Desenlaces funcionales en niños con paralisis cerebral deambulantes intervenidos con rizotomia dorsal selectiva

dc.contributor.advisorMendoza Pulido, Juan Camilo
dc.contributor.authorCaro Moreno, Julian Enrique
dc.contributor.orcidhttps://orcid.org/0000-0001-9709-7811spa
dc.date.accessioned2023-01-24T20:41:26Z
dc.date.available2023-01-24T20:41:26Z
dc.date.issued2023
dc.description.abstractLa Parálisis Cerebral (PC) es una condición discapacitante, crónica, no progresiva y permanente, secundaria a una lesión del cerebro fetal inmaduro, que condiciona a limitaciones de predominio motor (alteraciones en el movimiento y la postura); clínicamente la manifestación primaria más frecuente es la espasticidad, y es el signo característico de la alteración motora en la población con PC. Describir las diferencias entre los resultados de las pruebas funcionales aplicadas antes y después de intervención neuroquirúrgica con Rizotomía Dorsal Selectiva (RDS), en pacientes ambulantes con PC espástica operados entre 2014 al 2022 en el Instituto Roosevelt (IR), además describir las diferencias en el grupo de niños con características clínicas y funcionales similares no operados. Se trata de un estudio observacional, retrospectivo y descriptivo. Se revisaron las bases de datos disponibles del IR para la selección de niños con PC espástica ambulantes operados de RDS y de los grupos de niños con características similares dentro del periodo mencionado. Tomando como medidas de desenlace las pruebas funcionales como: GMFM-66, 6MWT, PEDI, escala de Ashworth y FMS, con clasificación de GFMCS para los niños operados como para el grupo de emparejamiento. En el presente estudio se encontró que los niveles iniciales y de seguimiento de GMFCS permanecieron sin cambios como los reportados en la literatura. Además, se puede inferir que el cambio en GMFM-66 en el seguimiento fue significativo comparando con uno de los grupos conformados (grupo número 1), pero no ocurre de igual forma con el grupo número 2 dadas las múltiples limitaciones metodológicas existentes. El uso de pruebas funcionales como medida de desenlace es una buena estrategia para evaluar la efectividad de la RSD, aunque se deben realizar más estudios y contar con muestra de pacientes más grandes para sacar indicaciones precisas para su aplicación, pero este es un primer paso para que en un futuro su uso sea parte de un protocolo de intervención. (Texto tomado de la fuente)spa
dc.description.abstractCerebral Palsy (CP) is a disabling, chronic, non-progressive and permanent condition, secondary to an immature fetal brain lesion, which conditions predominantly motor limitations (alterations in movement and posture); Clinically, the most common primary manifestation is spasticity, and it is the characteristic sign of motor impairment in the CP population. To describe the differences between the results of the functional tests applied before and after neurosurgical intervention with Selective Dorsal Rhizotomy (RDS), in ambulatory patients with spastic CP operated between 2014 and 2022 at the Roosevelt Institute (IR), in addition to describing the differences in the group of children with similar clinical and functional characteristics who did not undergo surgery. This is an observational, retrospective and descriptive study. The available IR databases were reviewed for the selection of ambulatory children with spastic CP who underwent RDS surgery and groups of children with similar characteristics within the aforementioned period. Taking as outcome measures the functional tests such as: GMFM66, 6MWT, PEDI, Ashworth scale and FMS, with GFMCS classification for the operated children as well as for the matching group. In the present study it was found that the initial and follow-up levels of GMFCS remained unchanged from those reported in the literature. In addition, it can be inferred that the change in GMFM-66 at follow-up was significant compared to one of the groups formed (group number 1), but it does not occur in the same way with group number 2 given the multiple existing methodological limitations. The use of functional tests as an outcome measure is a good strategy to evaluate the effectiveness of the RSD, although more studies must be carried out and have a larger patient sample to obtain precise indications for its application, but this is a first step for that in the future its use be part of an intervention protocoleng
dc.description.degreelevelEspecialidades Médicasspa
dc.description.methodsSe trata de un estudio observacional, retrospectivo y descriptivo. Se revisarán las bases de datos disponibles del IR (sistema de registro de información FileMaker e historias clínicas), para la selección de niños con PC espástica ambulantes que hayan sido operados de RDS entre el 2014 al 2022 y los grupos de niños con características similares. Se tomarán las medidas de desenlace y se registrarán los resultados finales de las pruebas mencionadas a continuación: GMFCS, 6MWT, PEDI, escala de Ashworth y FMS para los niños operados como para el grupo de emparejamiento.spa
dc.format.extent48 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83105
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Medicina - Especialidad en Medicina Física y Rehabilitaciónspa
dc.relation.references1. A Fasano, G Broggi, G. B. R. A. S. (1978) ‘Surgical treatment of spasticity in cerebral palsy’, Childs Brain. doi: 10.1159/000119785.spa
dc.relation.references2. Abbott, R., Forem, S. L. and Johann, M. (1989) ‘Selective posterior rhizotomy for the treatment of spasticity: a review’, Child’s Nervous System, 5(6), pp. 337–346. doi: 10.1007/BF00271889.spa
dc.relation.references3. Alimović, S. (2012) ‘Visual impairments in children with cerebral palsy’, Hrvatska Revija Za Rehabilitacijska Istrazivanja, 48(1), pp. 96–103. doi: 10.32677/ijch.2019.v06.i09.008.spa
dc.relation.references4. Australian Cerebral Palsy Register (2018) ‘Australian Cerebral Palsy Register Report’, (December), p. 18. Available at: https://cpregister.com/wp-content/uploads/2019/02/Report-of-the-Australian-Cerebral-Palsy-Register-Birth-Years-1995-2012.pdf.spa
dc.relation.references5. Avery, L. M. et al. (2003) ‘Rasch analysis of the gross motor function measure: Validating the assumptions of the Rasch model to create an interval-level measure’, Archives of Physical Medicine and Rehabilitation, 84(5), pp. 697–705. doi: 10.1016/s0003-9993(03)04896-7.spa
dc.relation.references6. Bailes, A. F. et al. (2018) ‘Caregiver knowledge and preferences for gross motor function information in cerebral palsy’, Developmental Medicine and Child Neurology, 60(12), pp. 1264–1270. doi: 10.1111/dmcn.13994.spa
dc.relation.references7. Berker, A. N. and Yalçin, M. S. (2008) ‘Cerebral Palsy: Orthopedic Aspects and Rehabilitation’, Pediatric Clinics of North America, 55(5), pp. 1209–1225. doi: 10.1016/j.pcl.2008.07.011.spa
dc.relation.references8. Blumetti, F. C. et al. (2019) ‘Orthopaedic Surgery in Dystonic Cerebral Palsy’, Journal of Pediatric Orthopaedics, 39(4), pp. 209–216. doi: 10.1097/BPO.0000000000000919.spa
dc.relation.references9. Cans, C. (2000) ‘Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers’, Developmental Medicine and Child Neurology, 42(12), pp. 816–824. doi: 10.1017/S0012162200001511.spa
dc.relation.references10. Cerebral, L. (2013) ‘Prevalence of risk factors for cerebral palsy in two centers in Popayán’, Pediatria, 46(2), pp. 65–70. doi: 10.1016/S0120-4912(15)30088-4.spa
dc.relation.references11. D’Aquino, D. et al. (2018) ‘Selective dorsal rhizotomy for the treatment of severe spastic cerebral palsy: efficacy and therapeutic durability in GMFCS grade IV and V children’, Acta Neurochirurgica, 160(4), pp. 811–821. doi: 10.1007/s00701-017-3349-z.spa
dc.relation.references12. Eliasson, A. C. et al. (2006) ‘The Manual Ability Classification System (MACS) for children with cerebral palsy: Scale development and evidence of validity and reliability’, Developmental Medicine and Child Neurology, 48(7), pp. 549–554. doi: 10.1017/S0012162206001162.spa
dc.relation.references13. Fargel, J. W., Weinmann, H. M. and Bakker, H. H. (1979) ‘Postures, Motility and Respiration of Low‐risk Pre‐term Infants’, Developmental Medicine & Child Neurology, 21(1), pp. 3–27. doi: 10.1111/j.1469-8749.1979.tb01577.x.spa
dc.relation.references14. Fernando Ortiz, Mónica Rincón, J. C. M. (2016) Texto de Medicina Física y Rehabilitación. 1a. ed. Edited by M. Moderno. Bogota D.C.spa
dc.relation.references15. Gabrieli, A. P., Dias, L. and Drumond, O. (1995) ‘Progressäo da luxaçäo do quadril na paralisia cerebral após rizotomia seletiva posterior: relato de 4 casos’, Rev. bras. ortop, 30(1/2), pp. 65–8.spa
dc.relation.references16. Graham, H. K. et al. (2016) ‘Cerebral palsy’, Nature Reviews Disease Primers, 2. doi: 10.1038/nrdp.2015.82.spa
dc.relation.references17. Grunt, S. et al. (2014) ‘Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: A systematic review of the literature’, Developmental Medicine and Child Neurology, 56(4), pp. 302–312. doi: 10.1111/dmcn.12277.spa
dc.relation.references18. Hidecker, M. J. C. et al. (2011) ‘Developing and validating the Communication Function Classification System for individuals with cerebral palsy’, Developmental Medicine and Child Neurology, 53(8), pp. 704–710. doi: 10.1111/j.1469-8749.2011.03996.x.spa
dc.relation.references19. Koman, L. A., Smith, B. P. and Shilt, J. S. (2004) ‘Cerebral palsy’, Lancet, 363(9421), pp. 1619–1631. doi: 10.1016/S0140-6736(04)16207-7.spa
dc.relation.references20. Landau, W. M. and Hunt, C. C. (1990) ‘Dorsal Rhizotomy, A Treatment of Unproven Efficacy’, Journal of Child Neurology, 5(3), pp. 174–178. doi: 10.1177/088307389000500301.spa
dc.relation.references21. Lanska, D. J. (2013) ‘Early controversies over athetosis: Ii. treatment’, Tremor and Other Hyperkinetic Movements, 3, pp. 1–15. doi: 10.5334/TOHM.163.spa
dc.relation.references22. Michael-Asalu, A. et al. (2019) ‘Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update’, Advances in Pediatrics, 66, pp. 189–208. doi: 10.1016/j.yapd.2019.04.002.spa
dc.relation.references23. Morris, C., Galuppi, B. E. and Rosenbaum, P. L. (2004) ‘Reliability of family report for the Gross Motor Function Classification System’, Developmental Medicine and Child Neurology, 46(7), pp. 455–460. doi: 10.1017/S0012162204000751.spa
dc.relation.references24. novak, I. et al. (2013) ‘A systematic review of interventions for children with cerebral palsy: State of the evidence’, Developmental Medicine and Child Neurology, 55(10), pp. 885–910. doi: 10.1111/dmcn.12246.spa
dc.relation.references25. Novak, I. et al. (2017) ‘Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment’, JAMA Pediatrics, 171(9), pp. 897–907. doi: 10.1001/jamapediatrics.2017.1689.spa
dc.relation.references26. Patel, D. R. et al. (2010) ‘Developmental disabilities across the lifespan’, Disease-a-Month, 56(6), pp. 305–397. doi: 10.1016/j.disamonth.2010.02.001.spa
dc.relation.references27. Patel, D. R. et al. (2020) ‘Cerebral palsy in children: A clinical overview’, Translational Pediatrics, 9(1), pp. S125–S135. doi: 10.21037/tp.2020.01.01.spa
dc.relation.references28. Patel, D. R. and Soyode, O. (2005) ‘Pharmacologic interventions for reducing spasticity in cerebral palsy’, Indian Journal of Pediatrics, 72(10), pp. 869–872. doi: 10.1007/BF02731118.spa
dc.relation.references29. Privat, J. M. et al. (1976) ‘Sectorial posterior rhizotomy, a new technique of surgical treatment for spasticity’, Acta Neurochirurgica, 35(1–3), pp. 181–195. doi: 10.1007/BF01405946.spa
dc.relation.references30. Rethlefsen, S. A., Ryan, D. D. and Kay, R. M. (2010) ‘Classification systems in cerebral palsy’, Orthopedic Clinics of North America, 41(4), pp. 457–467. doi: 10.1016/j.ocl.2010.06.005.spa
dc.relation.references31. Rosenbaum, P. L. et al. (2003) ‘Prognosis for Gross Motor Function in Cerebral Palsy: Creation of Motor Development Curves’, Obstetrical & Gynecological Survey, 58(3), pp. 166–168. doi: 10.1097/01.ogx.0000055751.17527.56.spa
dc.relation.references32. Rosenbaum, P. L. et al. (2008) ‘Development of the Gross Motor Function Classification System for cerebral palsy’, Developmental Medicine and Child Neurology, 50(4), pp. 249–253. doi: 10.1111/j.1469-8749.2008.02045.x.spa
dc.relation.references33. Russell, D. J. et al. (1989) ‘the Gross Motor Function Measure: a Means To Evaluate the Effects of Physical Therapy’, Developmental Medicine & Child Neurology, 31(3), pp. 341–352. doi: 10.1111/j.1469-8749.1989.tb04003.x.spa
dc.relation.references34. Russell, D. J. et al. (2000) ‘Improved scaling of the gross motor function measure for children with cerebral palsy: Evidence of reliability and validity’, Physical Therapy, 80(9), pp. 873–885. doi: 10.1093/ptj/80.9.873.spa
dc.relation.references35. Sellers, D. et al. (2014) ‘Development and reliability of a system to classify the eating and drinking ability of people with cerebral palsy’, Developmental Medicine and Child Neurology, 56(3), pp. 245–251. doi: 10.1111/dmcn.12352.spa
dc.relation.references36. Shevell, M. (2019) ‘Cerebral palsy to cerebral palsy spectrum disorder’, Neurology, 92(5), pp. 233–235. doi: 10.1212/WNL.0000000000006747.spa
dc.relation.references37. Trabacca, A. et al. (2016) ‘Multidisciplinary rehabilitation for patients with cerebral palsy: Improving long-term care’, Journal of Multidisciplinary Healthcare, 9, pp. 455–462. doi: 10.2147/JMDH.S88782.spa
dc.relation.references38. Wang, H. Y. and Yang, Y. H. (2006) ‘Evaluating the responsiveness of 2 versions of the gross motor function measure for children with cerebral palsy’, Archives of Physical Medicine and Rehabilitation, 87(1), pp. 51–56. doi: 10.1016/j.apmr.2005.08.117.spa
dc.relation.references39. Wang, K. K. et al. (2018) ‘Selective dorsal rhizotomy in ambulant children with cerebral palsy’, Journal of Children’s Orthopaedics, 12(5), pp. 413–427. doi: 10.1302/1863-2548.12.180123.spa
dc.relation.references40. Wei, S. et al. (2006) ‘Reliability and validity of the GMFM-66 in 0- to 3-year-old children with cerebral palsy’, American Journal of Physical Medicine and Rehabilitation, 85(2), pp. 141–147. doi: 10.1097/01.phm.0000197585.68302.25.spa
dc.relation.references41. Wood, E. and Rosenbaum, P. (2000) ‘The gross motor function classification system for cerebral palsy: A study of reliability and stability over time’, Developmental Medicine and Child Neurology, 42(5), pp. 292–296. doi: 10.1017/S0012162200000529.spa
dc.relation.references42. Patrick JH, Roberts AP, Cole GF. Therapeutic choices in the locomotor movement of the child with cerebral palsy – more luck than judgement? Arch Dis Child 2001;85:275–9spa
dc.relation.references43. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39: 214–23spa
dc.relation.references44. McLaughlin JF, Bjornson KF, Astley SJ, et al. Selective dorsal rhizotomy: efficacy and safety in an investigation masked randomised clinical trial. Dev Med Child Neurol 1998;40:220–32.spa
dc.relation.references45. Wright FV, Sheil EMH, Drake JM, et al. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomised controlled trial. Dev Med Child Neurol 1998;40:239–47spa
dc.relation.references46. Hagglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord 2008; 9: 150spa
dc.relation.references47. Josenby AL, Wagner P, Jarnlo GB, Westbom L, Nordmark E. Motor function after selective dorsal rhizotomy: a 10-year practice-based follow-up study. Dev Med Child Neurol 2012; 54: 429–35spa
dc.relation.references48. Ailon T, Beauchamp R, Miller S, et al. Long-term out come after selective dorsal rhizotomy in children with spastic cerebral palsy. Childs Nerv Syst 2015; 31: 415– 23.spa
dc.relation.references49. Dudley RW, Parolin M, Gagnon B, et al. Long-term functional benefits of selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg Pediatr 2013; 12: 142–50spa
dc.relation.references50. Sanger TD. Pathophysiology of pediatric movement disorders. J Child Neurol 2003; 18(Suppl 1): S9–24.spa
dc.relation.references51. van de Pol LA, Vermeulen RJ, van’t Westende C, et al. Risk factors for dystonia after selective dorsal rhizotomy in nonwalking children and adolescents with bilateral spasticity. Neuropediatrics 2018; 49: 44–50spa
dc.relation.references52. Bolster EA, van Schie PE, Becher JG, van Ouwerkerk WJ, Strijers RL, Vermeulen RJ. Long-term effect of selective dorsal rhizotomy on gross motor function in ambulant children with spastic bilateral cerebral palsy, compared with reference centiles. Dev Med Child Neurol 2013; 55: 610–6spa
dc.relation.references53. Warwick j. Peacock, and lori, et al. Functional outcomes following selective posterior rhizotomy in children with cerebral palsy. J neurosurg 74:380-385, 1991spa
dc.relation.references54. Mariusz Pawłowski, Jakub S. Gąsior, Marcin Bonikowski. Long-term benefits from selective dorsal rhizotomy in a young patient with cerebral palsy. Volume 24, Issue 2, August 2017, Pages 256-260spa
dc.relation.references55. Petra E M van Schie, R Jeroen Vermeulen, Willem J R van Ouwerkerk, et al. Selective dorsal rhizotomy in cerebral palsy to improve functional abilities: evaluation of criteria for Selection. Childs Nerv Syst. 2005 Jun;21(6):451-7.spa
dc.relation.references56. Health Quality Ontario. Lumbosacral Dorsal Rhizotomy for Spastic Cerebral Palsy: A Health Technology Assessment. Ont Health Technol Assess Ser. 2017; 17(10): 1–186.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembEspasticidadspa
dc.subject.lembMovement disorderseng
dc.subject.lembTrastornos del movimientospa
dc.subject.lembNiños con parálisis cerebralspa
dc.subject.lembCerebral palsied childrenspa
dc.subject.proposalParálisis Cerebralspa
dc.subject.proposalRizotomía Dorsal Selectivaspa
dc.subject.proposalEspasticidadspa
dc.subject.proposalCerebral Palsyeng
dc.subject.proposalSelective Dorsal Rhizotomyeng
dc.subject.proposalSpasticityeng
dc.titleDesenlaces funcionales en niños con paralisis cerebral deambulantes intervenidos con rizotomia dorsal selectivaspa
dc.title.translatedFunctional outcomes in ambulatory children with cerebral palsy operated with selective dorsal rhizotomyeng
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesenlaces funcionales en niños con parálisis cerebral deambulantes intervenidos con rizotomía dorsal selectivaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80829001-2023.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Especialidad Médica en en Medicina Física y Rehabilitación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: