references | Stan-Lotter, H., & Fendrihan, S. (2012). Adaption of microbial life to environmental extremes (Springer (ed.)). | spa |
| dc.relation.references | Stoknes, I., Walde, P & Synnes, M. (2005). Proteolytic activity in cod (Gadus morhua) muscle during salt curing. Food Research International, 693–699. | spa |
| dc.relation.references | Stover, C., Pham, X., Erwin, A., Mizoguchi, S., Warrener, P., Hickey, M., & Garber, R. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 959–964. | spa |
| dc.relation.references | Tajkarimi, M., Ibrahim, S., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003 | spa |
| dc.relation.references | Taormina, P. (2010). Implications of salt and sodium reduction on microbial food safety. Critical Reviews in Food Science and Nutrition, 50(3), 209–227. https://doi.org/10.1080/10408391003626207 | spa |
| dc.relation.references | Tenchov, B; Vescio, E; Sprott, G; Zeidel, M; Mathai, J. (2006). Salt tolerance of archaeal extremely halophilic lipid membranes. Journal of Biological Chemistry, 281(15), 10016–10023. | spa |
| dc.relation.references | Tiwari, B., Valdramidis, V., O’Donnell, C., Muthukumarappan, K., Bourke, P., & Cullen, P. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987–6000. https://doi.org/10.1021/jf900668n | spa |
| dc.relation.references | Todor, H., Dulmage, K., Gillum, N., Bain, J., Muehlbauer, M., & Schmid, A. (2014). A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon H alobacterium salinarum. Molecular Microbiology, 93(6), 1172–1182. | spa |
| dc.relation.references | Toldrá, F. (2006). The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends in Food Science and Technology, 17(4), 164–168. https://doi.org/10.1016/j.tifs.2005.08.007 | spa |
| dc.relation.references | Tornabene, T., Kates, M., Gelpi, E., & Oro, J. (1969). Occurrence of squalene, di-and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium, Halobacterium cutirubrum. Journal of Lipid Research, 294–303. | spa |
| dc.relation.references | Tortora, G., Funke, B., & Case, C. (2007). Introducción a la microbiología (Ed. Médica). | spa |
| dc.relation.references | Tourte, M.; Schaeffer, P.; Grossi, V.; & Oger, P. (2020). Functionalized Membrane Domains: An Ancestral Feature of Archaea? Frontiers in Microbiology, 11, 526. | spa |
| dc.relation.references | Tsai, M., Ohniwa, R., Kato, Y., Takeshita, S., Ohta, T., Saito, S., & Morikawa, K. (2011). Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity. BMC Microbiology, 13. | spa |
| dc.relation.references | Turan, H; Erkoyuncu, I. (2012). Salting technology in fish processing. In Progress in food preservation (pp. 297–313). | spa |
| dc.relation.references | Udaondo, Z., Ramos, J., Segura, A., Krell, T., & Daddaoua, A. (2018). Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microbial Biotechnology, 11(3), 442–454. | spa |
| dc.relation.references | Ventanas, S., Martín, D., Estévez, M., & Ruiz, J. (2004). Nitratos , nitritos y nitrosaminas en productos cárnicos ( I ). Eurocarne, 129(January), 1–15. | spa |
| dc.relation.references | Ventosa, A., Marquez, M., Ruiz-Berraquero, F., & Kocur, M. (1990). Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Systematic and Applied Microbiology, 13(1), 29–33. | spa |
| dc.relation.references | Ventosa, A., Oren, A., & Ma, Y. (2011). Halophiles and hypersaline environments: current research and future trends (S. S. & B. Media (ed.)). | spa |
| dc.relation.references | Ventosa, A.; Nieto, J.; & Oren, A. (1998). Biology of Moderately Halophilic Aerobic Bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544. | spa |
| dc.relation.references | Verhees, C., Kengen, S., Tuininga, J., Schut, G., Adams, M., Vos, D., W.m, Oost, V. Der, & J. (2003). The unique features of glycolytic pathways. In Archaea. Biochem J, 375, 231–246. | spa |
| dc.relation.references | Vijayavenkataraman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652–2670. https://doi.org/10.1016/j.rser.2012.01.007 | spa |
| dc.relation.references | Villafañe, H. (2008). Microbiología básica para el área de la salud y afines (Universida). | spa |
| dc.relation.references | Vishnoi, N., Dixit, S., & Mishra, J. (2020). Microbial Lipases and Their Versatile Applications. In Microbial Enzymes: Roles and Applications in Industries (Springer, pp. 207–230). | spa |
| dc.relation.references | Vreeland, R. (2012). Advances in understanding the biology of halophilic microorganisms. Advances in Understanding the Biology of Halophilic Microorganisms, 1–241. https://doi.org/10.1007/978-94-007-5539-0 | spa |
| dc.relation.references | Wang, C., Chen, Y., & Hou, C. (2019). Antioxidant and antibacterial activity of seven predominant terpenoids. International Journal of Food Properties, 230–238. | spa |
| dc.relation.references | Xue, Y., Fan, H., Ventosa, A., Grant, W., Jones, B., Cowan, D., & Ma, Y. (2005). Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2501–2505. https://doi.org/10.1099/ijs.0.63916-0 | spa |
| dc.relation.references | Yim, K., Cha, I., Lee, H., Song, H., Kim, K., Lee, S., Nam, Y. Do, Hyun, D., Bae, J., Rhee, S., Seo, M., Choi, J., Choi, H., Roh, S., & Kim, D. (2014). Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 105(3), 603–612. https://doi.org/10.1007/s10482-014-0115-6 | spa |
| dc.relation.references | Yin, J., Chen, J., Wu, Q., & Chen, G. (2015). Halophiles, coming stars for industrial biotechnology. In Biotechnology Advances (Vol. 33, Issue 7). Elsevier B.V. https://doi.org/10.1016/j.biotechadv.2014.10.008 | spa |
| dc.relation.references | Yoon, J., Kang, K., & Park, Y. (2003). Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 53(2), 449–454. https://doi.org/10.1099/ijs.0.02242-0 | spa |
| dc.relation.references | Yoon, J., Lee, K., Kho, Y., Kang, K., Kim, C., & Park, Y. (2002). Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 52(1), 123–130. https://doi.org/10.1099/00207713-52-1-123 | spa |
| dc.relation.references | Zang, J., Xu, Y., Xia, W., & Regenstein, J. M. (2020). Quality, functionality, and microbiology of fermented fish: a review. Critical Reviews in Food Science and Nutrition, 60(7), 1228–1242. https://doi.org/10.1080/10408398.2019.1565491 | spa |
| dc.relation.references | Zendejas-Manzo, G., Avalos-Flores, H., & Soto-Padilla, M. (2014). Microbiología general de Staphylococcus aureus: Generalidades, patogenicidad y métodos de identificación. Revista Biomédica, 129–143. | spa |
| dc.relation.references | Zhang, Q., Ding, Y., Gu, S., Zhu, S., Zhou, X., & Ding, Y. (2020). Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Research International. | spa |
| dc.relation.references | Zhou, H. X., & Pang, X. (2018). Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical reviews, 118(4), 1691-1741. | spa |
| dc.relation.references | Zou, Z., & Wang, G. (2010). Kushneria sinocarnis sp. nov., a moderately halophilic bacterium isolated from a Chinese traditional cured meat. International Journal of Systematic and Evolutionary Microbiology, 60(8), 1881–1886. https://doi.org/10.1099/ijs.0.013797-0 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 540 - Química y ciencias afines | spa |
| dc.subject.proposal | Extremophiles | eng |
| dc.subject.proposal | Extremófilos | spa |
| dc.subject.proposal | Sodium Chloride | eng |
| dc.subject.proposal | Cloruro de sodio | spa |
| dc.subject.proposal | Food Preservation | eng |
| dc.subject.proposal | Conservación de alimentos | spa |
| dc.subject.proposal | Salting | eng |
| dc.subject.proposal | Salazón | spa |
| dc.title | Efectos negativos de los microorganismos halotolerantes y/o halófilos en alimentos con conservas salinas | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Efectos negativos de los microorganismos halotolerantes y o halófilos en alimentos con conservas salinas. (1).pdf
- Tamaño:
- 1.49 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

