En 3 día(s), 20 hora(s) y 39 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Efectos negativos de los microorganismos halotolerantes y/o halófilos en alimentos con conservas salinas

dc.contributor.advisorSánchez Nieves, Jimenaspa
dc.contributor.advisorLeal Leal, María Angélicaspa
dc.contributor.authorMelo Rocha, Martha Lilianaspa
dc.contributor.researchgroupGrupo de Ciencias Planetarias y Astrobiología (GCPA)spa
dc.date.accessioned2021-01-15T20:10:54Zspa
dc.date.available2021-01-15T20:10:54Zspa
dc.date.issued2020-06-01spa
dc.description.abstractCrystalline salt has been used for many years as a food preservative to retard, inhibit or prevent the growth of some fungi and bacteria in the food system. This is done in a process called salting, an ancient technique but still used today for preservation mainly in meats such as fish and some meat products. However, in this type of food there are halophiles that can survive at different concentrations of salt and can affect human health. In addition, there may be changes at the sensory level in the food product due to the presence of halophilic and halotolerant microorganisms, such as the appearance of unpleasant tastes, odours and colours for the consumer resulting from growth, microbial metabolism and the production of extracellular enzymes. This paper presents the literature review conducted to document the negative effects of the presence and growth of halophilic and halotolerant microorganisms in foods that have been preserved with salt, as well as the management perspectives from the use of naturally occurring antimicrobials that may contribute to a more effective salting process to inhibit the growth of halophilic and halotolerant microorganisms.spa
dc.description.abstractLa sal cristalina ha sido utilizada por años como conservante en los alimentos para retrasar, inhibir o prevenir el crecimiento de ciertos hongos y bacterias en un sistema alimentario. Esto es llevado a cabo en el proceso conocido como salazón, una técnica antigua pero que hoy en día aún es usada para la conservación principalmente de carnes como el pescado y algunos derivados cárnicos, sin embargo, en este tipo de alimentos existen halófilos que pueden sobrevivir a diferentes concentraciones de sal y pueden llegar a afectar la salud humana. Adicionalmente, pueden existir cambios a nivel sensorial en el producto alimenticio por la presencia de microorganismos halófilos y halotolerantes tales como la aparición de sabores, olores y colores que son desagradables para el consumidor y son resultantes del crecimiento, metabolismo microbiano y de la producción de enzimas extracelulares. En este trabajo se presenta la revisión bibliográfica realizada para documentar los efectos negativos que tiene la presencia y el crecimiento de microorganismos halófilos y halotolerantes en alimentos que han sido conservados con sal, así como las perspectivas de manejo desde el uso de antimicrobianos naturales que podrían contribuir a un proceso de salazón más efectivo para inhibir la proliferación de microorganismos halófilos y halotolerantes.spa
dc.description.additionalLínea de Investigación: Microorganismos de ambientes extremosspa
dc.description.degreelevelMaestríaspa
dc.format.extent115spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78777
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAdsersen, A., Gauguin, B., Gudiksen, L., & Jäger, A. (2006). Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 104(3), 418–422.spa
dc.relation.referencesAljohny, B. (2015). Halophilic bacterium-A review of new studies. Biosciences Biotechnology Research Asia, 12(3), 2061–2069. https://doi.org/10.13005/bbra/1874spa
dc.relation.referencesÁlvarez, C., Castro, A., de González, M., & Jiménez, M. (2005). Mecanismos de resistencia en Pseudomonas aeruginosa: entendiendo a un peligroso enemigo. Revista de La Facultad de Medicina, 27–34.spa
dc.relation.referencesArense, P., Bernal, V., Iborra, J. L., & Cánovas, M. (2010). Metabolic adaptation of Escherichia coli to long-term exposure to salt stress. Process Biochemistry, 45(9), 1459–1467. https://doi.org/10.1016/j.procbio.2010.05.022spa
dc.relation.referencesArévalo, S. (2017). Agua En Los Alimentos [Universidad Nacional de la amazonia peruana]. http://www.qo.fcen.uba.ar/quimor/wp-content/uploads/12-8 el agua en los alimentos.pdfspa
dc.relation.referencesBastos Oyarzabal, M., Damé Schuch, L., de Souza Prestes, L., Bender Almeida Schiavon, D., Alves Rodrigues, M., & Braga de Mello, J. (2011). Actividad antimicrobiana de aceite esencial de Origanum vulgare L. ante bacterias aisladas en leche de bovino. Revista Cubana de Plantas Medicinales, 16(3), 260–266.spa
dc.relation.referencesBaxter, R. (1960). Carotenoid pigments of halophilic bacteria. Canadian Journal of Microbiology, 6(5721), 417–424. https://doi.org/10.1139/m60-047spa
dc.relation.referencesBecerra, D., Cortés, D., & Giraldo, J. (2003). Identificación de microorganismos pertenecientes a la familia Halobacteríaceae. Acta Biológica Colombiana.spa
dc.relation.referencesBelessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85(8), 1665–1691. https://doi.org/10.1016/j.solener.2009.10.001spa
dc.relation.referencesBen-Amotz, A. (1981). Glycerol and ß-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends in Biochemical energy conversion, 6, 297-299.spa
dc.relation.referencesBerga, A. (2009). Infecciones producidas por Staphylococcus aureus (Marge Book), 8, 169.spa
dc.relation.referencesBhat, R., Alias, A., & Paliyath, G. (2012). Progress in food preservation. (John Wiley & Sons (ed.)), 8, 161-186.spa
dc.relation.referencesBhaumik, S., & Sonawat, H. (1999). Kinetic mechanism of glucose dehydrogenase from Halobacterium salinarum. Indian Journal of Biochemistry and Biophysics, 36(3), 143–149.spa
dc.relation.referencesBidlas, E., & Lambert, R. (2008). Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. International Journal of Food Microbiology, 124(1), 98–102.spa
dc.relation.referencesBiscola, V., Todorov, S., Capuano, V., Abriouel, H., Gálvez, A., & Franco, B. (2013). Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Science, 93(3), 607–613. https://doi.org/10.1016/j.meatsci.2012.11.021spa
dc.relation.referencesBjørkevoll, I., Olsen, R., & Skjerdal, O. (2003). Origin and spoilage potential of the microbiota dominating genus Psychrobacter in sterile rehydrated salt-cured and dried salt-cured cod (Gadus morhua). International Journal of Food Microbiology, 84(2), 175–187. https://doi.org/10.1016/S0168-1605(02)00418-Xspa
dc.relation.referencesBlackburn, C. (2006). Food spoilage microorganisms (Woodhead Publishing (ed.)), 9, 213-286.spa
dc.relation.referencesBlohs, M., Moissl-Eichinger, C., Mahnert, A., Spang, A., Dombrowski, N., Krupovic, M., & Klingl, A. (2019). Archaea-an introduction. In Encyclopedia of Microbiology (4th ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809633-8.20884-4spa
dc.relation.referencesBoziaris, I. (2013). Seafood processing: technology, quality and safety (John Wiley & Sons (ed.)), 6, 126-175.spa
dc.relation.referencesBreidenstein, E., de la Fuente-Núñez, C., & Hancock, R. (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends in Microbiology, 419–426.spa
dc.relation.referencesBrininger, C. (2018). The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles. In Seminars in cell & developmental biology, 84, 158-169.spa
dc.relation.referencesCánovas López, D. (1998). Bases moleculares de los mecanismos de osmorregulación en bacterias halófilas moderadas (Issue May, pp. 1–25).spa
dc.relation.referencesCarocho, M., Morales, P., & Ferreira, I. (2015). Natural food additives: Quo vadis? Trends in Food Science and Technology, 45(2), 284–295. https://doi.org/10.1016/j.tifs.2015.06.007spa
dc.relation.referencesCarson, L., Favero, M., Bond, W., & Petersen, N. (1973). Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl. Environ. Microbiol, 476–483.spa
dc.relation.referencesCastañón-Sánchez, C. (2012). Patogenia molecular de Staphylococcus aureus. Evidencia Médica e Investigación En Salud, 79–84.spa
dc.relation.referencesCervantes-García, E., García-González, R., & Salazar-Schettino, P. (2014). Características generales del Staphylococcus aureus. Revista Mexicana de Patología Clínica y Medicina de Laboratorio, 28–40.spa
dc.relation.referencesChandler, R. (1988). The Effect of Temperature and Water Activity on Microbial Growth Rate and Food Spoilage. 17, 20. https://core.ac.uk/download/pdf/33329151.pdfspa
dc.relation.referencesCherroud, S., Cachaldora, A., Fonseca, S., Laglaoui, A., Carballo, J., & Franco, I. (2014). Microbiological and physicochemical characterization of dry-cured Halal goat meat. Effect of salting time and addition of olive oil and paprika covering. Meat Science, 98(2), 129–134. https://doi.org/10.1016/j.meatsci.2014.05.018spa
dc.relation.referencesChiralt, A., Fito, P., Barat, J. M., Andrés, A., González-Martínez, C., Escriche, I., & Camacho, M. (2001). Use of vacuum impregnation in food salting process. Journal of Food Engineering, 49(2–3), 141–151. https://doi.org/10.1016/S0260-8774(00)00219-3spa
dc.relation.referencesConway, T. (1992). The Entner-Doudoroff pathway : history , physiology and molecular biology. 103.spa
dc.relation.referencesCorcelli, A., & Lobasso, S. (2006). Characterization of Lipids of Halophilic Archaea. Methods in Microbiology, 35(05), 585–613. https://doi.org/10.1016/S0580-9517(08)70028-Xspa
dc.relation.referencesCorral, P., Amoozegar, M., & Ventosa, A. (2020). Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine Drugs, 18(1). https://doi.org/10.3390/md18010033spa
dc.relation.referencesCuadra, A. (2010). Nutrición saludable y prevención de los trastornos alimentarios. (Ministerio), 4, 79-85spa
dc.relation.referencesDasSarma, S., & DasSarma, P. (2017). Halophiles. ELS, 1–13. https://doi.org/10.1002/9780470015902.a0000394.pub4spa
dc.relation.referencesDave, D., & Ghaly, A. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Science, 6(4), 486–510. https://doi.org/10.3844/ajabssp.2011.486.510spa
dc.relation.referencesDe Abreu, P., Farias, P., Paiva, G., Almeida, A., & Morais, P. (2014). Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiology, 118.spa
dc.relation.referencesDe Souza, L., Müller-Santos, M., Iacomini, M., Gorin, P., & Sassaki, G. (2009). Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic Archaea Haloarcula marismortui. Journal of Lipid Research, 50(7), 1363–1373.spa
dc.relation.referencesDelgado‐García, M., Valdivia‐Urdiales, B., Aguilar‐González, C., Contreras‐Esquivel, J., & Rodríguez‐Herrera, R. (2012). Halophilic hydrolases as a new tool for the biotechnological industries. Journal of the Science of Food and Agriculture, 92(13), 2575–2580.spa
dc.relation.referencesDíaz-Cárdenas, C., & Baena, S. (2015). Manantiales salinos: Inventarios de Diversidad Metabólica y filogenética de microorganismos de ambientes salinos. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 358. https://doi.org/10.18257/raccefyn.199spa
dc.relation.referencesDíaz, L. (2010). Principios básicos de bioquímica de los alimentos (Editorial), 3, 85.spa
dc.relation.referencesDíaz Ruiz, G., & Wacher Rodarte, C. (2003). Métodos para el estudio de comunidades microbianas en alimentos fermentados. Revista Latinoamericana de Microbiologia, 45(1–2), 30–40.spa
dc.relation.referencesDurruty, M. (2013). Análisis físico-químico, sensorial y consumo de productos pesqueros ahumados. Tesis.spa
dc.relation.referencesEmborg, J., Dalgaard, P., & Ahrens, P. (2006). Morganella psychrotolerans sp. nov., a histamine-producing bacterium isolated from various seafoods. International Journal of Systematic and Evolutionary Microbiology, 2473–2479.spa
dc.relation.referencesEnquahone, S., van Marle, G., Gessesse, A., & Simachew, A. (2020). Molecular identification and evaluation of the impact of red heat damage causing halophilic microbes on salted hide and skin. International Biodeterioration and Biodegradation, 150 (December 2019), 104940. https://doi.org/10.1016/j.ibiod.2020.104940spa
dc.relation.referencesEsaú López-Jácome, L., Hernández-Durán, M., Colín-Castro, C. A., Ortega-Peña, S., Cerón-González, G., & Franco-Cendejas, R. (2014). Las tinciones básicas en el laboratorio de microbiología. 3. www.medigraphic.org.mxwww.medigraphic.org.mxspa
dc.relation.referencesFalb, M., Müller, K., Königsmaier, L., Oberwinkler, T., Horn, P., Von Gronau, S., Gonzalez, O., Pfeiffer, F., Bornberg-Bauer, E., & Oesterhelt, D. (2008). Metabolism of halophilic archaea. Extremophiles, 12(2), 177–196. https://doi.org/10.1007/s00792-008-0138-xspa
dc.relation.referencesFAO. (1989). Norma para pescado salado y pescado seco salado de la familia gadida.spa
dc.relation.referencesFAO. (2018). The state of the world fisheries and aquaculture.spa
dc.relation.referencesFarkas, J. (2007). Physical methods of food preservation. In Food Microbiology. In American Society of Microbiology. (Ed.), Fundamentals and Frontiers, Third Edition (pp. 685–712).spa
dc.relation.referencesFendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F., & Stan-Lotter, H. (2006). Extremely halophilic archaea and the issue of long-term microbial survival. Reviews in Environmental Science and Biotechnology, 5(2–3), 203–218. https://doi.org/10.1007/s11157-006-0007-yspa
dc.relation.referencesFiszman, S., & Tarrega, A. (2020). Textural Characteristics of Spanish Foods: Dry‐Cured Ham. Textural Characteristics of World Foods, 319–334.spa
dc.relation.referencesFlores-gallegos, A. C., Delgado-garcía, M., Ascacio-valdés, J. A., Villareal-morales, S., Michel-michel, M. R., & Aguilar-gonzález, C. (2019). Hydrolases of Halophilic Origin With Importance for the Food Industry. In Enzymes in Food Biotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00013-Xspa
dc.relation.referencesFlores, T., & Herrera, R. (2005). Enfermedades transmitidas por alimentos y PCR: prevención y diagnóstico. Salud Pública de México, 388–390.spa
dc.relation.referencesFuentes, S; Moreno, E. (2011). Perfil de riesgo Salmonella spp.(no tifoideas) en pollo entero y en piezas. Ministerio de Protección social.spa
dc.relation.referencesFuentes Sánchez, G., & Arredondo Peter, R. (2018). La dihidrolipoamida deshidrogenasa: estructura, función y patología. Revista de Educación Bioquímica, 36(3), 82–88.spa
dc.relation.referencesFukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., & Nishikawa, K. (2003). Unique amino acid composition of proteins in halophilic bacteria. Journal of molecular biology, 327(2), 347-357.spa
dc.relation.referencesGarcía, R; Palou-García, E. (2008). Mecanismos de acción antimicrobiana de timol y carvacrol sobre microorganismos de interés en alimentos. Temas Selectos de Ingienería de Alimentos, 41–51.spa
dc.relation.referencesGarcía, V. (2004). Introduccion a la microbiologia (Universidad Estatal a Distancia (ed.)), 52.spa
dc.relation.referencesGaribyan, L., & Avashia, N. (2013). Research techniques made simple: polymerase chain reaction (PCR). The Journal of Investigative Dermatology. 133 (3).spa
dc.relation.referencesGarzón, V. (2015). Aislamiento e identificación de bacterias halófilas con potencial bioactivo aisladas de las Salinas de Zipaquirá, Colombia. Tesis, 103. https://doi.org/10.1590/S0124-00642012000800004spa
dc.relation.referencesGhaly, a E., Dave, D., Budge, S., & Brooks, M. (2010). Fish Spoilage Mechanisms and Preservation Techniques : Review Department of Process Engineering and Applied Science , Dalhousie University Halifax , Nova Scotia , Canada. American Journal of Applied Sciences, 7(7), 859–877. https://doi.org/10.3844/ajassp.2010.859.877spa
dc.relation.referencesGhosh, M., & Sonawat, H. (1998). Kreb’s TCA cycle in Halobacterium salinarum investigated by 13C nuclear magnetic resonance spectroscopy. Extremophiles, 2(4), 427–433. https://doi.org/10.1007/s007920050088spa
dc.relation.referencesGochnauer, M., & Kushner, D. (1969). Growth and nutrition of extremely halophilic bacteria. Canadian Journal of Microbiology, 15(10), 1157–1165. https://doi.org/10.1139/m69-211spa
dc.relation.referencesGonzález-Hernández, J., & Peña, A. (2002). Estrategias de adaptación de microorganismos halófilos y Debaryomyces hansenii (levadura halófila). Revista Latinoamericana de Microbiologia, 44(3–4), 137–156.spa
dc.relation.referencesGonzalez, O. (2009). Reconstruction, Modeling & Analysis of Haloarchaeal Metabolic Networks. 222.spa
dc.relation.referencesGonzalez, O., Gronau, S., Falb, M., Pfeiffer, F., Mendoza, E., Zimmer, R., & Oesterhelt, D. (2008). Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. Molecular BioSystems, 4(2), 148–159. https://doi.org/10.1039/b715203espa
dc.relation.referencesGram, L. (2009). Microbiological spoilage of fish and seafood products. In Springer (Ed.), Compendium of the microbiological spoilage of foods and beverages (pp. 87–119).spa
dc.relation.referencesGram, Lone, Ravn, L., Rasch, M., Bruhn, J., Christensen, A., & Givskov, M. (2002). Food spoilage - Interactions between food spoilage bacteria. International Journal of Food Microbiology, 78(1–2), 79–97. https://doi.org/10.1016/S0168-1605(02)00233-7spa
dc.relation.referencesGuimarães, A., Meireles, L., Lemos, M., Guimarães, M., Endringer, D., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24 (13), 2471.spa
dc.relation.referencesGupta, C., Garg, A., Uniyal, R., & Kumari, A. (2008). Antimicrobial activity of some herbal oils against common food-borne pathogens. African Journal of Microbiology Research, 2(10), 258–261.spa
dc.relation.referencesHamid, A., Risikat, A., Abdulmumeen, H., Risikat, A., & Sururah, A. (2012). Chemistry View project Review on Antioxidants View project Food: Its preservatives, additives and applications. Ijcbs, 1, 36–47. https://doi.org/10.13140/2.1.1623.5208spa
dc.relation.referencesHenriet, O., Fourmentin, J., Delincé, B., & Mahillon, J. (2014). Exploring the diversity of extremely halophilic archaea in food-grade salts. International Journal of Food Microbiology, 191, 36–44. https://doi.org/10.1016/j.ijfoodmicro.2014.08.019spa
dc.relation.referencesHernández Nazario, L. (2000). Obtención de glicerol a partir de la Microalga Dunaliella Salina. Revista Cubana de Farmacia, 34(2), 134-137.spa
dc.relation.referencesHill, C., Cotter, P., Sleator, R., & Gahan, C. (2002). Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing. International Dairy Journal, 12(2–3), 273–283. https://doi.org/10.1016/S0958-6946(01)00125-Xspa
dc.relation.referencesHorikoshi, K., Antranikian, G., Bull, A., Robb, F., & Stetter, K. (2010). Extremophiles handbook. Springer Science & Business Media.19-139.spa
dc.relation.referencesHurtado, M., De la Parte, M., & Brito, A. (2002). Staphylococcus aureus: Revisión de los mecanismos de patogenicidad y la fisiopatología de la infección estafilocócica. Revista de La Sociedad Venezolana de Microbiología, 112–118.spa
dc.relation.referencesHyldgaard, M., Mygind, T., & Meyer, R. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12.spa
dc.relation.referencesIbrahim, I., Konnova, S., Sigida, E., Lyubun, E., Muratova, A., Fedonenko, Y., & Elbanna, К. (2020). Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles, 24(1), 157–166. https://doi.org/10.1007/s00792-019-01143-2spa
dc.relation.referencesIshibashi, M., Tokunaga, H., Hiratsuka, K., Yonezawa, Y., Tsurumaru, H., Arakawa, T., & Tokunaga, M. (2001). NaCl‐activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt. FEBS Letters, 493(2–3), 134–138.spa
dc.relation.referencesIturriaga, G., & Rodríguez, S. (2010). La acumulación de trehalosa en azospirillum brasilence mejora la tolerancia a la sequía y la biomasa en plantas de maíz. Revista Claridades Agropecuarias. 142, 32-41.spa
dc.relation.referencesJabor, B. (2002). Industrial microbiology of solar salt production. Journal of Industrial Microbiology and Biotechnology, 42–47.spa
dc.relation.referencesJančič, S., Frisvad, J., Kocev, D., Gostinčar, C., Džeroski, S., & Gunde-Cimerman, N. (2016). Production of secondary metabolites in extreme environments: Food- and airborne wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS ONE, 11(12), 1–20. https://doi.org/10.1371/journal.pone.0169116spa
dc.relation.referencesJay, M. (2005). Intrinsic and extrinsic parameters of foods that affect microbial growth. In Springer (Ed.), Modern food microbiology (pp. 38–66).spa
dc.relation.referencesJehlička, J., Edwards, H., & Oren, A. (2013). Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: A Raman spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 106, 99–103. https://doi.org/10.1016/j.saa.2012.12.081spa
dc.relation.referencesJeon, C., Lim, J., Lee, J., Xu, L., Jiang, C., & Kim, C. (2005). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. International Journal of Systematic and Evolutionary Microbiology, 1891–1896.spa
dc.relation.referencesJeong, S., Lee, J., Jung, J., Lee, S., Park, M., & Jeon, C. (2013). Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 103(3), 503–512. https://doi.org/10.1007/s10482-012-9832-xspa
dc.relation.referencesJin, G., Zhang, J., Yu, X., Zhang, Y., Lei, Y., & Wang, J. (2010). Lipolysis and lipid oxidation in bacon during curing and drying–ripening. Food Chemistry, 465–471. Joardder, M., & Masud, M. (2019). Food preservation in developing countries: Challenges and solutions. In Food Preservation in Developing Countries: Challenges and Solutions. https://doi.org/10.1007/978-3-030-11530-2spa
dc.relation.referencesJung, J., Lee, S., Lee, H., & Jeon, C. (2013). Microbial succession and metabolite changes during fermentation of saeu-jeot: Traditional Korean salted seafood. Food Microbiology, 34(2), 360–368. https://doi.org/10.1016/j.fm.2013.01.009spa
dc.relation.referencesJung, M., Kim, M., Roh, S., Shin, K., & Bae, J. (2010). Salinicoccus carnicancri sp. nov., a halophilic bacterium isolated from a Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 60(3), 653–658. https://doi.org/10.1099/ijs.0.012047-0spa
dc.relation.referencesJung, M., Roh, S., Kim, M., & Bae, J. (2010). Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1017–1022. https://doi.org/10.1099/ijs.0.013565-0spa
dc.relation.referencesKastritis, P., Papandreou, N., & Hamodrakas, S. (2007). Haloadaptation: Insights from comparative modeling studies of halophilic archaeal DHFRs. International Journal of Biological Macromolecules, 41(4), 447–453. https://doi.org/10.1016/j.ijbiomac.2007.06.005spa
dc.relation.referencesKEFIR, I. (2014). Caracterización e identificación molecular de bacterias aisladas de Kefir.spa
dc.relation.referencesKillham, K., & Prosser, J. (2015). The Bacteria and Archaea. In Soil Microbiology, Ecology and Biochemistry (4th ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-415955-6.00003-7spa
dc.relation.referencesKim, K., Lee, J., & Stevens, D. (2013). Microbiology and epidemiology of Halomonas species. Future Microbiology, 8(12), 1559–1573. https://doi.org/10.2217/fmb.13.108spa
dc.relation.referencesKim, M., Roh, S., & Bae, J. (2010). Halomonas jeotgali sp. nov., a new moderate halophilic bacterium isolated from a traditional fermented seafood. Journal of Microbiology, 48(3), 404–410. https://doi.org/10.1007/s12275-010-0032-yspa
dc.relation.referencesKim, N., Cho, T., & Rhee, M. (2017). Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. Advances in Applied Microbiology, 101, 1–47. https://doi.org/10.1016/bs.aambs.2017.05.001spa
dc.relation.referencesKivistö, A & Karp, M. (2011). Halophilic anaerobic fermentative bacteria. Journal of Biotechnology, 114–124.spa
dc.relation.referencesKonings, W., Albers, S., Koning, S., & Driesen, A. (2002). The Cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 61–72. https://doi.org/10.1023/A:1020573408652spa
dc.relation.referencesKovacova-Hanuskova, E., Buday, T., Gavliakova, S., & Plevkova, J. (2015). Histamine, histamine intoxication and intolerance. Allergologia et Immunopathologia, 498–506.spa
dc.relation.referencesKumar, M., & Berwal, J. (1998). Sensitivity of food pathogens to garlic (Allium sativum). Journal of Applied Microbiology, 84(2), 213–215.spa
dc.relation.referencesKumar, S., Karan, R., Kapoor, S., Singh, S., & Khare, S. (2012). Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazilian Journal of Microbiology, 43(4), 1595–1603.spa
dc.relation.referencesKushner, D. (1968). Halophilic bacteria (Adv Appl Microbiol (ed.)), 10, 73-99.spa
dc.relation.referencesKushner, D. (1985). The Halobacteriaceae. In Archabacteria: Vol. VIII. 3, 171-214. https://doi.org/10.1016/b978-0-12-307208-5.50009-xspa
dc.relation.referencesLaBauve, A., & Wargo, M. (2012). Growth and laboratory maintenance of Pseudomonas aeruginosa. Current Protocols in Microbiology, SUPPL.25, 1–8. https://doi.org/10.1002/9780471729259.mc06e01s25spa
dc.relation.referencesLakshmanan, R., Shakila, R., & Jeyasekaran, G. (2002). Changes in the halophilic amine forming bacterial flora during salt-drying of sardines (Sardinella gibbosa). Food Research International, 35(6), 541–546. https://doi.org/10.1016/S0963-9969(01)00154-5spa
dc.relation.referencesLangworthy, T.;Tornabene, T.; & Holzer, G. (1982). Lipids of archaebacteria. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 3(2), 228–244.spa
dc.relation.referencesLanyi, J. (2012). Light capture and energy transduction in bacterial rhodopsins and related proteins. In Comprehensive Biophysics (Vol. 8). 206-227. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374920-8.00816-Xspa
dc.relation.referencesLarsen, H. (1981). The family Halobacteriaceae. In The procaryotes (pp. 985–994).spa
dc.relation.referencesLee, H., Yim, K., Song, H., Nam, Y. Do, Choi, H., Seo, M., Kim, K., Kim, D., Roh, S., & Rhee, J. (2014). Draft genome sequence of Halorubrum halophilum B8T, an extremely halophilic archaeon isolated from salt-fermented seafood. Marine Genomics, 18(PB), 117–118. https://doi.org/10.1016/j.margen.2014.08.005spa
dc.relation.referencesLin, C., Liu, F., Lee, Y., Hwang, C., & Tsai, Y. (2012). Histamine contents of salted seafood products in Taiwan and isolation of halotolerant histamine-forming bacteria. Food Chemistry, 574–579.spa
dc.relation.referencesLitchWeld, C. (2011). Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology, 38(10), 1635–1647. https://doi.org/10.1007/s10295-011-1021-9spa
dc.relation.referencesLondoño, N., Taborda, M., López, C., & Acosta, L. (2005). Bacteriocinas producidas por bacterias ácido lácticas y su aplicación en la industria de alimentos. Alimentos Hoy, 186–205.spa
dc.relation.referencesLópez Fernández, D. (2015). Análisis de la actividad de catepsinas b, b+ lyh en carne de cerdo en diferentes genéticas. Tesis.spa
dc.relation.referencesLópez-Jácome, L. (2014). Las tinciones básicas en el laboratorio de microbiología. Investig. en discapacidades, 3(1), 10-18.spa
dc.relation.referencesLorentzen, G., Egeness, F. A., Pleym, I., & Ytterstad, E. (2016). Shelf life of packaged loins of dried salt-cured cod (Gadus morhua L.) stored at elevated temperatures. Food Control, 64, 65–69. https://doi.org/10.1016/j.foodcont.2015.12.027spa
dc.relation.referencesLorentzen, G., Wesmajervi Breiland, M., Østli, J., Wang-Andersen, J., & Olsen, R. (2015). Growth of halophilic microorganisms and histamine content in dried salt-cured cod (Gadus morhua L.) stored at elevated temperature. LWT - Food Science and Technology, 60(1), 598–602. https://doi.org/10.1016/j.lwt.2014.08.035spa
dc.relation.referencesMa, Y., Galinski, E., Grant, W., Oren, A., & Ventosa, A. (2010). Halophiles 2010: Life in saline environments. Applied and Environmental Microbiology, 76(21), 6971–6981. https://doi.org/10.1128/AEM.01868-10spa
dc.relation.referencesMadern, D., Ebel, C., & Zaccai, G. (2000). Halophilic adaptation of enzymes. Extremophiles, 4(2), 91–98. https://doi.org/10.1007/s007920050142spa
dc.relation.referencesMadigan, M., & Martinko, J. (2005). Brock biología de los microorganismos (11th ed.). 27-604.spa
dc.relation.referencesMaheshwari, D. (2015). Halophiles. Biodiversity and sustainable exploitation (Springer).173-188.spa
dc.relation.referencesMandal, S., & DebMandal, M. (2016). Thyme (Thymus vulgaris L.) oils. In Essential Oils in Food Preservation, Flavor and Safety (Issue 1998). 825-834. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00094-8spa
dc.relation.referencesMaps, K. (2020). No Title. https://www.genome.jp/kegg-bin/show_pathway?select_scale=0.82&query=&map=pae01230&scale=0.82&orgs=&auto_image=&nocolor=&show_description=hide&multi_query=&module=&show_module_list=show&link_mode=spa
dc.relation.referencesMathabatha, E. (2010). Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. African Journal of Biotechnology, 9(11), 1555–1560. https://doi.org/10.5897/ajb10.051spa
dc.relation.referencesMelani, N., Tambourgi, E., & Silveira, E. (2020). Lipases: From production to applications. Separation & Purification Reviews, 49(2), 143–158.spa
dc.relation.referencesMelgar-Lalanne, G., Rivera-Espinoza, Y., Farrera-Rebollo, R., & Hernández-Sánchez, H. (2014). Survival under stress of halotolerant lactobacilli with probiotic properties. Revista Mexicana de Ingeniería Química, 323–335.spa
dc.relation.referencesMeyer, A., Suhr, K., Nielsen, P., & Holm, F. (2002). Natural food preservatives. In Minimal processing technologies in the food industry (pp. 124–174).spa
dc.relation.referencesMichailidis, P., & Krokida, M. (2014). Drying and dehydration processes in food preservation and processing. In Conventional and Advanced Food Processing Technologies (pp. 1–32).spa
dc.relation.referencesMinisterio de salud y protección. (n.d.).spa
dc.relation.referencesMorales, C. (2004). Alimentación y vida saludable:¿somos lo que comemos? (U. P. Comillas (ed.)).spa
dc.relation.referencesMoreno, M. de L., Pérez, D., García, M., & Mellado, E. (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3(1), 38–51. https://doi.org/10.3390/life3010038spa
dc.relation.referencesMukhopadhyay, S., & Ramaswamy, R. (2012). Application of emerging technologies to control Salmonella in foods: A review. Food Research International, 45(2), 666–677. https://doi.org/10.1016/j.foodres.2011.05.016spa
dc.relation.referencesMüller, V., & Oren, A. (2003). Metabolism of chloride in halophilic prokaryotes. Extremophiles, 7(4), 261–266. https://doi.org/10.1007/s00792-003-0332-9spa
dc.relation.referencesNair, M., Nair, D., Kollanoor Johny, A., & Venkitanarayanan, K. (2019). Use of food preservatives and additives in meat and their detection techniques. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819233-7.00012-4spa
dc.relation.referencesNations, F. (1999). Aseguramiento de la calidad de los productos pesqueros.spa
dc.relation.referencesNazareth, S. (2014). The world of halophilic fungi. 42, 131–144. http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2821/Kavaka_42_2014_131-144.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesNg, W. (2000). Genome sequence of Halobacterium species NRC-1. Proceedings of the National Academy of Sciences, 12176-12181spa
dc.relation.referencesNin, G. (2000). Introducción a la microscopía electrónica aplicada a las ciencias biológicas. (UNAM (ed.)).spa
dc.relation.referencesOdeyemi, O., Alegbeleye, O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 311–331.spa
dc.relation.referencesOesterhelt, D. (1998). The structure and mechanism of the family of retinal proteins from halophilic archaea. Current Opinion in Structural Biology, 8(4), 489–500.spa
dc.relation.referencesOgur, S., & Erkan, N. (2020). Microbiological and chemical quality of different types of salted pearl mullet (Chalcalburnus tarichi Pallas, 1811). Journal of Food Safety. 40(1). 12717.spa
dc.relation.referencesOhlsson, T., & Bengtsson, N. (2002). Minimal processing technologies in the food industries. (Elsevier (ed.)). 6, 124-161.spa
dc.relation.referencesOren, A. (2000). Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology & Biotechnology, 28(1), 56–63.spa
dc.relation.referencesOren, A. (2004). Convergent evolution in extremely halophilic prokaryotes: a comparison between Salinibacter ruber (Bacteria) and the Halobacteriaceae (Archaea). In D. Springer (Ed.), Evolutionary Theory and Processes: Modern Horizons (pp. 43–64).spa
dc.relation.referencesOren, A. (2006). Halophilic microorganisms and their environments (Springer Science & Business Media (ed.)). 3-299.spa
dc.relation.referencesOren, A. (2015). Halanaerobium. In Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 1–8).spa
dc.relation.referencesOren, A. (2002). Chapter 4 Adaptation of Halophilic Archaea To Life At High Salt Concentrations. 81–96.spa
dc.relation.referencesOren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8–9), 825–834. https://doi.org/10.1080/09593330903370026spa
dc.relation.referencesOren, A. (2017). Halococcus . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–15. https://doi.org/10.1002/9781118960608.gbm00484.pub2spa
dc.relation.referencesOren, A., & Ventosa, A. (2017). Halobacterium . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–12. https://doi.org/10.1002/9781118960608.gbm00482.pub2spa
dc.relation.referencesOussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236–244. https://doi.org/10.1016/j.meatsci.2005.11.019spa
dc.relation.referencesPakdeeto, A., Tanasupawat, S., Thawai, C., Moonmangmee, S., Kudo, T., & Itoh, T. (2007). Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. International Journal of Systematic and Evolutionary Microbiology, 364–369.spa
dc.relation.referencesPalleroni, N. (2015). Pseudomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria.spa
dc.relation.referencesParamasivam, S., Thangaradjou, T., & Kannan, L. (2007). Effect of natural preservatives on the growth of histamine producing bacteria. Journal of Environmental Biology, 28(2), 271–274.spa
dc.relation.referencesPascual Anderson, M., & Calderón y Pascual, V. (2000). Microbiología alimentaria: metodología analítica para alimentos y bebidas. 77-80.spa
dc.relation.referencesPaz-Zarza, V., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 180–189.spa
dc.relation.referencesPellissery, A., Vinayamohan, P., Amalaradjou, M., & Venkitanarayanan, K. (2019). Spoilage bacteria and meat quality. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819233-7.00017-3spa
dc.relation.referencesPerez, S., Czerner, M., Patat, M., Zaritzky, N., Murialdo, S., & Yeannes, M. (2018). Monitoring the characteristics of cultivable halophilic microbial community during salted-ripened anchovy (Engraulis anchoita) production. International Journal of Food Microbiology, 286, 179–189. https://doi.org/10.1016/j.ijfoodmicro.2018.08.013spa
dc.relation.referencesPerinbam, K., Chacko, J., Kannan, A., Digman, M. & Siryaporn, A. (2020). A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa. American Society for Microbiology, 11(2).spa
dc.relation.referencesPfeiffer, F., Losensky, G., Marchfelder, A., Habermann, B., & Dyall‐Smith, M. (2020). Whole‐genome comparison between the type strain of Halobacterium salinarum (DSM 3754T) and the laboratory strains R1 and NRC‐1. Microbiologyopen. 9(2), 974.spa
dc.relation.referencesPierson, M., Smoot, L., & Robach, M. (1983). Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats. Critical Reviews in Food Science & Nutrition, 141–187.spa
dc.relation.referencesPinto, M., Ponsano, E., Franco, B., & Shimokomaki, M. (2002). Charqui meats as fermented meat products: Role of bacteria for some sensorial properties development. Meat Science, 61(2), 187–191. https://doi.org/10.1016/S0309-1740(01)00184-Xspa
dc.relation.referencesPodolak, R., Black, D., & Wiley, J. (2017). Control of Salmonella and other bacterial pathogens in low-moisture foods (Wiley Blac). 4, 67-80.spa
dc.relation.referencesPrasad, M., & Seenayya, G. (2000). Effect of spices on the growth of red halophilic cocci isolated from salt cured fish and solar salt. Food Research International, 33(9), 793–798. https://doi.org/10.1016/S0963-9969(00)00100-9spa
dc.relation.referencesPreetha, S., & Narayanan, R. (2020). Factors Influencing the Development of Microbes in Food. Shanlax International Journal of Arts, Science and Humanities, 7(3), 57–77. https://doi.org/doi.org/10.34293/sijash.v7i3.473spa
dc.relation.referencesQin, Q., Ling, C., Zhao, Y., Yang, T., Yin, J., Guo, Y., & Chen, G. (2018). CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metabolic Engineering, 47, 219–229. https://doi.org/10.1016/j.ymben.2018.03.018spa
dc.relation.referencesRahman, M. (2007). Handbook of food preservation (CRC press. (ed.)). 1-299.spa
dc.relation.referencesRamirez, E., & Yeannes, M. (2012). Deterioro de los productos de la pesca salados y sus causas. 50, 58-62.spa
dc.relation.referencesRamirez, L., & Castaño, D. (2009). Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal. Scientia et Technica, 15(42), 263–268.spa
dc.relation.referencesRamírez, N., Sandoval, A., & Serrano, J. (2004). Las bacterias halófilas y sus aplicaciones biotecnológicas. Revista de La Sociedad Venezolana de Microbiología, 24(1–2), 12–23.spa
dc.relation.referencesRamírez D., Serrano R., & Sandoval T. (2006). Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmacéuticas, 37, 56–71.spa
dc.relation.referencesRastelli, E., Giraffa, G., Carminati, D., Parolari, G., & Barbuti, S. (2005). Identification and characterisation of halotolerant bacteria in spoiled dry-cured hams. Meat Science, 70(2), 241–246. https://doi.org/10.1016/j.meatsci.2005.01.008spa
dc.relation.referencesRautenstrauss, B. & Liehr, T. (2012). FISH technology (Springer S).1-42.spa
dc.relation.referencesReyes-Martínez, M., & Zavaleta, A. (2005). Bacteriorrodopsina: una molécula peculiar. Ciencia e Investigación, 8(1), 48–58.spa
dc.relation.referencesRodríguez, R. (2008). Fundamentos teóricos y prácticos de la histoquímica (CSIC-CSIC).spa
dc.relation.referencesRoh, S., & Bae, J. (2009). Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. Journal of Microbiology, 47(2), 162–166. https://doi.org/10.1007/s12275-009-0016-yspa
dc.relation.referencesRoh, S., Nam, Y. Do, Chang, H., Sung, Y., Kim, K., Oh, H., & Bae, J. (2007). Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2296–2298. https://doi.org/10.1099/ijs.0.65121-0spa
dc.relation.referencesRosa, M. De, & Gambacorta, A. (1986). Lipid biogenesis in archaebacteria. Systematic and Applied Microbiology, 7(2–3), 278–285. https://doi.org/10.1016/S0723-2020(86)80020-0spa
dc.relation.referencesRosenberg, E; DeLong, E. F.; Lory, S.; Stackebrandt, E., & Thompson, F. (2006). The Prokaryotes (Springer B).spa
dc.relation.referencesRussell, N. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, 21(1), 93–113. https://doi.org/10.1007/BF00762214spa
dc.relation.referencesSalma, M., Abdulla, M. K., & Samina, M. (2020). Osmoadaptation in halophilic bacteria and archaea. July.spa
dc.relation.referencesSasmal, D., Babu, C., & Abraham, T. (2005). Effect of garlic (Allium sativum) extract on the growth and disease resistance of Carassius auratus (Linnaeus, 1758). Indian J. Fish, 207–214.spa
dc.relation.referencesSauceda, E. (2011). Uso de agentes antimicrobianos naturales en la conservación de frutas y hortalizas. Ra Ximhai: revista científica de sociedad, cultura y desarrollo sostenible, 153-170.spa
dc.relation.referencesSchmid, A. (2009). A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Molecular systems biology, 5(1).spa
dc.relation.referencesSchaechter, M. (2010). Desk encyclopedia of microbiology (Academic Press. (ed.)).spa
dc.relation.referencesSebranek, J. (2009). Basic curing ingredients. In Springer (Ed.), In Ingredients in meat products.spa
dc.relation.referencesSepcic, K., Zalar, P., & Gunde-Cimerman, N. (2011). Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Marine Drugs, 9(1), 43–58. https://doi.org/10.3390/md9010043spa
dc.relation.referencesSharif, Z., & Mustapha, F. (2017). Revisión de métodos de preservación y conservantes naturales para extender la longevidad de los alimentos. Ingeniería Química ..., 19, 145–153. https://www.banglajol.info/index.php/CERB/article/view/33809spa
dc.relation.referencesShivanand, P., & Mugeraya, G. (2011). Halophilic bacteria and their compatible solutes -osmoregulation and potential applications. Current Science, 100(10), 1516–1521.spa
dc.relation.referencesSiddhnath, Ranjan, A., Mohanty, B., Saklani, P., Dora, K., & Chowdhury, S. (2020). Dry Fish and Its Contribution Towards Food and Nutritional Security. Food Reviews International, 1–29.spa
dc.relation.referencesSingh, O. (2013). Extremophiles: sustainable resources and biotechnological implications (John Wiley & Sons (ed.)).spa
dc.relation.referencesSiroya, H., Patel, S., & Upadhyay, D. (2020). Industrial Applications of Protease: A Review. Studies in Indian Place Names, 40(71), 224–232.spa
dc.relation.referencesSivaraman, G., & Siva, V. (2015). Microbiological spoilage of dried fishes.spa
dc.relation.referencesSokovic, M., Marin, P., Brkic, D., & van Griensven, L. (2008). Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria. Food Global Science, 220–226.spa
dc.relation.referencesSonawat, H., Srivastava, S., Swaminathan, S., & Govil, G. (1990). Glycolysis and Entner-Doudoroff pathways in Halobacterium halobium: some new observations based on 13C NMR spectroscopy. Biochemical and Biophysical Research Communications, 173(1), 358–362.spa
dc.relation.referencesSoria, I. M. (2004). Los microorganismos halófilos y su potencial aplicado en biotecnología. Ciencia e Investigación, 7(2), 13–17.spa
dc.relation.referencesSoto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacteria causing of foodborne diseases: an overview at Colombia. Revista Salud Uninorte, 105–122.spa
dc.relation.referencesStan-Lotter, H., & Fendrihan, S. (2012). Adaption of microbial life to environmental extremes (Springer (ed.)).spa
dc.relation.referencesStoknes, I., Walde, P & Synnes, M. (2005). Proteolytic activity in cod (Gadus morhua) muscle during salt curing. Food Research International, 693–699.spa
dc.relation.referencesStover, C., Pham, X., Erwin, A., Mizoguchi, S., Warrener, P., Hickey, M., & Garber, R. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 959–964.spa
dc.relation.referencesTajkarimi, M., Ibrahim, S., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003spa
dc.relation.referencesTaormina, P. (2010). Implications of salt and sodium reduction on microbial food safety. Critical Reviews in Food Science and Nutrition, 50(3), 209–227. https://doi.org/10.1080/10408391003626207spa
dc.relation.referencesTenchov, B; Vescio, E; Sprott, G; Zeidel, M; Mathai, J. (2006). Salt tolerance of archaeal extremely halophilic lipid membranes. Journal of Biological Chemistry, 281(15), 10016–10023.spa
dc.relation.referencesTiwari, B., Valdramidis, V., O’Donnell, C., Muthukumarappan, K., Bourke, P., & Cullen, P. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987–6000. https://doi.org/10.1021/jf900668nspa
dc.relation.referencesTodor, H., Dulmage, K., Gillum, N., Bain, J., Muehlbauer, M., & Schmid, A. (2014). A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon H alobacterium salinarum. Molecular Microbiology, 93(6), 1172–1182.spa
dc.relation.referencesToldrá, F. (2006). The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends in Food Science and Technology, 17(4), 164–168. https://doi.org/10.1016/j.tifs.2005.08.007spa
dc.relation.referencesTornabene, T., Kates, M., Gelpi, E., & Oro, J. (1969). Occurrence of squalene, di-and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium, Halobacterium cutirubrum. Journal of Lipid Research, 294–303.spa
dc.relation.referencesTortora, G., Funke, B., & Case, C. (2007). Introducción a la microbiología (Ed. Médica).spa
dc.relation.referencesTourte, M.; Schaeffer, P.; Grossi, V.; & Oger, P. (2020). Functionalized Membrane Domains: An Ancestral Feature of Archaea? Frontiers in Microbiology, 11, 526.spa
dc.relation.referencesTsai, M., Ohniwa, R., Kato, Y., Takeshita, S., Ohta, T., Saito, S., & Morikawa, K. (2011). Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity. BMC Microbiology, 13.spa
dc.relation.referencesTuran, H; Erkoyuncu, I. (2012). Salting technology in fish processing. In Progress in food preservation (pp. 297–313).spa
dc.relation.referencesUdaondo, Z., Ramos, J., Segura, A., Krell, T., & Daddaoua, A. (2018). Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microbial Biotechnology, 11(3), 442–454.spa
dc.relation.referencesVentanas, S., Martín, D., Estévez, M., & Ruiz, J. (2004). Nitratos , nitritos y nitrosaminas en productos cárnicos ( I ). Eurocarne, 129(January), 1–15.spa
dc.relation.referencesVentosa, A., Marquez, M., Ruiz-Berraquero, F., & Kocur, M. (1990). Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Systematic and Applied Microbiology, 13(1), 29–33.spa
dc.relation.referencesVentosa, A., Oren, A., & Ma, Y. (2011). Halophiles and hypersaline environments: current research and future trends (S. S. & B. Media (ed.)).spa
dc.relation.referencesVentosa, A.; Nieto, J.; & Oren, A. (1998). Biology of Moderately Halophilic Aerobic Bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544.spa
dc.relation.referencesVerhees, C., Kengen, S., Tuininga, J., Schut, G., Adams, M., Vos, D., W.m, Oost, V. Der, & J. (2003). The unique features of glycolytic pathways. In Archaea. Biochem J, 375, 231–246.spa
dc.relation.referencesVijayavenkataraman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652–2670. https://doi.org/10.1016/j.rser.2012.01.007spa
dc.relation.referencesVillafañe, H. (2008). Microbiología básica para el área de la salud y afines (Universida).spa
dc.relation.referencesVishnoi, N., Dixit, S., & Mishra, J. (2020). Microbial Lipases and Their Versatile Applications. In Microbial Enzymes: Roles and Applications in Industries (Springer, pp. 207–230).spa
dc.relation.referencesVreeland, R. (2012). Advances in understanding the biology of halophilic microorganisms. Advances in Understanding the Biology of Halophilic Microorganisms, 1–241. https://doi.org/10.1007/978-94-007-5539-0spa
dc.relation.referencesWang, C., Chen, Y., & Hou, C. (2019). Antioxidant and antibacterial activity of seven predominant terpenoids. International Journal of Food Properties, 230–238.spa
dc.relation.referencesXue, Y., Fan, H., Ventosa, A., Grant, W., Jones, B., Cowan, D., & Ma, Y. (2005). Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2501–2505. https://doi.org/10.1099/ijs.0.63916-0spa
dc.relation.referencesYim, K., Cha, I., Lee, H., Song, H., Kim, K., Lee, S., Nam, Y. Do, Hyun, D., Bae, J., Rhee, S., Seo, M., Choi, J., Choi, H., Roh, S., & Kim, D. (2014). Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 105(3), 603–612. https://doi.org/10.1007/s10482-014-0115-6spa
dc.relation.referencesYin, J., Chen, J., Wu, Q., & Chen, G. (2015). Halophiles, coming stars for industrial biotechnology. In Biotechnology Advances (Vol. 33, Issue 7). Elsevier B.V. https://doi.org/10.1016/j.biotechadv.2014.10.008spa
dc.relation.referencesYoon, J., Kang, K., & Park, Y. (2003). Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 53(2), 449–454. https://doi.org/10.1099/ijs.0.02242-0spa
dc.relation.referencesYoon, J., Lee, K., Kho, Y., Kang, K., Kim, C., & Park, Y. (2002). Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 52(1), 123–130. https://doi.org/10.1099/00207713-52-1-123spa
dc.relation.referencesZang, J., Xu, Y., Xia, W., & Regenstein, J. M. (2020). Quality, functionality, and microbiology of fermented fish: a review. Critical Reviews in Food Science and Nutrition, 60(7), 1228–1242. https://doi.org/10.1080/10408398.2019.1565491spa
dc.relation.referencesZendejas-Manzo, G., Avalos-Flores, H., & Soto-Padilla, M. (2014). Microbiología general de Staphylococcus aureus: Generalidades, patogenicidad y métodos de identificación. Revista Biomédica, 129–143.spa
dc.relation.referencesZhang, Q., Ding, Y., Gu, S., Zhu, S., Zhou, X., & Ding, Y. (2020). Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Research International.spa
dc.relation.referencesZhou, H. X., & Pang, X. (2018). Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical reviews, 118(4), 1691-1741.spa
dc.relation.referencesZou, Z., & Wang, G. (2010). Kushneria sinocarnis sp. nov., a moderately halophilic bacterium isolated from a Chinese traditional cured meat. International Journal of Systematic and Evolutionary Microbiology, 60(8), 1881–1886. https://doi.org/10.1099/ijs.0.013797-0spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalExtremophileseng
dc.subject.proposalExtremófilosspa
dc.subject.proposalSodium Chlorideeng
dc.subject.proposalCloruro de sodiospa
dc.subject.proposalFood Preservationeng
dc.subject.proposalConservación de alimentosspa
dc.subject.proposalSaltingeng
dc.subject.proposalSalazónspa
dc.titleEfectos negativos de los microorganismos halotolerantes y/o halófilos en alimentos con conservas salinasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Efectos negativos de los microorganismos halotolerantes y o halófilos en alimentos con conservas salinas. (1).pdf
Tamaño:
1.49 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: