Generación de productos de valor agregado a partir de reacciones de fotooxidación de aceites esenciales catalizadas por centros activos de dioxomolibdeno (VI)
| dc.contributor.advisor | Castellanos Márquez, Nelson Jair | |
| dc.contributor.advisor | Ávila Murillo, Mónica Constanza | |
| dc.contributor.author | Garzón Polania, Danna Nataly | |
| dc.contributor.orcid | Garzón Polania, Danna Nataly [0009000980360324] | |
| dc.contributor.researchgroup | Diseño y Reactividad de Estructuras Sólidas | |
| dc.contributor.researchgroup | Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab) | |
| dc.date.accessioned | 2025-09-08T21:39:14Z | |
| dc.date.available | 2025-09-08T21:39:14Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a color, diagramas, fotografías | |
| dc.description.abstract | La generación de productos de valor agregado a partir de materias primas renovables es un campo de gran interés en un contexto de cambio climático. En este sentido, los procesos de oxidación de materias primas como los aceites esenciales, que contienen compuestos como los fenilpropanoides, son prometedores para sustituir materiales provenientes del petróleo por ser en su gran mayoría contaminantes. En esa vía la presente investigación se centró en la evaluación de un catalizador tipo MOF de galio post-funcionalizado con centros activos de dibromodioxomolibdeno(VI) en la fotooxidación del trans-anetol (compuesto mayoritario del aceite esencial del anís estrellado), empleando hidroperóxido de ter-butilo (TBHP) y O2 como agentes oxidantes. Se estudió la influencia de la masa del catalizador en la reacción, la variación de longitud de onda de radiación, el cambio del agente oxidante y la comparación entre dos catalizadores: MoO2Br2@COMOC-4 y MoO2Cl2@COMOC-4. Se demostró que la mayor conversión (39%) del trans-anetol y la más alta selectividad (22%) hacia el producto 2-(4-metoxifenil)-3-metiloxirano se obtuvieron en presencia de oxígeno, con una radiación de 410 nm, una relación sustrato/molibdeno de 3:1, a 25 °C, tras 8 horas de reacción. La estabilidad de la estructura del catalizador se caracterizó mediante difracción de rayos X en polvo. Además, los ensayos de reutilización mostraron que la actividad catalítica del MoO2Br2@COMOC- 4 aumenta durante el segundo ciclo de reacción en presencia de O2 debido a la reoxidación del centro metálico. En ausencia de O2 y con TBHP la actividad en el segundo ciclo de reacción disminuye. El TBHP genera radicales por fotolisis en presencia de radiación lo que afecta la selectividad del proceso. A 25°C no se observó una formación significativa del epóxido, sin embargo, al aumentar la temperatura a 60°C y con una radiación a 410 nm, la producción del epóxido se incrementó en un 24% utilizando el agente oxidante TBHP. Con respecto a la comparación de los catalizadores MoO2Br2@COMOC-4 y MoO2Cl2@COMOC-4, se observó una mayor actividad con el ligante bromo, atribuida a su mayor capacidad de donación de carga en contraste con el cloro. (Texto tomado de la fuente) | spa |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en química | |
| dc.description.researcharea | Catálisis heterogénea ambiental, con énfasis en oxidación | |
| dc.format.extent | 95 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88658 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | |
| dc.relation.references | L. Lin, X. Han, B. Han, S. Yang, Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism, Chem Soc Rev 50 (2021) 11270–11292. https://doi.org/10.1039/D1CS00039J. | |
| dc.relation.references | R. Fang, A. Dhakshinamoorthy, Y. Li, H. Garcia, Metal organic frameworks for biomass conversion, Chem Soc Rev 49 (2020) 3638–3687. https://doi.org/10.1039/D0CS00070A. | |
| dc.relation.references | J.G. de Vries, Industrial implementation of chemical biomass conversion, Curr Opin Green Sustain Chem 39 (2023) 100715. https://doi.org/10.1016/j.cogsc.2022.100715. | |
| dc.relation.references | Z. Wang, M.S. Ganewatta, C. Tang, Sustainable polymers from biomass: Bridging chemistry with materials and processing, Prog Polym Sci 101 (2020) 101197. https://doi.org/10.1016/j.progpolymsci.2019.101197. | |
| dc.relation.references | W.E. Dyer, B. Kumru, Polymers as Aerospace Structural Components: How to Reach Sustainability?, Macromol Chem Phys 224 (2023). https://doi.org/10.1002/macp.202300186. | |
| dc.relation.references | W. Farhat, A. Stamm, M. Robert-Monpate, A. Biundo, P.O. Syrén, Biocatalysis for terpene- based polymers, Zeitschrift Fur Naturforschung - Section C Journal of Biosciences 74 (2019) 91–100. https://doi.org/10.1515/znc-2018-0199. | |
| dc.relation.references | M. Taherimehr, P.P. Pescarmona, Green polycarbonates prepared by the copolymerization of CO 2 with epoxides, J Appl Polym Sci 131 (2014). https://doi.org/10.1002/app.41141. | |
| dc.relation.references | J. Wei, Y. Duan, H. Wang, W. Zhang, Study on copolymerization modification and properties of bio-based trifunctional diphenolic acid epoxy resin by CE and DPR, Polymer (Guildf) 284 (2023) 126308. https://doi.org/10.1016/j.polymer.2023.126308. | |
| dc.relation.references | R. Ambrozic, A. Rucigaj, M. Krajnc, A green approach toward epoxy-benzoxazine copolymers with shape-memory ability, Express Polym Lett 14 (2020) 808–822. https://doi.org/10.3144/expresspolymlett.2020.67. | |
| dc.relation.references | G. Mashouf Roudsari, A.K. Mohanty, M. Misra, Green Approaches To Engineer Tough Biobased Epoxies: A Review, ACS Sustain Chem Eng 5 (2017) 9528–9541. https://doi.org/10.1021/acssuschemeng.7b01422. | |
| dc.relation.references | J. Sharmeen, F. Mahomoodally, G. Zengin, F. Maggi, Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals, Molecules 26 (2021) 666. https://doi.org/10.3390/molecules26030666. | |
| dc.relation.references | S. Rathore, S. Mukhia, R. Kumar, R. Kumar, Essential oil composition and antimicrobial potential of aromatic plants grown in the mid-hill conditions of the Western Himalayas, Sci Rep 13 (2023) 4878. https://doi.org/10.1038/s41598-023-31875-3. | |
| dc.relation.references | E. Staschenko, Del laboratorio al campo: el desarrollo y perspectivas de la industria de aceites esenciales en Colombia, Research Center for Biomolecules (2017). | |
| dc.relation.references | W. Li, Z. Wu, Y. Xia, J. Tan, H. Zhao, S. Chen, Y. Li, H. Tang, G. Wang, Y. Zhang, Antiviral and Antioxidant Components from the Fruits of Illicium verum Hook.f. (Chinese Star Anise), J Agric Food Chem 70 (2022) 3697–3707. https://doi.org/10.1021/acs.jafc.1c08376. | |
| dc.relation.references | M. Sharafan, K. Jafernik, H. Ekiert, P. Kubica, R. Kocjan, E. Blicharska, A. Szopa, Illicium verum (Star Anise) and Trans-Anethole as Valuable Raw Materials for Medicinal and Cosmetic Applications, Molecules 27 (2022) 650. https://doi.org/10.3390/molecules27030650. | |
| dc.relation.references | C. Yu, J. Zhang, T. Wang, Star anise essential oil:chemical compounds, antifungal and antioxidant activities: a review, Journal of Essential Oil Research 33 (2021) 1–22. https://doi.org/10.1080/10412905.2020.1813213. | |
| dc.relation.references | A.M. Dawidar, M.M. Abou-Elzahab, M. Abdel-Mogib, Kh. Hussien, M.E.-H. Mostafa, Photo- Oxygenation of Trans Anethole, International Journal of Science and Engineering Applications 4 (2015) 294–298. https://doi.org/10.7753/IJSEA0405.1012. | |
| dc.relation.references | E.M. Elgendy, S.A. Khayyat, Oxidation reactions of some natural volatile aromatic compounds: anethole and eugenol, Russian Journal of Organic Chemistry 44 (2008) 823–829. https://doi.org/10.1134/S1070428008060079. | |
| dc.relation.references | R. Tomar, S. Jain, P. Yadav, T. Bajaj, F. Mohajer, G.M. Ziarani, Conversion of Limonene over Heterogeneous Catalysis: An Overview, Curr Org Synth 19 (2022) 414–425. https://doi.org/10.2174/1570179418666210824101837. | |
| dc.relation.references | A. Denicourt-Nowicki, M. Rauchdi, M. Ait Ali, A. Roucoux, Catalytic Oxidation Processes for the Upgrading of Terpenes: State-of-the-Art and Future Trends, Catalysts 9 (2019) 893. https://doi.org/10.3390/catal9110893. | |
| dc.relation.references | D. Han, S. Kurusarttra, J.-Y. Ryu, R.A. Kanaly, H.-G. Hur, Production of Natural Fragrance Aromatic Acids by Coexpression of trans -Anethole Oxygenase and p -Anisaldehyde Dehydrogenase Genes of Pseudomonas putida JYR-1 in Escherichia coli, J Agric Food Chem 60 (2012) 11972–11979. https://doi.org/10.1021/jf303531u. | |
| dc.relation.references | M. Najdoska-Bogdanov, J. Bogdanov, M. Stefova, Investigation of effect of sunlight irradiation on pure trans-Anethole and on sweet fennel essential oil, 2017 | |
| dc.relation.references | R. Velasco, A. Mesa, J. Gil, C. García, D. Durango, Transformation of trans-anethole using the plant pathogenic fungus Colletotrichum acutatum as biocatalyst, Rev Mex Ing Quim 14 (2015) 653–666. | |
| dc.relation.references | D. Han, M.J. Sadowsky, Y. Chong, H.-G. Hur, Characterization of a Self-sufficient Trans- Anethole Oxygenase from Pseudomonas putida JYR-1, PLoS One 8 (2013) e73350. https://doi.org/10.1371/journal.pone.0073350. | |
| dc.relation.references | D. Han, J.-Y. Ryu, R.A. Kanaly, H.-G. Hur, Isolation of a Gene Responsible for the Oxidation of trans -Anethole to para -Anisaldehyde by Pseudomonas putida JYR-1 and Its Expression in Escherichia coli, Appl Environ Microbiol 78 (2012) 5238–5246. https://doi.org/10.1128/AEM.00781-12. | |
| dc.relation.references | N.N. Purwani, H.J. Rozeboom, V.P. Willers, H.J. Wijma, M.W. Fraaije, Discovery of a new class of bacterial heme-containing C C cleaving oxygenases, N Biotechnol 83 (2024) 82–90. https://doi.org/10.1016/j.nbt.2024.07.002. | |
| dc.relation.references | P. Adão, S. Barroso, F. Avecilla, M.C. Oliveira, J.C. Pessoa, CuII–salan compounds: Synthesis, characterization and evaluation oftheir potential as oxidation catalysts, J Organomet Chem 760 (2014) 212–223. https://doi.org/10.1016/j.jorganchem.2013.10.019. | |
| dc.relation.references | Y. Xiao, H. Huang, D. Yin, D. Guo, L. Mao, Z. Fu, Oxidation of anethole with hydrogen peroxide catalyzed by oxovanadium aromatic carboxylate complexes, Catal Commun 10 (2008) 29–32. https://doi.org/10.1016/j.catcom.2008.07.035 | |
| dc.relation.references | H. Martínez Q., E.A. Paez-Mozo, F. Martínez O., Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2- Nanotubes, Top Catal 64 (2021) 36–50. https://doi.org/10.1007/s11244-020-01355-3. | |
| dc.relation.references | H. Arzoumanian, N.J. Castellanos, F.O. Martínez, E.A. Páez‐Mozo, F. Ziarelli, Silicon‐ Assisted Direct Covalent Grafting on Metal Oxide Surfaces: Synthesis and Characterization of Carboxylate N,N′‐Ligands on TiO2, Eur J Inorg Chem 2010 (2010) 1633–1641. https://doi.org/10.1002/ejic.200901092. | |
| dc.relation.references | Z. Liu, P. Xu, H. Song, J. Xu, J. Fu, B. Gao, X. Zhang, P.K. Chu, In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity, Surf Coat Technol 365 (2019) 222–226. https://doi.org/10.1016/j.surfcoat.2018.07.062. | |
| dc.relation.references | H. Martínez, Á.A. Amaya, E.A. Páez-Mozo, F. Martínez O., Highly efficient epoxidation of α-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes, Microporous and Mesoporous Materials 265 (2018) 202–210. https://doi.org/10.1016/j.micromeso.2018.02.005. | |
| dc.relation.references | Q. Zhou, Z. Fang, J. Li, M. Wang, Applications of TiO2 nanotube arrays in environmental and energy fields: A review, Microporous and Mesoporous Materials 202 (2015) 22–35. https://doi.org/10.1016/j.micromeso.2014.09.040. | |
| dc.relation.references | N. Castellanos, Reacciones de fotooxidación catalizadas por complejos de Cu enlazados covalentemente sobre nanotubos de TiO2, (2020) Universidad Nacional de Colombia, Bogotá D. C.. | |
| dc.relation.references | C.A. Páez, N.J. Castellanos, F. Martínez O., F. Ziarelli, G. Agrifoglio, E.A. Páez-Mozo, H. Arzoumanian, Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo- (4,4′-dicarboxylate-2,2′-bipyridine) anchored on TiO2, Catal Today 133–135 (2008) 619–624. https://doi.org/10.1016/j.cattod.2007.12.066. | |
| dc.relation.references | H. Martínez, Á.A. Amaya, E.A. Páez-Mozo, F. Martínez O., Highly efficient epoxidation of alfa-pinene with O2 photocatalyzed by dioxo Mo(VI) complex anchored on TiO2 nanotubes, Microporous and Mesoporous Materials 265 (2018) 202–210. https://doi.org/10.1016/j.micromeso.2018.02.005. | |
| dc.relation.references | H. Martinez Q, Á.A. Amaya, E.A. Paez-Mozo, F. Martinez O, S. Valange, Photo-assisted O- atom transfer to monoterpenes with molecular oxygen and a dioxoMo(VI) complex immobilized on TiO2 nanotubes, Catal Today 375 (2021) 441–457. https://doi.org/10.1016/j.cattod.2020.07.053. | |
| dc.relation.references | H. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, Photo-epoxidation of cyclohexene, cyclooctene and 1- octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′- bipyridine) molybdenum(VI) grafted on mesoporous TiO2, J Mol Catal A Chem 423 (2016) 248–255. https://doi.org/10.1016/j.molcata.2016.07.006. | |
| dc.relation.references | H. Martínez, Estudio del efecto ligando en los complejo Mo(=O)2Ln/TiO2 nanotubular en la Transferencia de Átomos de Oxígeno fotoestimulada, Tesis de doctorado, Universidad Industrial de Santander, 2021. | |
| dc.relation.references | F. He, L. Xu, H. Wang, C. Jiang, Recent Progress in Molecular Oxygen Activation by Iron- Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites, Toxics 12 (2024) 773. https://doi.org/10.3390/toxics12110773. | |
| dc.relation.references | L. Zhou, Y. Liu, H. Shi, Y. Qing, C. Chen, L. Shen, M. Zhou, B. Li, H. Lin, Molecular oxygen activation: Innovative techniques for environmental remediation, Water Res 250 (2024) 121075. https://doi.org/10.1016/j.watres.2023.121075. | |
| dc.relation.references | G. Henrici-Olivé, S. Olivé, Activation of Molecular Oxygen, Angewandte Chemie International Edition in English 13 (1974) 29–38. https://doi.org/10.1002/anie.197400291. | |
| dc.relation.references | A. Dupé, M.E. Judmaier, F. Belaj, K. Zangger, N.C. Mösch-Zanetti, Activation of molecular oxygen by a molybdenum complex for catalytic oxidation, Dalton Transactions 44 (2015) 20514–20522. https://doi.org/10.1039/C5DT02931G. | |
| dc.relation.references | N.J. Castellanos, Molecular oxygen activation by oxo-molybdenum as a heterogeneous catalytic system, in: Molybdenum and Its Compounds: Applications, Electrochemical Properties and Geological Implications, 2014: p. 447. | |
| dc.relation.references | Q. Li, F. Li, Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions, Chemical Engineering Journal 421 (2021) 129915. https://doi.org/10.1016/j.cej.2021.129915. | |
| dc.relation.references | P . Ortega, S. Gil-Guerrero, L. González-Sánchez, C. Sanz-Sanz, P .G. Jambrina, Spin- Forbidden Addition of Molecular Oxygen to Stable Enol Intermediates—Decarboxylation of 2-Methyl-1-tetralone-2-carboxylic Acid, Int J Mol Sci 24 (2023) 7424. https://doi.org/10.3390/ijms24087424. | |
| dc.relation.references | H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, X. Li, A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies, Chinese Journal of Catalysis 43 (2022) 178–214. https://doi.org/10.1016/S1872- 2067(21)63910-4. | |
| dc.relation.references | J.A. Rengifo-Herrera, C. Pulgarin, Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges, Chemical Engineering Journal 477 (2023) 146875. https://doi.org/10.1016/j.cej.2023.146875. | |
| dc.relation.references | N.J. Castellanos, H. Martínez Q, F. Martínez O, K. Leus, P. Van Der Voort, Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal– Organic Framework, Research on Chemical Intermediates 47 (2021) 4227–4244. https://doi.org/10.1007/s11164-021-04518-3. | |
| dc.relation.references | D. Camila, M. Ruiz, Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF, (2022) Universidad Nacional de Colombia, Bogotá, D. C.. | |
| dc.relation.references | M. Farias, M. Martinelli, D.P. Bottega, Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex, Appl Catal A Gen 384 (2010) 213– 219. https://doi.org/10.1016/j.apcata.2010.06.038. | |
| dc.relation.references | Y.-Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, Bipyridine-Based Nanosized Metal–Organic Framework with Tunable Luminescence by a Postmodification with Eu(III): An Experimental and Theoretical Study, The Journal of Physical Chemistry C 117 (2013) 11302–11310. https://doi.org/10.1021/jp402154q. | |
| dc.relation.references | Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van Der Voort, Bimetallic–Organic Framework as a Zero‐Leaching Catalyst in the Aerobic Oxidation of Cyclohexene, ChemCatChem 5 (2013) 3657–3664. https://doi.org/10.1002/cctc.201300529. | |
| dc.relation.references | K. Leus, Y.-Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations, J Catal 316 (2014) 201–209. https://doi.org/10.1016/j.jcat.2014.05.019. | |
| dc.relation.references | F. Juliá, Ligand‐to‐Metal Charge Transfer (LMCT) Photochemistry at 3d‐Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis, ChemCatChem 14 (2022). https://doi.org/10.1002/cctc.202200916. | |
| dc.relation.references | J. Yamaguchi, A.D. Yamaguchi, K. Itami, C-H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals, Angewandte Chemie International Edition 51 (2012) 8960–9009. https://doi.org/10.1002/anie.201201666. | |
| dc.relation.references | Y. Qiu, S. Gao, Trends in applying C–H oxidation to the total synthesis of natural products, Nat Prod Rep 33 (2016) 562–581. https://doi.org/10.1039/C5NP00122F. | |
| dc.relation.references | G.M. T omboc, Y . Park, K. Lee, K. Jin, Directing transition metal-based oxygen- functionalization catalysis, Chem Sci 12 (2021) 8967–8995. https://doi.org/10.1039/D1SC01272J. | |
| dc.relation.references | R.H. Holm, The biologically relevant oxygen atom transfer chemistry of molybdenum: from synthetic analogue systems to enzymes, Coord Chem Rev 100 (1990) 183–221. https://doi.org/10.1016/0010-8545(90)85010-P . | |
| dc.relation.references | R.H. Holm, E.I. Solomon, A. Majumdar, A. Tenderholt, Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes, Coord Chem Rev 255 (2011) 993–1015. https://doi.org/10.1016/j.ccr.2010.10.017. | |
| dc.relation.references | H. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord Chem Rev 178–180 (1998) 191–202. https://doi.org/10.1016/s0010- 8545(98)00056-3. | |
| dc.relation.references | J.H. Enemark, J.J.A. Cooney, J.J. Wang, R.H. Holm, Synthetic Analogues and Reaction Systems Relevant to the Molybdenum and Tungsten Oxotransferases, Chem Rev 104 (2004) 1175–1200. https://doi.org/10.1021/cr020609d. | |
| dc.relation.references | H. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord Chem Rev 178–180 (1998) 191–202. https://doi.org/10.1016/s0010- 8545(98)00056-3. | |
| dc.relation.references | H. Martínez Q., D.F. Valezi, E. Di Mauro, E.A. Páez-Mozo, F. Martínez O., Characterization of peroxo-Mo and superoxo-Mo intermediate adducts in Photo-Oxygen Atom Transfer with O2, Catal Today (2022). https://doi.org/10.1016/j.cattod.2022.02.016. | |
| dc.relation.references | N.J. Castellanos, Molecular oxygen activation by oxo-molybdenum as a heterogeneous catalytic system, in: Molybdenum and Its Compounds: Applications, Electrochemical Properties and Geological Implications, 2014: p. 447. | |
| dc.relation.references | H. Arzoumanian, Molybdenum-Oxo and Peroxo Complexes in Oxygen Atom Transfer Processes with O2 as the Primary Oxidant, Current Inorganic Chemistrye 1 (2012) 140–145. https://doi.org/10.2174/1877944111101020140. | |
| dc.relation.references | C.A. Páez Martínez, Transferencia de átomos de oxígeno foto-catalizada por complejos dioxo- dibromo (4,4’-dicarboxilato-2,2’-bipiridina) de molibdeno (VI) anclados sobre TiO2, (2007). https://noesis.uis.edu.co/handle/20.500.14071/10228 (accessed May 21, 2025). | |
| dc.relation.references | T. Dreher, Photo-induced Oxygen Atom Transfer with molybdenum and tungsten dioxo complexes, University of York, Chemistry, 2022. | |
| dc.relation.references | H. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord Chem Rev 178–180 (1998) 191–202. https://doi.org/10.1016/S0010- 8545(98)00056-3. | |
| dc.relation.references | R.H. Holm, The biologically relevant oxygen atom transfer chemistry of molybdenum: from synthetic analogue systems to enzymes, Coord Chem Rev 100 (1990) 183–221. https://doi.org/10.1016/0010-8545(90)85010-P . | |
| dc.relation.references | R. Bakhtchadjian, Oxygen Atom Transfer Reactions, Bentham Science Publishers, 2023. https://doi.org/10.2174/97898150509291230101. | |
| dc.relation.references | C.P. Gordon, C. Copéret, Probing the Electronic Structure of Spectator Oxo Ligands by 17O NMR Spectroscopy, Chimia (Aarau) 74 (2020) 225. https://doi.org/10.2533/chimia.2020.225. | |
| dc.relation.references | N.J. Castellanos, Molecular oxygen activation by oxo-molybdenum as a heterogeneous catalytic system, in: Molybdenum and Its Compounds: Applications, Electrochemical Properties and Geological Implications, 2014: pp. 87–106. https://books.google.com.co/books?id=jXK0oAEACAAJ. | |
| dc.relation.references | S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal Sci Technol 7 (2017) 3659–3675. https://doi.org/10.1039/c7cy00988g. | |
| dc.relation.references | X. Zhang, J. Burchell, N.S. Mosier, Enzymatic Epoxidation of High Oleic Soybean Oil, (2018). https://doi.org/10.1021/acssuschemeng.8b00884. | |
| dc.relation.references | A.E. Gerbase, J.R. Gregório, M. Martinelli, M.C. Brasil, A.N.F. Mendes, Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2 / H2O2 catalytic biphasic system, J Am Oil Chem Soc 79 (2002) 179–181. https://doi.org/10.1007/s11746-002-0455-0. | |
| dc.relation.references | Z. Chen, G. Yin, The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations, Chem Soc Rev 44 (2015) 1083–1100. https://doi.org/10.1039/C4CS00244J. | |
| dc.relation.references | K.A. Joergensen, K.A. Jørgensen, K.A. Joergensen, Transition-Metal-Catalyzed Epoxidations, Chem Rev 89 (1989) 431–458. https://doi.org/10.1021/cr00093a001. | |
| dc.relation.references | J.M. Mitchell, N.S. Finney, New molybdenum catalysts for alkyl olefin epoxidation. Their implications for the mechanism of oxygen atom transfer, J Am Chem Soc 123 (2001) 862– 869. https://doi.org/10.1021/ja002697u. | |
| dc.relation.references | J. Sobczak, J.J. Ziółkowski, The catalytic epoxidation of olefins with organic hydroperoxides, Journal of Molecular Catalysis 13 (1981) 11–42. https://doi.org/10.1016/0304- 5102(81)85028-6. | |
| dc.relation.references | M.G. Topuzova, S. V Kotov, T.M. Kolev, Epoxidation of alkenes in the presence of molybdenum-squarate complexes as novel catalysts, Appl Catal A Gen 281 (2005) 157–166. https://doi.org/10.1016/j.apcata.2004.11.028. | |
| dc.relation.references | J.M. Brégeault, Transition-metal complexes for liquid-phase catalytic oxidation: Some aspects of industrial reactions and of emerging technologies, Journal of the Chemical Society. Dalton Transactions 3 (2003) 3289–3302. https://doi.org/10.1039/b303073n. | |
| dc.relation.references | T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen, Chem Rev 105 (2005) 2329–2364. https://doi.org/10.1021/cr050523v. | |
| dc.relation.references | A. Ali, W. Akram, H.Y. Liu, Reactive cobalt-oxo complexes of tetrapyrrolic macrocycles and N-based ligand in oxidative transformation reactions, Molecules 24 (2019). https://doi.org/10.3390/molecules24010078. | |
| dc.relation.references | J.W. Kück, R.M. Reich, F.E. Kühn, Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes, Chemical Record 16 (2016) 349–364. https://doi.org/10.1002/tcr.201500233. | |
| dc.relation.references | R.H. Holm, P. Kennepohl, E.I. Solomon, Structural and functional aspects of metal sites in biology, Chem Rev 96 (1996) 2239–2314. https://doi.org/10.1021/cr9500390. | |
| dc.relation.references | R.H. Holm, E.I. Solomon, A. Majumdar, A. Tenderholt, Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes, Coord Chem Rev 255 (2011) 993–1015. https://doi.org/10.1016/j.ccr.2010.10.017. | |
| dc.relation.references | R. Hille, T. Nishino, F. Bittner, Molybdenum enzymes in higher organisms, Coord Chem Rev 255 (2011) 1179–1205. https://doi.org/10.1016/j.ccr.2010.11.034. | |
| dc.relation.references | P. Basu, S.J.N. Burgmayer, Pterin chemistry and its relationship to the molybdenum cofactor, Coord Chem Rev 255 (2011) 1016–1038. https://doi.org/10.1016/j.ccr.2011.02.010. | |
| dc.relation.references | A. Magalon, J.G. Fedor, A. Walburger, J.H. Weiner, Molybdenum enzymes in bacteria and their maturation, Coord Chem Rev 255 (2011) 1159–1178. https://doi.org/10.1016/j.ccr.2010.12.031. | |
| dc.relation.references | R. Hille, Molybdenum and tungsten in biology, Trends Biochem Sci 27 (2002) 360–367. https://doi.org/10.1016/S0968-0004(02)02107-2. | |
| dc.relation.references | P. Basu, S.J.N. Burgmayer, Pterin chemistry and its relationship to the molybdenum cofactor, Coord Chem Rev 255 (2011) 1016–1038. https://doi.org/10.1016/j.ccr.2011.02.010. | |
| dc.relation.references | A. Magalon, J.G. Fedor, A. Walburger, J.H. Weiner, Molybdenum enzymes in bacteria and their maturation, Coord Chem Rev 255 (2011) 1159–1178. https://doi.org/10.1016/j.ccr.2010.12.031. | |
| dc.relation.references | Z. Nie, C. Hu, H. Liu, Q. Tan, X. Sun, Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum), Plant Physiology and Biochemistry 82 (2014) 27–33. https://doi.org/10.1016/j.plaphy.2014.05.002. | |
| dc.relation.references | H. Dobbek, Structural aspects of mononuclear Mo/W-enzymes, Coord Chem Rev 255 (2011) 1104–1116. https://doi.org/10.1016/j.ccr.2010.11.017. | |
| dc.relation.references | F.E. Kühn, A.M. Santos, M. Abrantes, Mononuclear organomolybdenum(VI) dioxo complexes: Synthesis, reactivity, and catalytic applications, Chem Rev 106 (2006) 2455– 2475. https://doi.org/10.1021/cr040703p. | |
| dc.relation.references | R.K. Grasselli, Advances and future trends in selective oxidation and ammoxidation catalysis, Catal Today 49 (1999) 141–153. https://doi.org/10.1016/S0920-5861(98)00418-0. | |
| dc.relation.references | R. Cross, Chiral phosphinoylalcohol complexes of monooxobis(peroxo)molybdenum(VI) and their use as asymmetric oxidants, J Mol Catal A Chem 144 (1999) 273–284. https://doi.org/10.1016/S1381-1169(98)00371-9. | |
| dc.relation.references | B. Kaur, P. Singh, Epoxides: Developability as active pharmaceutical ingredients and biochemical probes, Bioorg Chem 125 (2022) 105862. https://doi.org/10.1016/j.bioorg.2022.105862. | |
| dc.relation.references | A.K. Rappe, W.A. Goddard, Hydrocarbon oxidation by high-valent Group VI oxides, J Am Chem Soc 104 (1982) 3287–3294. https://doi.org/10.1021/ja00376a006. | |
| dc.relation.references | B. Meunier, Biomimetic Oxidations Catalyzed by Transition Metal Complexes, Published by Imperial college press, 2000. https://doi.org/10.1142/p084. | |
| dc.relation.references | H. Arzoumanian, Molybdenum-Oxo and Peroxo Complexes in Oxygen Atom Transfer Processes with O2 as the Primary Oxidant, Current Inorganic Chemistrye 1 (2011) 140–145. https://doi.org/10.2174/1877944111101020140. | |
| dc.relation.references | H. Arzoumanian, R. Lopez, G. Agrifoglio, Synthesis and X-ray Characterization of Tetraphenylphosphonium Tetrathiocyanatodioxomolybdate(VI): A Remarkable Oxo Transfer Agent, Inorg Chem 33 (1994) 3177–3179. https://doi.org/10.1021/ic00092a026. | |
| dc.relation.references | H. Arzoumanian, R. Lopez, G. Agrifoglio, Synthesis and X-ray Characterization of Tetraphenylphosphonium Tetrathiocyanatodioxomolybdate(VI): A Remarkable Oxo Transfer Agent, Inorg Chem 33 (1994) 3177–3179. https://doi.org/10.1021/ic00092a026. | |
| dc.relation.references | S.A. Roberts, C.G. Young, C.A. Kipke, W.E. Cleland, K. Yamanouchi, M.D. Carducci, J.H. Enemark, Dioxomolybdenum(VI) complexes of the hydrotris(3,5-dimethyl-1- pyrazolyl)borate ligand. Synthesis and oxygen atom transfer reactions, Inorg Chem 29 (1990) 3650–3656. https://doi.org/10.1021/ic00344a007. | |
| dc.relation.references | H. Arzoumanian, G. Agrifoglio, H. Krentzien, M. Capparelli, Arylalkane oxidation by dioxo[4,4′-di(tert-butyl)-2,2′-bipyridyl]molybdenum( <scp>VI</scp> ) complexes, J. Chem. Soc., Chem. Commun. (1995) 655–656. https://doi.org/10.1039/C39950000655. | |
| dc.relation.references | H. Arzoumanian, R. Bakhtchadjian, R. Atencio, A. Briceno, G. Verde, G. Agrifoglio, Characterization of a reduced molybdenum-oxo compound derived from an oxo-transfer process under stoichiometric conditions, J Mol Catal A Chem 260 (2006) 197–201. https://doi.org/10.1016/j.molcata.2006.07.025. | |
| dc.relation.references | H. Arzoumanian, Molybdenum-Oxo and Peroxo Complexes in Oxygen Atom Transfer Processes with O 2 as the Primary Oxidant, Current Inorganic Chemistrye 1 (2011) 140–145. https://doi.org/10.2174/1877944111101020140. | |
| dc.relation.references | P. Basu, B.W. Kail, A.K. Adams, V.N. Nemykin, Quantitation of the ligand effect in oxo- transfer reactions of dioxo-Mo( <scp>vi</scp> ) trispyrazolyl borate complexes, Dalton Trans. 42 (2013) 3071–3081. https://doi.org/10.1039/C2DT32349D. | |
| dc.relation.references | C.J. Doonan, A.J. Millar, D.J. Nielsen, C.G. Young, cis -Dioxomolybdenum(VI) and Oxo(phosphine oxide)molybdenum(IV) Complexes: Steric and Electronic Fine-Tuning of cis -[MoOS] 2+ Precursors, Inorg Chem 44 (2005) 4506–4514. https://doi.org/10.1021/ic050052v. | |
| dc.relation.references | C.D. Nunes, M. Pillinger, A.A. Valente, J. Rocha, A.D. Lopes, I.S. Gonçalves, Dioxomolybdenum( <scp>VI</scp> )‐Modified Mesoporous MCM‐41 and MCM‐48 Materials for the Catalytic Epoxidation of Olefins, Eur J Inorg Chem 2003 (2003) 3870–3877. https://doi.org/10.1002/ejic.200300278. | |
| dc.relation.references | Paul T. Anastas, R. H. Crabtree, “Handbook of Green Chemistry - Green Catalysis,” Wiley, (2014) ISBN: 9783527628698, DOI: 10.1002/9783527628698. | |
| dc.relation.references | P. Ferreira, I.S. Gonçalves, F.E. Kühn, A.D. Lopes, M.A. Martins, M. Pillinger, A. Pina, J. Rocha, C.C. Romão, A.M. Santos, T.M. Santos, A.A. Valente, Mesoporous Silicas Modified with Dioxomolybdenum(VI) Complexes: Synthesis and Catalysis, Eur J Inorg Chem 2000 (2000) 2263–2270. https://doi.org/10.1002/1099-0682(200010)2000:10<2263::AID- EJIC2263>3.0.CO;2-U. | |
| dc.relation.references | M. Jia, A. Seifert, W.R. Thiel, Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene, Chemistry of Materials 15 (2003) 2174–2180. https://doi.org/10.1021/cm021380l. | |
| dc.relation.references | A. Corma, H. Garcia, Silica-Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis, Adv Synth Catal 348 (2006) 1391–1412. https://doi.org/10.1002/adsc.200606192. | |
| dc.relation.references | R. Hille, The reaction mechanism of oxomolybdenum enzymes, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1184 (1994) 143–169. https://doi.org/10.1016/0005- 2728(94)90220-8. | |
| dc.relation.references | C.A. Páez, N.J. Castellanos, F. Martínez O., F. Ziarelli, G. Agrifoglio, E.A. Páez-Mozo, H. Arzoumanian, Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo- (4,4′-dicarboxylate-2,2′-bipyridine) anchored on TiO2, Catal Today 133–135 (2008) 619–624. https://doi.org/10.1016/j.cattod.2007.12.066. | |
| dc.relation.references | A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2. | |
| dc.relation.references | U. Diebold, The surface science of titanium dioxide, Surf Sci Rep 48 (2003) 53–229. https://doi.org/10.1016/s0167-5729(02)00100-0. | |
| dc.relation.references | A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surf Sci Rep 63 (2008) 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001. | |
| dc.relation.references | H. Arzoumanian, N.J. Castellanos, F.O. Martínez, E.A. Páez-Mozo, F. Ziarelli, Silicon- assisted direct covalent grafting on metal oxide surfaces: Synthesis and characterization of carboxylate N,N′-ligands on TiO2, Eur J Inorg Chem 2010 (2010) 1633–1641. https://doi.org/10.1002/ejic.200901092. | |
| dc.relation.references | N.J. Castellanos, F. Martínez, E.A. Páez-Mozo, F. Ziarelli, H. Arzoumanian, Bis(3,5- dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2, Transition Metal Chemistry 37 (2012) 629–637. https://doi.org/10.1007/s11243-012-9631-2. | |
| dc.relation.references | R. Bakhtchadjian, S. Tsarukyan, J. Barrault, F.O. Martinez, L. Tavadyan, N.J. Castellanos, Application of a dioxo-molybdenum(VI) complex anchored on TiO2 for the photochemical oxidative decomposition of 1-chloro-4-ethylbenzene under O2, Transition Metal Chemistry 36 (2011) 897–900. https://doi.org/10.1007/s11243-011-9547-2. | |
| dc.relation.references | S. R, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Elsevier Science, 2012. | |
| dc.relation.references | A.E. Martell, D.T. Sawyer, eds., Oxygen Complexes and Oxygen Activation by Transition Metals, Springer US, Boston, MA, 1988. https://doi.org/10.1007/978-1-4613-0955-0. | |
| dc.relation.references | L.I. Simándi, ed., Advances in catalytic activation of dioxygen by metal complexes, Focus on Catalysts 2003 (2003) 8. https://doi.org/10.1016/s1351-4180(03)00942-5. | |
| dc.relation.references | N.J. Castellanos, F. Martínez, E.A. Páez-Mozo, F. Ziarelli, H. Arzoumanian, Bis(3,5- dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2, Transition Metal Chemistry 37 (2012) 629–637. https://doi.org/10.1007/s11243-012-9631-2. | |
| dc.relation.references | N.J. Castellanos, F. Martínez, F. Lynen, S. Biswas, P. Van Der Voort, H. Arzoumanian, Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania, Transition Metal Chemistry 38 (2013) 119–127. https://doi.org/10.1007/s11243-012-9668-2. | |
| dc.relation.references | C. Aprile, A. Corma, H. Garcia, Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale, Phys. Chem. Chem. Phys. 10 (2008) 769–783. https://doi.org/10.1039/B712168G. | |
| dc.relation.references | K. Wang, M. Wei, M.A. Morris, H. Zhou, J.D. Holmes, Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials 19 (2007) 3016–3020. https://doi.org/10.1002/adma.200602189. | |
| dc.relation.references | H. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, Photo-epoxidation of cyclohexene, cyclooctene and 1- octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′- bipyridine) molybdenum(VI) grafted on mesoporous TiO2, J Mol Catal A Chem 423 (2016) 248–255. https://doi.org/10.1016/j.molcata.2016.07.006. | |
| dc.relation.references | Y . He, B. Chen, Metal-Organic Frameworks: Frameworks Containing Open Sites, Encyclopedia of Inorganic and Bioinorganic Chemistry (2014) 1–23. https://doi.org/10.1002/9781119951438.eibc2213. | |
| dc.relation.references | F. Gándara, Metal-organic frameworks: nuevos materiales con espacios llenos de posibilidades, Anales de La Real Sociedad Española de Química 108 (2012) 190–196. | |
| dc.relation.references | A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat Rev Mater 1 (2016) 1–15. https://doi.org/10.1038/natrevmats.2015.18. | |
| dc.relation.references | J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous and Mesoporous Materials 73 (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034. | |
| dc.relation.references | X.L. Ni, J. Liu, Y.Y. Liu, K. Leus, H. Depauw, A.J. Wang, P. Van Der Voort, J. Zhang, Y.K. Hu, Synthesis, characterization and catalytic performance of Mo based metal- organic frameworks in the epoxidation of propylene by cumene hydroperoxide, Chinese Chemical Letters 28 (2017) 1057–1061. https://doi.org/10.1016/j.cclet.2017.01.020. | |
| dc.relation.references | T. Rios Carvajal, Síntesis y caracterización de redes metal-orgánicas (MOF) a partir de ligantes orgánicos tipo fenilenvinileno modificados con grupos electrodonores, 2014. | |
| dc.relation.references | K. Leus, I. Muylaert, V . V an Speybroeck, G.B. Marin, P . V an Der V oort, A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity, Elsevier B.V., 2010. https://doi.org/10.1016/S0167-2991(10)75053-9. | |
| dc.relation.references | J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem Soc Rev 43 (2014) 6011–6061. https://doi.org/10.1039/c4cs00094c. | |
| dc.relation.references | M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J Am Chem Soc 131 (2009) 10857–10859. https://doi.org/10.1021/ja903726m. | |
| dc.relation.references | J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem Soc Rev 38 (2009) 1450–1459. https://doi.org/10.1039/b807080f. | |
| dc.relation.references | Z.M. Rojas, Estructuras metal orgánicas de titanio (MIL-125 y MIL-125-NH2 ): síntesis, caracterización y evaluación de la actividad en procesos fotocatalíticos, 2017. | |
| dc.relation.references | P. Neves, A.C. Gomes, T.R. Amarante, F.A.A. Paz, M. Pillinger, I.S. Gonçalves, A.A. Valente, Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based Metal–Organic Framework and its application in catalytic olefin epoxidation, Microporous and Mesoporous Materials 202 (2015) 106–114. https://doi.org/10.1016/J.MICROMESO.2014.09.046. | |
| dc.relation.references | C.A. Bravo-Sanabria, L.C. Solano-Delgado, L.M. Valdivieso-Zarate, R. Ospina-Ospina, F. Martínez-Ortega, G.E. Ramírez-Caballero, Photo-epoxidation of α-pinene catalyzed by a MoVI oxo-diperoxo complex modified Ti-based metal-organic framework, Molecular Catalysis 545 (2023) 113240. https://doi.org/10.1016/J.MCAT.2023.113240. | |
| dc.relation.references | L.M. Valdivieso Zarate, C.A. Bravo Sanabria, G.E. Ramírez Caballero, F. Martínez Ortega, Photoinduced Oxygen Atom Transfer to α-Pinene and R-Carvone using a Dioxo-Molybdenum (VI) Complex Incorporated within a Modified UiO-67 (Zr/Ti) MOF, Eur J Inorg Chem 26 (2023) e202300194. https://doi.org/10.1002/EJIC.202300194; JOURNAL:JOURNAL:10990682B. | |
| dc.relation.references | K. Leus, Y.Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations, J Catal 316 (2014) 201–209. https://doi.org/10.1016/j.jcat.2014.05.019. | |
| dc.relation.references | D.C. Martínez R, C.A. Trujillo, J.G. Carriazo, N.J. Castellanos, Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers, Catal Letters 153 (2023) 1756–1772. https://doi.org/10.1007/s10562-022- 04096-y. | |
| dc.relation.references | N.J. Castellanos, H. Martínez Q, F. Martínez O, K. Leus, P. Van Der Voort, Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal– Organic Framework, Research on Chemical Intermediates 47 (2021) 4227–4244. https://doi.org/10.1007/s11164-021-04518-3. | |
| dc.relation.references | Denicourt-Nowicki, Rauchdi, Ali, Roucoux, Catalytic Oxidation Processes for the Upgrading of Terpenes: State-of-the-Art and Future Trends, Catalysts 9 (2019) 893. https://doi.org/10.3390/catal9110893. | |
| dc.relation.references | N. Tsolakis, W. Bam, J.S. Srai, M. Kumar, Renewable chemical feedstock supply network design: The case of terpenes, J Clean Prod 222 (2019) 802–822. https://doi.org/10.1016/j.jclepro.2019.02.108. | |
| dc.relation.references | M. Golets, S. Ajaikumar, J.P. Mikkola, Catalytic Upgrading of Extractives to Chemicals: Monoterpenes to “eXICALS,” Chem Rev 115 (2015) 3141–3169. https://doi.org/10.1021/cr500407m. | |
| dc.relation.references | S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal Sci Technol 7 (2017) 3659–3675. https://doi.org/10.1039/c7cy00988g. | |
| dc.relation.references | A. El Asbahani, K. Miladi, W. Badri, M. Sala, E.H.A. Addi, H. Casabianca, A. El Mousadik, D. Hartmann, A. Jilale, F.N.R. Renaud, A. Elaissari, Essential oils: From extraction to encapsulation, Int J Pharm 483 (2015) 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069. | |
| dc.relation.references | R. Ciriminna, M. Lomeli Rodriguez, P. Demma Carà, J.A. Lopez Sanchez, M. Pagliaro, Limonene: A versatile chemical of the bioeconomy, Chemical Communications 50 (2014) 15288–15296. https://doi.org/10.1039/c4cc06147k. | |
| dc.relation.references | R.G. Berger, Flavours and fragrances: Chemistry, bioprocessing and sustainability, 2007. https://doi.org/10.1007/978-3-540-49339-6. | |
| dc.relation.references | R. Ciriminna, M. Lomeli Rodriguez, P. Demma Carà, J.A. Lopez Sanchez, M. Pagliaro, Limonene: A versatile chemical of the bioeconomy, Chemical Communications 50 (2014) 15288–15296. https://doi.org/10.1039/c4cc06147k. | |
| dc.relation.references | K. .A.D. Swift, Catalytic transformations of the major terpene feedstocks, Top Catal 27 (2004) 143–155. https://doi.org/10.1023/B:TOCA.0000013549.60930.da. | |
| dc.relation.references | W. Schwab, C. Fuchs, F.C. Huang, Transformation of terpenes into fine chemicals, European Journal of Lipid Science and Technology 115 (2013) 3–8. https://doi.org/10.1002/ejlt.201200157. | |
| dc.relation.references | N. Ravasio, F. Zaccheria, M. Guidotti, R. Psaro, Mono- and bifunctional heterogeneous catalytic transformation of terpenes and terpenoids, Top Catal 27 (2004) 157–168. https://doi.org/10.1023/B:TOCA.0000013550.28170.6a. | |
| dc.relation.references | A. Zeroual, M. Ríos-Gutiérrez, O. Amiri, M. El Idrissi, L.R. Domingo, A molecular electron density theory study of the mechanism, chemo-and stereoselectivity of the epoxidation reaction of: R-carvone with peracetic acid, RSC Adv 9 (2019) 28500–28509. https://doi.org/10.1039/c9ra05309c. | |
| dc.relation.references | A. Lewinska, P. Chochrek, K. Smolag, E. Rawska, M. Wnuk, Oxidant-based anticancer activity of a novel synthetic analogue of capsaicin, capsaicin epoxide, Redox Report 20 (2015) 116–125. https://doi.org/10.1179/1351000214Y.0000000113. | |
| dc.relation.references | Z. Liu, L. Ma, G.B. Zhou, The main anticancer bullets of the chinese medicinal herb, thunder god vine, Molecules 16 (2011) 5283–5297. https://doi.org/10.3390/molecules16065283. | |
| dc.relation.references | B.A. Adeniyi, M.F. Robert, H. Chai, H.H.S. Fong, In vitro cytotoxicity activity of diosquinone, a naphthoquinone epoxide, Phytotherapy Research 17 (2003) 282–284. https://doi.org/10.1002/ptr.1116. | |
| dc.relation.references | D.K. Parmar, P.M. Butani, N.J. Thumar, P.M. Jasani, R. V. Padaliya, P.R. Sandhiya, H.D. Nakum, M.N. Khan, D. Makwana, Oxy-functionalization of olefins with neat and heterogenized binuclear V(IV)O and Fe(II)complexes: Effect of steric hindrance on product selectivity and output in homogeneous and heterogeneous phase, Molecular Catalysis 474 (2019) 110424. https://doi.org/10.1016/j.mcat.2019.110424. | |
| dc.relation.references | W. Farhat, A. Stamm, M. Robert-Monpate, A. Biundo, P.O. Syrén, Biocatalysis for terpene- based polymers, Zeitschrift Fur Naturforschung - Section C Journal of Biosciences 74 (2019) 91–100. https://doi.org/10.1515/znc-2018-0199. | |
| dc.relation.references | M.C. Sigmund, G.J. Poelarends, Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules, Nat Catal 3 (2020) 690–702. https://doi.org/10.1038/s41929-020-00507-8. | |
| dc.relation.references | R.D.J. Barrera, E.A. Alarcón, L.M. González, A.L. Villa, C. Montes de Correa, Síntesis de carveol, carvona, verbenol y verbenona, INGENIERÍA Y COMPETITIVIDAD 10 (2011) 43– 63. https://doi.org/10.25100/iyc.v10i1.2480. | |
| dc.relation.references | A.A. Carvalho, L.N. Andrade, É.B.V. De Sousa, D.P. De Sousa, Antitumor phenylpropanoids found in essential oils, Biomed Res Int 2015 (2015). https://doi.org/10.1155/2015/392674. | |
| dc.relation.references | H.C. Chang, H.H. Cheng, C.J. Huang, W.C. Chen, I.S. Chen, S.I. Liu, S.S. Hsu, H.T. Chang, J.K. Wang, Y.C. Lu, C.T. Chou, C.R. Jan, Safrole-induced Ca2+ mobilization and cytotoxicity in human PC3 prostate cancer cells, Journal of Receptors and Signal Transduction 26 (2006) 199–212. https://doi.org/10.1080/10799890600662595. | |
| dc.relation.references | S.A. Khayyat, S.H. Al-Zahrani, Thermal, photosynthesis and antibacterial studies of bioactive safrole derivative as precursor for natural flavor and fragrance, Arabian Journal of Chemistry 7 (2014) 800–804. https://doi.org/10.1016/j.arabjc.2011.09.014. | |
| dc.relation.references | E.M. Elgendy, S.A. Khayyat, Oxidation reactions of some natural volatile aromatic compounds: Anethole and eugenol, Russian Journal of Organic Chemistry 44 (2008) 823– 829. https://doi.org/10.1134/S1070428008060079. | |
| dc.relation.references | B.A. da Rocha, A.M.V. Ritter, F.Q. Ames, O.H. Gonçalves, F.V. Leimann, L. Bracht, M.R.M. Natali, R.K.N. Cuman, C.A. Bersani-Amado, Acetaminophen-induced hepatotoxicity: Preventive effect of trans anethole, Biomedicine & Pharmacotherapy 86 (2017) 213–220. https://doi.org/10.1016/J.BIOPHA.2016.12.014. | |
| dc.relation.references | J. Lu, W. Hou, S. Yang, D. Chen, F. Wang, L. Liu, Z. Shen, Trans-anethole pretreatment ameliorates hepatic ischemia–reperfusion injury via regulation of soluble epoxide hydrolase, Int Immunopharmacol 124 (2023) 110809. https://doi.org/10.1016/J.INTIMP.2023.110809. | |
| dc.relation.references | R.S. Freire, S.M. Morais, F.E.A. Catunda, D.C.S.N. Pinheiro, Synthesis and antioxidant, anti- inflammatory and gastroprotector activities of anethole and related compounds, Bioorg Med Chem 13 (2005) 4353–4358. https://doi.org/10.1016/J.BMC.2005.03.058. | |
| dc.relation.references | C.Y. Yu, J.F. Zhang, T. Wang, Star anise essential oil:chemical compounds, antifungal and antioxidant activities: a review, Journal of Essential Oil Research 33 (2021) 1–22. https://doi.org/10.1080/10412905.2020.1813213. | |
| dc.relation.references | W. Sun, M.H. Shahrajabian, Q. Cheng, Anise ( Pimpinella anisum L .), a dominant spice and traditional medicinal herb for both food and medicinal purposes, Cogent Biol 5 (2019) 1673688. https://doi.org/10.1080/23312025.2019.1673688. | |
| dc.relation.references | F.D. Lewis, Masanobu. Kojima, Photodimerization of singlet trans- and cis-anethole. Concerted or stepwise?, J Am Chem Soc 110 (1988) 8660–8664. https://doi.org/10.1021/ja00234a013. | |
| dc.relation.references | H. Mang, J. Gross, M. Lara, C. Goessler, H.E. Schoemaker, G.M. Guebitz, W. Kroutil, Optimization of a biocatalytic single-step alkene cleavage of aryl alkenes, Tetrahedron 63 (2007) 3350–3354. https://doi.org/10.1016/j.tet.2007.02.034. | |
| dc.relation.references | H. Qin, X. Jiang, H. Huang, W. Liu, J. Li, Y. Xiao, L. Mao, Z. Fu, N. Yu, D. Yin, Ionic liquid- assisted catalytic oxidation of anethole by copper- and iron-based metal-organic frameworks, Molecular Catalysis 440 (2017) 158–167. https://doi.org/10.1016/j.mcat.2017.07.014. | |
| dc.relation.references | A.M. Dawidar, M.M. Abou-Elzahab, M. Abdel-Mogib, Kh. Hussien, M.E.-H. Mostafa, Photo- Oxygenation of trans-Anethole, International Journal of Science and Engineering Applications 4 (2015) 294–298. https://doi.org/10.7753/ijsea0405.1012. | |
| dc.relation.references | H. Qin, X. Jiang, H. Huang, W. Liu, J. Li, Y. Xiao, L. Mao, Z. Fu, N. Yu, D. Yin, Ionic liquid- assisted catalytic oxidation of anethole by copper- and iron-based metal-organic frameworks, Molecular Catalysis 440 (2017) 158–167. https://doi.org/10.1016/J.MCAT.2017.07.014. | |
| dc.relation.references | S. Ching, H.D. Kaesz, A.P. Sattelberger, L. Alamos, N. Lab, T.B. Rauchfuss, M.A. Bennett, E.O. Fischer, H.W. Roesky, W.R. Roper, F.G.A. Stone Baylor, J. Reedijk, Inorganic Synthesis, (1980) DOI: 10.1002/SERIES2146, ISSN: 1934-4716. | |
| dc.relation.references | M. Heinz, M. Kepkow, N. Theofel, B. Strehmel, V. Strehmel, Synthesis and photoinitiated cationic polymerization of epoxidized phenylpropanoid and α-pinene derivatives, Sustain Chem Pharm 29 (2022) 100766. https://doi.org/10.1016/j.scp.2022.100766. | |
| dc.relation.references | A.L. Koritzke, K.M. Frandsen, M.G. Christianson, J.C. Davis, A.C. Doner, A. Larsson, J. Breda-Nixon, B. Rotavera, Fragmentation mechanisms from electron-impact of complex cyclic ethers formed in combustion, Int J Mass Spectrom 454 (2020) 116342. https://doi.org/10.1016/j.ijms.2020.116342. | |
| dc.relation.references | F. McLafferty, F. Turecek, Interpretation of mass spectra, 4th ed., University Science Books, California, (1993) https://doi.org/10.1002/bms.1200230614. | |
| dc.relation.references | R. Adams, Identification of Essential Oil Components by Gas Chromatography Mass Spectrometry, 4th ed., Allured publishing, Texas, (2017) ISBN-13: 978-1932633214. | |
| dc.relation.references | National Center for Biotechnology Information, “PubChem Compound Summary for CID 3016654, 1-(4-Methoxyphenyl)propane-1,2-diol” PubChem, Https://Pubchem.Ncbi.Nlm.Nih.Gov/Compound/1-_4-Methoxyphenyl_propane-1_2-Diol. (2005). | |
| dc.relation.references | N.R. Andriamaharavo, Retention Data. NIST Mass Spectrometry Data Center, Https://Webbook.Nist.Gov/Cgi/Cbook.Cgi?ID=C51410481&Mask=2000#Gas-Chrom (2014). | |
| dc.relation.references | O. Kozachuk, M. Meilikhov, K. Yusenko, A. Schneemann, B. Jee, A. V. Kuttatheyil, M. Bertmer, C. Sternemann, A. Pöppl, R.A. Fischer, A Solid‐Solution Approach to Mixed‐Metal Metal–Organic Frameworks – Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks, Eur J Inorg Chem 2013 (2013) 4546–4557. https://doi.org/10.1002/ejic.201300591. | |
| dc.relation.references | S.H. Mosavi, R. Zare-Dorabei, M. Bereyhi, Microwave-assisted synthesis of metal–organic framework MIL-47 for effective adsorptive removal of dibenzothiophene from model fuel, Journal of the Iranian Chemical Society 18 (2021) 709–717. https://doi.org/10.1007/s13738- 020-02057-z. | |
| dc.relation.references | D.C. Martínez R, C.A. Trujillo, J.G. Carriazo, N.J. Castellanos, Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers, Catal Letters (2022). https://doi.org/10.1007/s10562-022-04096-y. | |
| dc.relation.references | J.R. Blanton, R.J. Papoular, D. Louër, PreDICT: a graphical user interface to the DICVOL14 indexing software program for powder diffraction data, Powder Diffr 34 (2019) 233–241. https://doi.org/10.1017/S0885715619000514. | |
| dc.relation.references | D. Louër, A. Boultif, Some further considerations in powder diffraction pattern indexing with the dichotomy method, Powder Diffr 29 (2014) S7–S12. https://doi.org/10.1017/S0885715614000906. | |
| dc.relation.references | I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W. Böhlmann, S. Kaskel, New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate), Microporous and Mesoporous Materials 122 (2009) 93–98. https://doi.org/10.1016/j.micromeso.2009.02.020. | |
| dc.relation.references | K.I. Hadjiivanov, D.A. Panayotov, M.Y. Mihaylov, E.Z. Ivanova, K.K. Chakarova, S.M. Andonova, N.L. Drenchev, Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules, Chem Rev 121 (2021) 1286–1424. https://doi.org/10.1021/acs.chemrev.0c00487. | |
| dc.relation.references | N. Reimer, B. Gil, B. Marszalek, N. Stock, Thermal post-synthetic modification of Al-MIL- 53–COOH: systematic investigation of the decarboxylation and condensation reaction, CrystEngComm 14 (2012) 4119. https://doi.org/10.1039/c2ce06649a. | |
| dc.relation.references | N.J. Castellanos, F. Martínez, E.A. Páez-Mozo, F. Ziarelli, H. Arzoumanian, Bis(3,5- dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2, Transition Metal Chemistry 37 (2012) 629–637. https://doi.org/10.1007/s11243-012-9631-2. | |
| dc.relation.references | R. Bakhtchadjian, S. Tsarukyan, J. Barrault, F.O. Martinez, L. Tavadyan, N.J. Castellanos, Application of a dioxo-molybdenum(VI) complex anchored on TiO2 for the photochemical oxidative decomposition of 1-chloro-4-ethylbenzene under O2, Transition Metal Chemistry 36 (2011) 897–900. https://doi.org/10.1007/s11243-011-9547-2. | |
| dc.relation.references | R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J Solgel Sci Technol 61 (2012) 1–7. https://doi.org/10.1007/s10971-011-2582-9. | |
| dc.relation.references | M. Kruk, M. Jaroniec, A. Sayari, Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements, Langmuir 13 (1997) 6267–6273. https://doi.org/10.1021/la970776m. | |
| dc.relation.references | F. Carson, S. Agrawal, M. Gustafsson, A. Bartoszewicz, F. Moraga, X. Zou, B. Martín‐ Matute, Ruthenium Complexation in an Aluminium Metal–Organic Framework and Its Application in Alcohol Oxidation Catalysis, Chemistry – A European Journal 18 (2012) 15337–15344. https://doi.org/10.1002/chem.201200885. | |
| dc.relation.references | R.J.J. Jansen, H. van Bekkum, XPS of nitrogen-containing functional groups on activated carbon, Carbon N Y 33 (1995) 1021–1027. https://doi.org/10.1016/0008-6223(95)00030-H. | |
| dc.relation.references | R. Guo, Y. Deng, Y. Jia, C. Shi, W. Zhang, Y. Zhou, X. Hou, Gallium ions induced in-situ MOF-derived hierarchical porous Co3O4 for ultra-high acetone response, Sens Actuators B Chem 399 (2024) 134832. https://doi.org/10.1016/j.snb.2023.134832. | |
| dc.relation.references | C.A. Bravo-Sanabria, L.C. Solano-Delgado, R. Ospina-Ospina, F. Martínez-Ortega, G.E. Ramírez-Caballero, Incorporation of a dioxo-molybdenum (VI) complex into a titanium- functionalized Zr(IV)-Based metal-organic framework, Microporous and Mesoporous Materials 305 (2020) 110359. https://doi.org/10.1016/j.micromeso.2020.110359. | |
| dc.relation.references | T. Dreher, L. Geciauskas, S. Steinfeld, B. Procacci, A.C. Whitwood, J.M. Lynam, R.E. Douthwaite, A.-K. Duhme-Klair, Ligand-to-metal charge transfer facilitates photocatalytic oxygen atom transfer (OAT) with cis-dioxo molybdenum(VI)-Schiff base complexes, Chem Sci 15 (2024) 16186–16195. https://doi.org/10.1039/D4SC02784A. | |
| dc.relation.references | R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, Y. Xiong, Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment, J Am Chem Soc 135 (2013) 3200–3207. https://doi.org/10.1021/ja311739v. | |
| dc.relation.references | Y. Xiao, H. Huang, D. Yin, D. Guo, L. Mao, Z. Fu, Oxidation of anethole with hydrogen peroxide catalyzed by oxovanadium aromatic carboxylate complexes, Catal Commun 10 (2008) 29–32. https://doi.org/10.1016/j.catcom.2008.07.035. | |
| dc.relation.references | T.-F. Ramspoth, J. Flapper, K.J. van den Berg, B.L. Feringa, S.R. Harutyunyan, A highly efficient and sustainable catalyst system for terminal epoxy-carboxylic acid ring opening reactions, Green Chemistry 26 (2024) 3346–3355. https://doi.org/10.1039/D3GC04301K. | |
| dc.relation.references | C.M. Kozak, K. Ambrose, T.S. Anderson, Copolymerization of carbon dioxide and epoxides by metal coordination complexes, Coord Chem Rev 376 (2018) 565–587. https://doi.org/10.1016/j.ccr.2018.08.019. | |
| dc.relation.references | T. Willms, H. Kryk, J. Oertel, C. Hempel, F. Knitt, U. Hampel, On the thermal decomposition of tert.-butyl hydroperoxide, its sensitivity to metals and its kinetics, studied by thermoanalytic methods, Thermochim Acta 672 (2019) 25–42. https://doi.org/10.1016/j.tca.2018.12.007. | |
| dc.relation.references | S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, K. Ghani, MoO2(acac)2 supported on MCM-41: An efficient and reusable catalyst for alkene epoxidation with tert-BuOOH, Journal of the Iranian Chemical Society 5 (2008) S71–S79. https://doi.org/10.1007/BF03246492. | |
| dc.relation.references | V.R. Choudhary, D.K. Dumbre, S.K. Bhargava, Oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over nanogold supported on TiO2 and other transition and rare- earth metal oxides, Ind Eng Chem Res 48 (2009) 9471–9478. https://doi.org/10.1021/ie801883d. | |
| dc.relation.references | Z. Dehbanipour, A. Mongashti, The efficient heterogeneous catalyst containing copper (II) bis-benzothiazole complex supported on functionalized magnetic nanoparticles used for epoxidation of alkenes with tert-BuOOH, J Mol Struct 1265 (2022) 133364. https://doi.org/10.1016/j.molstruc.2022.133364. | |
| dc.relation.references | A.S. Mereshchenko, P.K. Olshin, A.M. Karimov, M.Yu. Skripkin, K.A. Burkov, Y.S. Tveryanovich, A.N. Tarnovsky, Photochemistry of copper(II) chlorocomplexes in acetonitrile: Trapping the ligand-to-metal charge transfer excited state relaxations pathways, Chem Phys Lett 615 (2014) 105–110. https://doi.org/10.1016/j.cplett.2014.10.016. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.bne | Epoxidación | spa |
| dc.subject.bne | Époxydation | eng |
| dc.subject.bne | Esencias y aceites esenciales -- Oxidación | spa |
| dc.subject.bne | Essences and essential oils -- Oxidation | eng |
| dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física | |
| dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | |
| dc.subject.decs | Fotooxidación | spa |
| dc.subject.decs | Photooxidation | eng |
| dc.subject.lemb | Catalizadores | spa |
| dc.subject.lemb | Catalysts | eng |
| dc.subject.proposal | Epoxidación del trans-anetol | spa |
| dc.subject.proposal | Activación del TBHP | spa |
| dc.subject.proposal | Activación del oxígeno molécular | spa |
| dc.subject.proposal | MOF | spa |
| dc.subject.proposal | Dioxomolibdeno (VI) | spa |
| dc.subject.proposal | Trans-anethole epoxidation | eng |
| dc.subject.proposal | TBHP activation | eng |
| dc.subject.proposal | Molecule oxygen activation | eng |
| dc.subject.proposal | Dioxomolybdenum(VI) | eng |
| dc.subject.wikidata | Óxido de molibdeno(VI) | spa |
| dc.subject.wikidata | Molybdenum trioxide | eng |
| dc.title | Generación de productos de valor agregado a partir de reacciones de fotooxidación de aceites esenciales catalizadas por centros activos de dioxomolibdeno (VI) | spa |
| dc.title.translated | Generation of value-added products from photooxidation reactions of essential oils catalyzed by dioxomolybdenum(VI) active centers. | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.awardtitle | Proyecto 201010040201: Estructuras metal-orgánicas como catalizadores sólidos para la valorización de aceites esenciales. | |
| oaire.fundername | Universidad Nacional de Colombia |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Generación de productos de valor agregado a partir de reacciones de fotooxidación de aceites esenciales catalizadas por centros activos de dioxomolibdeno (VI) .pdf
- Tamaño:
- 10.91 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

