Key factors for Business Intelligence & Analytics (BI&A) maturity in the public sector for strategical decision-making process
dc.contributor.advisor | Ramirez Angulo, Pedro Julian | |
dc.contributor.advisor | Wu, Shikui | |
dc.contributor.author | Maldonado Romero, Katherine | |
dc.contributor.researchgroup | Gestión y Organizaciones (GRIEGO) | spa |
dc.date.accessioned | 2025-04-22T19:07:07Z | |
dc.date.available | 2025-04-22T19:07:07Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Esta investigación examina los factores clave que influyen en la madurez de la Inteligencia de Negocios y Analítica (BI&A) en el sector público, especialmente en lo que respecta a los procesos de toma de decisiones estratégicas. A pesar de la reconocida importancia de la BI&A en la mejora del rendimiento organizacional, sigue existiendo una brecha significativa en la literatura académica, particularmente en los contextos del sector público. Este estudio emplea un marco teórico que destaca tres etapas del desarrollo de la BI&A: Fundamentos Iniciales, Desarrollo de Conceptos Clave y Enfoques Modernos. Utilizando un paradigma interpretativo, la investigación adopta una metodología cualitativa, centrada en estudios de caso exploratorios de dos hospitales públicos en Canadá y Colombia que han implementado iniciativas de BI&A. La recolección de datos implicó entrevistas en profundidad con administradores y usuarios, proporcionando una comprensión integral de los factores de madurez de la BI&A a través de cuatro dimensiones: datos, personas, procesos y tecnología. Los hallazgos clave subrayan la importancia de una difusión efectiva de la información y la integración de datos, abogando por una cultura de toma de decisiones basada en datos, respaldada por el liderazgo para alcanzar niveles operativos. El estudio aporta tanto perspectivas teóricas como recomendaciones prácticas destinadas a mejorar las prácticas de BI en instituciones de salud pública. Si bien la investigación proporciona hallazgos valiosos, sus limitaciones incluyen el enfoque en solo dos estudios de caso, lo que sugiere la necesidad de explorar más a fondo la BI&A en diversos contextos del sector público para mejorar la eficacia en la toma de decisiones (Texto tomado de la fuente). | spa |
dc.description.abstract | This research investigates the key factors influencing the maturity of Business Intelligence and Analytics (BI&A) in the public sector, particularly concerning strategic decision-making processes. Despite the recognized importance of BI&A in enhancing organizational performance, there remains a significant gap in academic literature, particularly in the public sector contexts. This study employs a theoretical framework that highlights three stages of BI&A development: Early Foundations, Development of Core Concepts, and Modern Approaches. Utilizing an interpretative paradigm, the research adopts a qualitative methodology, centered on exploratory case studies of two public hospitals in Canada and Colombia that have implemented BI&A initiatives. Data collection involved in-depth interviews with administrators and users, providing a comprehensive understanding of BI&A maturity factors across four dimensions: data, people, processes, and technology. Key findings underscore the importance of effective information dissemination and data integration, advocating for a culture of data-driven decision- making supported by leadership to reach operational levels. The study contributes both theoretical insights and practical recommendations aimed at enhancing BI practices within public healthcare institutions. While the research provides valuable findings, its limitations include the focus on only two case studies, suggesting the necessity for further exploration of BI&A in diverse public sector contexts to improve decision-making efficacy. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Administración | spa |
dc.description.methods | The paradigm was interpretative, the methodological choice was qualitative, and the methodological strategy was based on an exploratory case study, with a transversal time horizon and in-depth interview as the data collection technique. | spa |
dc.description.researcharea | Functional Management (Management Information Systems) | spa |
dc.format.extent | 118 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88058 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Administración | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Económicas - Maestría en Administración | spa |
dc.relation.references | Abai, N. H. Z., Yahaya, J., Deraman, A., Razak Hamdan, A., Mansor, Z., & Yah Jusoh, Y. (2019). Integrating Business Intelligence and Analytics in Managing Public Sector Performance: An Empirical Study 9(1) | spa |
dc.relation.references | Accenture. (2021). Public service leaders wanted Experts at change at a moment of truth. | spa |
dc.relation.references | Adamala, S., & Cidrin, L. (2011). Key Success Factors in Business Intelligence. Journal of Intelligence Studies in Business, 1(1). https://doi.org/10.37380/jisib.v1i1.19 | spa |
dc.relation.references | Ain, N., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success – A systematic literature review. Decision Support Systems, 125, 113113. https://doi.org/10.1016/j.dss.2019.113113 | spa |
dc.relation.references | Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29–44. https://doi.org/10.1016/j.accinf.2017.03.003 | spa |
dc.relation.references | Arefin, Md. S., Hoque, M. R., & Bao, Y. (2015). The impact of business intelligence on organization’s effectiveness: an empirical study. Journal of Systems and Information Technology, 17(3), 263–285. https://doi.org/10.1108/JSIT-09-2014-0067 | spa |
dc.relation.references | Ariyachandra, T. R., & Frolick, M. N. (2008). Critical success factors in business performance management - Striving for success. Information Systems Management, 25(2), 113–120. https://doi.org/10.1080/10580530801941504 | spa |
dc.relation.references | Arnott, D., Lizama, F., & Song, Y. (2017). Patterns of business intelligence systems use in organizations. Decision Support Systems, 97, 58–68. https://doi.org/10.1016/j.dss.2017.03.005 | spa |
dc.relation.references | Aydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen, D. (2019). Business analytics and firm performance: The mediating role of business process performance. Journal of Business Research, 96, 228–237. https://doi.org/10.1016/j.jbusres.2018.11.028 | spa |
dc.relation.references | Azvine, B., Cui, Z., Nauck, D. D., & Majeed, B. (2006a). Real Time Business Intelligence for the Adaptive Enterprise. The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06), 29–29. https://doi.org/10.1109/CEC-EEE.2006.73 | spa |
dc.relation.references | Bakos, J., & Treacy, M. (1986). Information Technology and Corporate Strategy: A research perspective. MIs Quarterly, 107–119. | spa |
dc.relation.references | Barua, A., Kriebel, C. H., & Mukhopadhyay, T. (1995). Information Technologies and Business Value: An Analytic and Empirical Investigation. Information Systems Research, 6(1), 3–23. https://doi.org/10.1287/isre.6.1.3 | spa |
dc.relation.references | Basile, L. J., Carbonara, N., Pellegrino, R., & Panniello, U. (2023). Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making. Technovation, 120, 102482. https://doi.org/10.1016/j.technovation.2022.102482 | spa |
dc.relation.references | Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT Management. Business & Information Systems Engineering, 1(3), 213–222. https://doi.org/10.1007/s12599-009-0044-5 | spa |
dc.relation.references | Benfeldt Nielsen, O. (2017). A Comprehensive Review of Data Governance Literature. IRIS: Selected Papers of the Information Systems Research Seminar in Scandinavia, 8(3), 120–133 | spa |
dc.relation.references | Bergeron, P. (2000). Regional business intelligence: the vie from Canada. Journal of Information Science, 26(3), 153–160. | spa |
dc.relation.references | Boonsiritomachai, W. , McGrath, G., & Burgess, S. (2016). Exploring business intelligence and its depth of maturity in Thai SMEs. Cogent Business & Management, 3(1), 1–17. | spa |
dc.relation.references | Brinkmann, S., Jacobsen, M. H., & Kristiansen, S. (2015). Historical Overview of Qualitative Research in the Social Sciences. In P. Levy (Ed.), The Oxford handbook of Qualitative Research (pp. 1–756). Oxford University Press. | spa |
dc.relation.references | Brooks, P., El-Gayar, O., & Sarnikar, S. (2015). A framework for developing a domain specific business intelligence maturity model: Application to healthcare. International Journal of Information Management, 35(3), 337–345. https://doi.org/10.1016/j.ijinfomgt.2015.01.011 | spa |
dc.relation.references | Burton-Jones, & Gallivan. (2007). Toward a Deeper Understanding of System Usage in Organizations: A Multilevel Perspective. MIS Quarterly, 31(4), 657. https://doi.org/10.2307/25148815 | spa |
dc.relation.references | Carvalho, J. V., Rocha, Á., van de Wetering, R., & Abreu, A. (2019). A Maturity model for hospital information systems. Journal of Business Research, 94, 388–399. https://doi.org/10.1016/j.jbusres.2017.12.012 | spa |
dc.relation.references | Cavique, L., Pombinho, P., & Correia, L. (2023). A Data Science Maturity Model Applied to Students’ Modeling. Emerging Science Journal, 7(6), 1976–1989. https://doi.org/10.28991/ESJ-2023-07-06-08 | spa |
dc.relation.references | Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88–98. https://doi.org/10.1145/1978542.1978562 | spa |
dc.relation.references | Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly: Management Information Systems, 36(4), 1165–1188. https://doi.org/10.2307/41703503 | spa |
dc.relation.references | Chen, Hsinchun., Brandt, Lawrence., Gregg, Valerie., Traunmuller, Roland., Dawes, Sharon., Hovy, Eduard., Macintosh, Ann., & Larson, C. A. (2008). Digital government : e-government research, case studies and implementation. Springer. | spa |
dc.relation.references | Chen, Z., Xu, W., Wang, B., & Yu, H. (2021). A blockchain-based preserving and sharing system for medical data privacy. Future Generation Computer Systems, 124, 338–350. https://doi.org/10.1016/j.future.2021.05.023 | spa |
dc.relation.references | Chuah, M.-H., & Wong, K.-L. (2012). Construct an Enterprise Business Intelligence Maturity Model (EBI2M) Using an Integration Approach: A Conceptual Framework. In Business Intelligence - Solution for Business Development. InTech. https://doi.org/10.5772/35457 | spa |
dc.relation.references | Chuah, M.-H., & Wong, K.-L. (2013). An Enterprise Business Intelligence Maturity Model: Case Study Approach. 2013 International Conference on IT Convergence and Security (ICITCS), 1–4. https://doi.org/10.1109/ICITCS.2013.6717802 | spa |
dc.relation.references | Cleland, D. I., & King, W. R. (1975). Competitive Business Intelligence Systems. Business Horizons, 18(6), 19–28. | spa |
dc.relation.references | Coelho, D., Miranda, J., Portela, F., Machado, J., Santos, M. F., & Abelha, A. (2016). Towards of a Business Intelligence Platform to Portuguese Misericórdias. Procedia Computer Science, 100, 762–767. https://doi.org/10.1016/j.procs.2016.09.222 | spa |
dc.relation.references | Cunha, J., Duarte, R., Guimarães, T., & Santos, M. F. (2023). OpenEHR and Business Intelligence in healthcare: an overview. Procedia Computer Science, 220, 874–879. https://doi.org/10.1016/j.procs.2023.03.118 | spa |
dc.relation.references | Davenport, T. H. (2006). Competing on Analytics. Harvard Business Review, 84(1), 98–107. www.hbr.orgorcall800-988-0886.www.hbr.org | spa |
dc.relation.references | Davenport, T. H. (2014). Big data @ work: dispelling the myths, uncovering the opportunities. Vahlen. https://doi.org/10.15358/9783800648153 | spa |
dc.relation.references | Daveport, A. (2013). Analytics 3.0. https://hbr.org/2013/12/analytics-30 | spa |
dc.relation.references | Davison, L. (2001). Measuring competitive intelligence effectiveness: Insights from the advertising industry. Competitive Intelligence Review, 12(4), 25–38. https://doi.org/10.1002/cir.1029 | spa |
dc.relation.references | Dawson, L., & Van Belle, J.-P. (2013). Critical success factors for business intelligence in the South African financial services sector. SA Journal of Information Management, 15(1). https://doi.org/10.4102/sajim.v15i1.545 | spa |
dc.relation.references | Deloitte. (2021). Government Trends 2021:Global transformative in the public sector. | spa |
dc.relation.references | Delone, W., & McLean, E. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748 | spa |
dc.relation.references | Duan, Y., Cao, G., & Edwards, J. S. (2020). Understanding the impact of business analytics on innovation. European Journal of Operational Research, 281(3), 673–686. https://doi.org/10.1016/j.ejor.2018.06.021 | spa |
dc.relation.references | Eckerson, W. (2004). Best Practices in Business Performance Management: Business and Technical Strategies. www.dw-institute.com | spa |
dc.relation.references | Elbashir, M. Z., Collier, P. A., & Davern, M. J. (2008). Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. International Journal of Accounting Information Systems, 9(3), 135–153. https://doi.org/10.1016/j.accinf.2008.03.001 | spa |
dc.relation.references | Elbashir, M. Z., Sutton, S. G., Arnold, V., & Collier, P. A. (2022). Leveraging business intelligence systems to enhance management control and business process performance in the public sector. Meditari Accountancy Research, 30(4), 914–940. https://doi.org/10.1108/MEDAR-04-2021-1287 | spa |
dc.relation.references | Gangadharan, G. R., & Swami, S. N. (2004). Business intelligence systems: design and implementation strategies. 26th International Conference on Information Technology Interfaces. | spa |
dc.relation.references | Gartner Inc. (2023). What We Do and How We Got Here | Gartner. https://www.gartner.com/en/about | spa |
dc.relation.references | Geiger, J. (2009). How to Start a Business Intelligence Program. Information Management, 19(6). | spa |
dc.relation.references | Ghosbal, S., & Kim, S. K. (1986). Building effective intelligence systems for competitive advantage. Sloan Management Review, 27, 49–58. | spa |
dc.relation.references | Gilad, B., & Gilad, T. (1985). A system approach to Business Intelligence. Business Horizons, 28(6), 65–70. | spa |
dc.relation.references | Goienetxea Uriarte, A., Ruiz Zúñiga, E., Urenda Moris, M., & Ng, A. H. C. (2017). How can decision makers be supported in the improvement of an emergency department? A simulation, optimization and data mining approach. Operations Research for Health Care, 15, 102–122. https://doi.org/10.1016/j.orhc.2017.10.003 | spa |
dc.relation.references | Golfarelli, M., Rizzi, S., & Cella, I. (2004). Beyond data warehousing. Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, 1–6. https://doi.org/10.1145/1031763.1031765 | spa |
dc.relation.references | Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. | spa |
dc.relation.references | Gudfinnsson, K., Strand, M., & Berndtsson, M. (2015). Analyzing business intelligence maturity. Journal of Decision Systems, 24, 37–54. | spa |
dc.relation.references | Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004 | spa |
dc.relation.references | Gupta, R., & Awasthy, R. (2015). Qualitative Research in Management: Methods and experiences. (R. Gupta & R. Awasthy, Eds.). SAGE. | spa |
dc.relation.references | Hannula, M., & Pirttimäki, V. (2003). Business Intelligence Empirical Study on the top 50 Finnish Companies. The Journal of American Academy of Business, 2(2), 593–599. | spa |
dc.relation.references | Hawking, P., & Sellitto, C. (2010). Business Intelligence (BI) Critical Success Factors (Vol. 4). http://aisel.aisnet.org/acis2010/4 | spa |
dc.relation.references | Hein, S. F., & Austin, W. J. (2001). Empirical and hermeneutic approaches to phenomenological research in psychology: A comparison. Psychological Methods, 4(1), 3–17. | spa |
dc.relation.references | Holsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130–141. https://doi.org/10.1016/j.dss.2014.05.013 | spa |
dc.relation.references | Hospital Universitario Nacional. (2023). Informe de Gestion | spa |
dc.relation.references | Hospital Universitario Nacional. (2024a). https://www.hun.edu.co/ | spa |
dc.relation.references | Hospital Universitario Nacional. (2024b). Portafolio de Servicios. | spa |
dc.relation.references | Hospital Universitario Nacional. (2024c). Quienes Somos. https://www.hun.edu.co/quienes-somos | spa |
dc.relation.references | IBM Corporation. (2021). 5 trends for 2022 and beyond Building persistence, resilience, and a sense of purpose. | spa |
dc.relation.references | Işik, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information and Management, 50(1), 13–23. https://doi.org/10.1016/j.im.2012.12.001 | spa |
dc.relation.references | Jourdan, Z., Rainer, R. K., & Marshall, T. E. (2008). Business intelligence: An analysis of the literature. Information Systems Management, 25(2), 121–131. https://doi.org/10.1080/10580530801941512 | spa |
dc.relation.references | Kelemen, M. L., & Rumens, N. (2008). An Introduction to Critical Management Research. SAGE Publications, Ltd. | spa |
dc.relation.references | Khaleefeh Mohammad, Muflih, Yousef Tariq, & Tariq Jawarneh. (2011). An Examination of ICT Skills Possession and Adoption amongst Faculty Members at Jordan University of Science and Technology (JUST) in Relation to Rogers’ Diffusion of Innovation Model Background for the Study. International Journal for Research in Education, 30, 29–59. | spa |
dc.relation.references | Kraus, M., Feuerriegel, S., & Oztekin, A. (2020). Deep learning in business analytics and operations research: Models, applications and managerial implications. European Journal of Operational Research, 281(3), 628–641. https://doi.org/10.1016/j.ejor.2019.09.018 | spa |
dc.relation.references | Kulkarni, U., Robles-Flores, J., & Popovič, A. (2017). Business Intelligence Capability: The Effect of Top Management and the Mediating Roles of User Participation and Analytical Decision Making Orientation. Journal of the Association for Information Systems, 18(7), 516–541. https://doi.org/10.17705/1jais.00462 | spa |
dc.relation.references | Larson, D., & Chang, V. (2016). A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management, 36(5), 700–710. https://doi.org/10.1016/j.ijinfomgt.2016.04.013 | spa |
dc.relation.references | Larson, S. (2010). Information Systems and strategic decisions: A literature Review. SAIS 2009 Proceedings. | spa |
dc.relation.references | Leavy, P. (2014). The Oxford Handbook of Qualitative Research. Oxford University Press. | spa |
dc.relation.references | Leavy, P. (2017). Research Design: Quantitative, Qualitative, Mixed Methods, Arts-Based, and Community-Based Participatory Research Approaches. | spa |
dc.relation.references | Lee, C. K. H., Tse, Y. K., Ho, G. T. S., & Chung, S. H. (2021). Uncovering insights from healthcare archives to improve operations: An association analysis for cervical cancer screening. Technological Forecasting and Social Change, 162, 120375. https://doi.org/10.1016/j.techfore.2020.120375 | spa |
dc.relation.references | Liang, T.-P., & Liu, Y.-H. (2018). Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Systems with Applications, 111, 2–10. https://doi.org/10.1016/j.eswa.2018.05.018 | spa |
dc.relation.references | Lönnqvist, A., & Pirttimäki, V. (2006). The Measurement of Business Intelligence. Information Systems Management, 23(1), 32–40. https://doi.org/10.1201/1078.10580530/45769.23.1.20061201/91770.4 | spa |
dc.relation.references | Lönnqvist, A., & Puhakka, V. (2009). The measurement of business intelligence. EDPACS, 40(3), 1–14. https://doi.org/10.1080/07366980903446611 | spa |
dc.relation.references | Lopes, J., Guimarães, T., & Santos, M. F. (2020). Adaptive Business Intelligence: A New Architectural Approach. Procedia Computer Science, 177, 540–545. https://doi.org/10.1016/j.procs.2020.10.075 | spa |
dc.relation.references | M. Olszak, C., & Ziemba, E. (2012). Critical Success Factors for Implementing Business Intelligence Systems in Small and Medium Enterprises on the Example of Upper Silesia, Poland. Interdisciplinary Journal of Information, Knowledge, and Management, 7, 129–150. https://doi.org/10.28945/1584 | spa |
dc.relation.references | Manikam, S., Sahibudin, S., & Kasinathan, V. (2019). Business intelligence addressing service quality for big data analytics in public sector. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 491–499. | spa |
dc.relation.references | Manikam, S., Sahibudin, S., & Selamat, H. (2017). Big Data Analytics Initiatives using BIMM Approach in Public Sector. Advanced Science Letters, 23(5), 4097–4100. | spa |
dc.relation.references | McAfee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution. Harvard Business Review. | spa |
dc.relation.references | McKinsey & Company. (2023). Our Research | McKinsey Global Institute | McKinsey & Company. https://www.mckinsey.com/mgi/our-research/all-research | spa |
dc.relation.references | Medeiros, M. M. de, Hoppen, N., & Maçada, A. C. G. (2020). Data science for business: benefits, challenges and opportunities. The Bottom Line, 33(2), 149–163. https://doi.org/10.1108/BL-12-2019-0132 | spa |
dc.relation.references | Meyer, G., Adomavicius, G., Johnson, P. E., Elidrisi, M., Rush, W. A., Sperl-Hillen, J. M., & O’Connor, P. J. (2014). A Machine Learning Approach to Improving Dynamic Decision Making. Information Systems Research, 25(2), 239–263. https://doi.org/10.1287/isre.2014.0513 | spa |
dc.relation.references | Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. In Information and Management (Vol. 57, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.im.2019.103237 | spa |
dc.relation.references | Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314–1324. https://doi.org/10.1016/j.eswa.2014.09.024 | spa |
dc.relation.references | Moss, T. L., & Atre, S. (2003). Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications (1st edition). Addison-Wesley Professional. | spa |
dc.relation.references | Myers, M. (1997). Qualitative Research in Information Systems. MISQ Discovery, 1–19. | spa |
dc.relation.references | Nasab, S. S., Jaryani, F., Selamat, H. Bin, & Masrom, M. (2017). Critical success factors for business intelligence system implementation in public sector organisation. International Journal of Information Systems and Change Management, 9(1), 22. https://doi.org/10.1504/IJISCM.2017.086210 | spa |
dc.relation.references | Neri, Antonio. (2022). Public sector risks losing trust as digital transformation lags | World Economic Forum. https://www.weforum.org/agenda/2022/05/the-public-sector-must-accelerate-digital-transformation-or-risk-losing-sovereignty-and-trust/ | spa |
dc.relation.references | NewVantage Partners. (2022). The Quest to Achieve Data-Driven Leadership: A Progress Report on the State of Corporate Data Initiatives EXECUTIVE SUMMARY OF FINDINGS DATA AND AI LEADERSHIP EXECUTIVE SURVEY 2022 Special Report. | spa |
dc.relation.references | NewVantage Partners. (2023). Home | NewVantage Partners. https://www.newvantage.com/about-1 | spa |
dc.relation.references | Park, Y., El Sawy, O. A., & Fiss, P. C. (2017). The Role of Business Intelligence and Communication Technologies in Organizational Agility: A Configurational Approach. Journal of the Association for Information Systems, 18(9), 648–686. https://doi.org/10.17705/1jais.00467 | spa |
dc.relation.references | Patton, M. (2002). Qualitative Research & Evaluation Methods. | spa |
dc.relation.references | Pawar, B. S., & Sharda, R. (1997). Obtaining Business Intelligence on the Internet. Long Range Planning, 30(1), 110–121. https://doi.org/10.1016/S0024-6301(96)00100-8 | spa |
dc.relation.references | Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729–739. https://doi.org/10.1016/j.dss.2012.08.017 | spa |
dc.relation.references | Power, D. J. (2007). A Brief History of Decision Support Systems (pp. 1–10). | spa |
dc.relation.references | Power, D. J., Heavin, C., McDermott, J., & Daly, M. (2018). Defining business analytics: an empirical approach. Journal of Business Analytics, 1(1), 40–53. https://doi.org/10.1080/2573234X.2018.1507605 | spa |
dc.relation.references | Press, G. (1993). Business intelligence: is it worth the investment? Competitive Intelligence Review, 4(1), 30–32. | spa |
dc.relation.references | Rajterič, I. H. (2010). OVERVIEW OF BUSINESS INTELLIGENCE MATURITY MODELS. | spa |
dc.relation.references | Ramalingam, S., Subramanian, M., Sreevallabha Reddy, A., Tarakaramu, N., Ijaz Khan, M., Abdullaev, S., & Dhahbi, S. (2024). Exploring business intelligence applications in the healthcare industry: A comprehensive analysis. Egyptian Informatics Journal, 25, 100438. https://doi.org/10.1016/j.eij.2024.100438 | spa |
dc.relation.references | Redman, T. C. (2013). Data’s credibility problem. Harvard Business Review, 91(12), 84–88. | spa |
dc.relation.references | R.M., S. P., Maddikunta, P. K. R., M., P., Koppu, S., Gadekallu, T. R., Chowdhary, C. L., & Alazab, M. (2020). An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Computer Communications, 160, 139–149. https://doi.org/10.1016/j.comcom.2020.05.048 | spa |
dc.relation.references | Rodrigues, M. H. P., Azevedo, P. A., & Reis, J. L. (2019). Business Intelligence, e-government marketing, and Information Technology to support Tax Planning decision making. Revista Ibérica de Sistemas e Tecnologias de Informação, 198–207. | spa |
dc.relation.references | Sabherwal, R., & Becerra-Fernandez, I. (2013). Business Intelligence: Practices, Technologies, and Management (1st ed.). Wiley. | spa |
dc.relation.references | Sahay, B. S., & Ranjan, J. (2008). Real time business intelligence in supply chain analytics. Information Management & Computer Security, 16(1), 28–48. https://doi.org/10.1108/09685220810862733 | spa |
dc.relation.references | SAS Institute Inc. (2018). Data Mining Using SAS ® Enterprise Miner TM : A Case Study Approach, Fourth Edition SAS ® Documentation (Fourth Edition). | spa |
dc.relation.references | Saunder, M. N. K., Lewis, P., & Thornhill, A. (2019). Research Methods for Business Students (8th Edition). Pearson. | spa |
dc.relation.references | Scandura, T. A., & Williams, E. A. (2000). RESEARCH METHODOLOGY IN MANAGEMENT: CURRENT PRACTICES, TRENDS, AND IMPLICATIONS FOR FUTURE RESEARCH. Academy of Management Journal, 43(6), 1248–1264. https://doi.org/10.2307/1556348 | spa |
dc.relation.references | Scopus. (2024, October). Analyze search results. | spa |
dc.relation.references | Shahid Ansari, Md., Jain, D., Harikumar, H., Rana, S., Gupta, S., Budhiraja, S., & Venkatesh, S. (2021). Identification of predictors and model for predicting prolonged length of stay in dengue patients. Health Care Management Science, 24(4), 786–798. https://doi.org/10.1007/s10729-021-09571-3 | spa |
dc.relation.references | Shamim, S., Zeng, J., Shariq, S. M., & Khan, Z. (2019). Role of big data management in enhancing big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Information & Management, 56(6), 103135. https://doi.org/10.1016/j.im.2018.12.003 | spa |
dc.relation.references | Siegel, C. F. (2000). Introducing Marketing Students to Business Intelligence Using Project-Based Learning on the World Wide Web. JOURNAL OF MARKETING EDUCATION, 22(2), 90–98. | spa |
dc.relation.references | Simons, H. (2009). Case Study Research in Practice. SAGE Publications, Ltd. | spa |
dc.relation.references | Simons, H. (2014). Case Study Research: In-Depth Understanding in Contex. In P. Leavy (Ed.), The Oxford Handbook of Qualitative Research (pp. 1–756). Oxford University Press. | spa |
dc.relation.references | Simsek, S., Tiahrt, T., & Dag, A. (2020). Stratifying no-show patients into multiple risk groups via a holistic data analytics-based framework. Decision Support Systems, 132, 113269. https://doi.org/10.1016/j.dss.2020.113269 | spa |
dc.relation.references | Sousa, M. J., Pesqueira, A. M., Lemos, C., Sousa, M., & Rocha, Á. (2019). Decision-Making based on Big Data Analytics for People Management in Healthcare Organizations. Journal of Medical Systems, 43(9), 290. https://doi.org/10.1007/s10916-019-1419-x | spa |
dc.relation.references | Spencer, R., Pryce, J. M., & Walsh, J. (2014). Philosophical Approaches to Qualitative Research. In P. Levy (Ed.), The Oxford handbook of Qualitative Research (pp. 1–756). Oxford University Press. | spa |
dc.relation.references | Sprague, R. H., & Watson, H. J. (1996). Decision support for management. Prentice Hall. | spa |
dc.relation.references | Stadler, J. G., Donlon, K., Siewert, J. D., Franken, T., & Lewis, N. E. (2016). Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards. Big Data, 4(2), 129–135. https://doi.org/10.1089/big.2015.0059 | spa |
dc.relation.references | Statista. (2023). Total data volume worldwide 2010-2025 | Statista. https://www.statista.com/statistics/871513/worldwide-data-created/ | spa |
dc.relation.references | Thunder Bay Regional Health Science Center: Strategic Plan 2026. (2023). | spa |
dc.relation.references | Thunder Bay Regional Health Science Centre. (2024a). Annual Report 2023 - 2024 | spa |
dc.relation.references | Thunder Bay Regional Health Science Centre. (2024b). Consolidated Financial Statements 2023-2024 | spa |
dc.relation.references | Tremblay, M. C., Hevner, A. R., & Berndt, D. J. (2012). Design of an information volatility measure for health care decision making. Decision Support Systems, 52(2), 331–341. https://doi.org/10.1016/J.DSS.2011.08.009 | spa |
dc.relation.references | Trieu, V.-H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111–124. https://doi.org/10.1016/j.dss.2016.09.019 | spa |
dc.relation.references | Trkman, P., McCormack, K., De Oliveira, M. P. V., & Ladeira, M. B. (2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318–327. https://doi.org/10.1016/j.dss.2010.03.007 | spa |
dc.relation.references | Turban, E., Sharda, R., & Delen, D. (Eds.). (2011). Decision Support And Business Intelligence Systems (9th Edition). Pearson. | spa |
dc.relation.references | United Nations. (2023). Sustainable Development Goals | United Nations Development Programme. https://www.undp.org/sustainable-development-goals | spa |
dc.relation.references | Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023 | spa |
dc.relation.references | Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010 | spa |
dc.relation.references | Watson, H. J., Abraham, D. L., Chen, D. Q., Preston, D. S., & Thomas, D. (2004). Data warehousing ROI: Justifying and assessing a data warehouse. Business Intelligence Journal, 6–17. | spa |
dc.relation.references | Watson, H., & Wixom, B. (2007). The Current State of Business Intelligence. | spa |
dc.relation.references | Williams, C. (2007). Research Methods. Journal of Business & Economic Research, 5, 65–72. | spa |
dc.relation.references | Williams, S., & Williams, N. (2004). Assesing BI Readiness: The key to BI ROI. Business Intelligence Journal, 9(3), 1–11 | spa |
dc.relation.references | Williams, S., & Williams, N. (2007). The Profit Impact of Business Intelligence (1st ed.). Morgan Kaufmann | spa |
dc.relation.references | Wixom, B., & Watson, H. (2010). The BI-Based Organization. International Journal of Business Intelligence Research, 1(1), 13–28. https://doi.org/10.4018/jbir.2010071702 | spa |
dc.relation.references | World Economic Forum. (2020). A New Paradigm for Business of Data | spa |
dc.relation.references | World Economic Forum. (2023). Davos 2022: Who’s coming and everything else you need to know | World Economic Forum. https://www.weforum.org/agenda/2022/05/davos-2022-whos-coming-and-everything-else-you-need-to-know/ | spa |
dc.relation.references | Yahaya, J., Deraman, A., Abai, N. H. Z., Mansor, Z., & Jusoh, Y. Y. (2016). Business Intelligence and Big Data Analytics for Organizational Performance Management in Public Sector: The Conceptual Framework. Advanced Science Letters, 22(8), 1919–1923. https://doi.org/10.1166/asl.2016.7741 | spa |
dc.relation.references | Yahaya, J., Hani, N., Deraman, A., & Yah, Y. (2019). The Implementation of Business Intelligence and Analytics Integration for Organizational Performance Management: A Case Study in Public Sector. International Journal of Advanced Computer Science and Applications, 10(11). https://doi.org/10.14569/IJACSA.2019.0101140 | spa |
dc.relation.references | Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. In Journal of computer information systems (Vol. 50, Issue 3). http://hdl.handle.net/10536/DRO/DU:30033043 | spa |
dc.relation.references | Yeoh, W., Koronios, A., & Gao, J. (2008). Managing the Implementation of Business Intelligence Systems. International Journal of Enterprise Information Systems, 4(3), 79–94. https://doi.org/10.4018/jeis.2008070106 | spa |
dc.relation.references | Yeoh, W., & Popovič, A. (2016). Extending the understanding of critical success factors for implementing business intelligence systems. Journal of the Association for Information Science and Technology, 67(1), 134–147. https://doi.org/10.1002/asi.23366 | spa |
dc.relation.references | Yin, R. K. (2003). Case Study Research: Design and Methods (Third, Vol. 5). SAGE Publications | spa |
dc.relation.references | Zahrullaili, M., & Noordin, M. (2018). Towards Developing a Comprehensive Business Intelligence Maturity Model for Malaysian Public Sector: Application of Mixed Methodology. Fourth International Conference on Information Retrieval and Knowledge Management, 223–228 | spa |
dc.relation.references | Azvine, B., Cui, Z., Nauck, D. D., & Majeed, B. (2006b). Real Time Business Intelligence for the Adaptive Enterprise. The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06), 29–29. https://doi.org/10.1109/CEC-EEE.2006.73 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::606 - Organizaciones | spa |
dc.subject.lemb | Negocios | spa |
dc.subject.lemb | Business | eng |
dc.subject.lemb | Sector público | spa |
dc.subject.lemb | Salud | spa |
dc.subject.proposal | business | eng |
dc.subject.proposal | intelligence | eng |
dc.subject.proposal | maturity | eng |
dc.subject.proposal | models | eng |
dc.subject.proposal | healthcare | eng |
dc.subject.proposal | sector | spa |
dc.title | Key factors for Business Intelligence & Analytics (BI&A) maturity in the public sector for strategical decision-making process | eng |
dc.title.translated | Factores clave para la madurez de Business Intelligence and Analytics (BI&A) en el sector público para el proceso de toma de decisiones estratégicas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020812025.2024.pdf
- Tamaño:
- 3.46 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Administración
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: