Key factors for Business Intelligence & Analytics (BI&A) maturity in the public sector for strategical decision-making process

dc.contributor.advisorRamirez Angulo, Pedro Julian
dc.contributor.advisorWu, Shikui
dc.contributor.authorMaldonado Romero, Katherine
dc.contributor.researchgroupGestión y Organizaciones (GRIEGO)spa
dc.date.accessioned2025-04-22T19:07:07Z
dc.date.available2025-04-22T19:07:07Z
dc.date.issued2024
dc.description.abstractEsta investigación examina los factores clave que influyen en la madurez de la Inteligencia de Negocios y Analítica (BI&A) en el sector público, especialmente en lo que respecta a los procesos de toma de decisiones estratégicas. A pesar de la reconocida importancia de la BI&A en la mejora del rendimiento organizacional, sigue existiendo una brecha significativa en la literatura académica, particularmente en los contextos del sector público. Este estudio emplea un marco teórico que destaca tres etapas del desarrollo de la BI&A: Fundamentos Iniciales, Desarrollo de Conceptos Clave y Enfoques Modernos. Utilizando un paradigma interpretativo, la investigación adopta una metodología cualitativa, centrada en estudios de caso exploratorios de dos hospitales públicos en Canadá y Colombia que han implementado iniciativas de BI&A. La recolección de datos implicó entrevistas en profundidad con administradores y usuarios, proporcionando una comprensión integral de los factores de madurez de la BI&A a través de cuatro dimensiones: datos, personas, procesos y tecnología. Los hallazgos clave subrayan la importancia de una difusión efectiva de la información y la integración de datos, abogando por una cultura de toma de decisiones basada en datos, respaldada por el liderazgo para alcanzar niveles operativos. El estudio aporta tanto perspectivas teóricas como recomendaciones prácticas destinadas a mejorar las prácticas de BI en instituciones de salud pública. Si bien la investigación proporciona hallazgos valiosos, sus limitaciones incluyen el enfoque en solo dos estudios de caso, lo que sugiere la necesidad de explorar más a fondo la BI&A en diversos contextos del sector público para mejorar la eficacia en la toma de decisiones (Texto tomado de la fuente).spa
dc.description.abstractThis research investigates the key factors influencing the maturity of Business Intelligence and Analytics (BI&A) in the public sector, particularly concerning strategic decision-making processes. Despite the recognized importance of BI&A in enhancing organizational performance, there remains a significant gap in academic literature, particularly in the public sector contexts. This study employs a theoretical framework that highlights three stages of BI&A development: Early Foundations, Development of Core Concepts, and Modern Approaches. Utilizing an interpretative paradigm, the research adopts a qualitative methodology, centered on exploratory case studies of two public hospitals in Canada and Colombia that have implemented BI&A initiatives. Data collection involved in-depth interviews with administrators and users, providing a comprehensive understanding of BI&A maturity factors across four dimensions: data, people, processes, and technology. Key findings underscore the importance of effective information dissemination and data integration, advocating for a culture of data-driven decision- making supported by leadership to reach operational levels. The study contributes both theoretical insights and practical recommendations aimed at enhancing BI practices within public healthcare institutions. While the research provides valuable findings, its limitations include the focus on only two case studies, suggesting the necessity for further exploration of BI&A in diverse public sector contexts to improve decision-making efficacy.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Administraciónspa
dc.description.methodsThe paradigm was interpretative, the methodological choice was qualitative, and the methodological strategy was based on an exploratory case study, with a transversal time horizon and in-depth interview as the data collection technique.spa
dc.description.researchareaFunctional Management (Management Information Systems)spa
dc.format.extent118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88058
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Administraciónspa
dc.relation.referencesAbai, N. H. Z., Yahaya, J., Deraman, A., Razak Hamdan, A., Mansor, Z., & Yah Jusoh, Y. (2019). Integrating Business Intelligence and Analytics in Managing Public Sector Performance: An Empirical Study 9(1)spa
dc.relation.referencesAccenture. (2021). Public service leaders wanted Experts at change at a moment of truth.spa
dc.relation.referencesAdamala, S., & Cidrin, L. (2011). Key Success Factors in Business Intelligence. Journal of Intelligence Studies in Business, 1(1). https://doi.org/10.37380/jisib.v1i1.19spa
dc.relation.referencesAin, N., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success – A systematic literature review. Decision Support Systems, 125, 113113. https://doi.org/10.1016/j.dss.2019.113113spa
dc.relation.referencesAppelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29–44. https://doi.org/10.1016/j.accinf.2017.03.003spa
dc.relation.referencesArefin, Md. S., Hoque, M. R., & Bao, Y. (2015). The impact of business intelligence on organization’s effectiveness: an empirical study. Journal of Systems and Information Technology, 17(3), 263–285. https://doi.org/10.1108/JSIT-09-2014-0067spa
dc.relation.referencesAriyachandra, T. R., & Frolick, M. N. (2008). Critical success factors in business performance management - Striving for success. Information Systems Management, 25(2), 113–120. https://doi.org/10.1080/10580530801941504spa
dc.relation.referencesArnott, D., Lizama, F., & Song, Y. (2017). Patterns of business intelligence systems use in organizations. Decision Support Systems, 97, 58–68. https://doi.org/10.1016/j.dss.2017.03.005spa
dc.relation.referencesAydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen, D. (2019). Business analytics and firm performance: The mediating role of business process performance. Journal of Business Research, 96, 228–237. https://doi.org/10.1016/j.jbusres.2018.11.028spa
dc.relation.referencesAzvine, B., Cui, Z., Nauck, D. D., & Majeed, B. (2006a). Real Time Business Intelligence for the Adaptive Enterprise. The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06), 29–29. https://doi.org/10.1109/CEC-EEE.2006.73spa
dc.relation.referencesBakos, J., & Treacy, M. (1986). Information Technology and Corporate Strategy: A research perspective. MIs Quarterly, 107–119.spa
dc.relation.referencesBarua, A., Kriebel, C. H., & Mukhopadhyay, T. (1995). Information Technologies and Business Value: An Analytic and Empirical Investigation. Information Systems Research, 6(1), 3–23. https://doi.org/10.1287/isre.6.1.3spa
dc.relation.referencesBasile, L. J., Carbonara, N., Pellegrino, R., & Panniello, U. (2023). Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making. Technovation, 120, 102482. https://doi.org/10.1016/j.technovation.2022.102482spa
dc.relation.referencesBecker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT Management. Business & Information Systems Engineering, 1(3), 213–222. https://doi.org/10.1007/s12599-009-0044-5spa
dc.relation.referencesBenfeldt Nielsen, O. (2017). A Comprehensive Review of Data Governance Literature. IRIS: Selected Papers of the Information Systems Research Seminar in Scandinavia, 8(3), 120–133spa
dc.relation.referencesBergeron, P. (2000). Regional business intelligence: the vie from Canada. Journal of Information Science, 26(3), 153–160.spa
dc.relation.referencesBoonsiritomachai, W. , McGrath, G., & Burgess, S. (2016). Exploring business intelligence and its depth of maturity in Thai SMEs. Cogent Business & Management, 3(1), 1–17.spa
dc.relation.referencesBrinkmann, S., Jacobsen, M. H., & Kristiansen, S. (2015). Historical Overview of Qualitative Research in the Social Sciences. In P. Levy (Ed.), The Oxford handbook of Qualitative Research (pp. 1–756). Oxford University Press.spa
dc.relation.referencesBrooks, P., El-Gayar, O., & Sarnikar, S. (2015). A framework for developing a domain specific business intelligence maturity model: Application to healthcare. International Journal of Information Management, 35(3), 337–345. https://doi.org/10.1016/j.ijinfomgt.2015.01.011spa
dc.relation.referencesBurton-Jones, & Gallivan. (2007). Toward a Deeper Understanding of System Usage in Organizations: A Multilevel Perspective. MIS Quarterly, 31(4), 657. https://doi.org/10.2307/25148815spa
dc.relation.referencesCarvalho, J. V., Rocha, Á., van de Wetering, R., & Abreu, A. (2019). A Maturity model for hospital information systems. Journal of Business Research, 94, 388–399. https://doi.org/10.1016/j.jbusres.2017.12.012spa
dc.relation.referencesCavique, L., Pombinho, P., & Correia, L. (2023). A Data Science Maturity Model Applied to Students’ Modeling. Emerging Science Journal, 7(6), 1976–1989. https://doi.org/10.28991/ESJ-2023-07-06-08spa
dc.relation.referencesChaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88–98. https://doi.org/10.1145/1978542.1978562spa
dc.relation.referencesChen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly: Management Information Systems, 36(4), 1165–1188. https://doi.org/10.2307/41703503spa
dc.relation.referencesChen, Hsinchun., Brandt, Lawrence., Gregg, Valerie., Traunmuller, Roland., Dawes, Sharon., Hovy, Eduard., Macintosh, Ann., & Larson, C. A. (2008). Digital government : e-government research, case studies and implementation. Springer.spa
dc.relation.referencesChen, Z., Xu, W., Wang, B., & Yu, H. (2021). A blockchain-based preserving and sharing system for medical data privacy. Future Generation Computer Systems, 124, 338–350. https://doi.org/10.1016/j.future.2021.05.023spa
dc.relation.referencesChuah, M.-H., & Wong, K.-L. (2012). Construct an Enterprise Business Intelligence Maturity Model (EBI2M) Using an Integration Approach: A Conceptual Framework. In Business Intelligence - Solution for Business Development. InTech. https://doi.org/10.5772/35457spa
dc.relation.referencesChuah, M.-H., & Wong, K.-L. (2013). An Enterprise Business Intelligence Maturity Model: Case Study Approach. 2013 International Conference on IT Convergence and Security (ICITCS), 1–4. https://doi.org/10.1109/ICITCS.2013.6717802spa
dc.relation.referencesCleland, D. I., & King, W. R. (1975). Competitive Business Intelligence Systems. Business Horizons, 18(6), 19–28.spa
dc.relation.referencesCoelho, D., Miranda, J., Portela, F., Machado, J., Santos, M. F., & Abelha, A. (2016). Towards of a Business Intelligence Platform to Portuguese Misericórdias. Procedia Computer Science, 100, 762–767. https://doi.org/10.1016/j.procs.2016.09.222spa
dc.relation.referencesCunha, J., Duarte, R., Guimarães, T., & Santos, M. F. (2023). OpenEHR and Business Intelligence in healthcare: an overview. Procedia Computer Science, 220, 874–879. https://doi.org/10.1016/j.procs.2023.03.118spa
dc.relation.referencesDavenport, T. H. (2006). Competing on Analytics. Harvard Business Review, 84(1), 98–107. www.hbr.orgorcall800-988-0886.www.hbr.orgspa
dc.relation.referencesDavenport, T. H. (2014). Big data @ work: dispelling the myths, uncovering the opportunities. Vahlen. https://doi.org/10.15358/9783800648153spa
dc.relation.referencesDaveport, A. (2013). Analytics 3.0. https://hbr.org/2013/12/analytics-30spa
dc.relation.referencesDavison, L. (2001). Measuring competitive intelligence effectiveness: Insights from the advertising industry. Competitive Intelligence Review, 12(4), 25–38. https://doi.org/10.1002/cir.1029spa
dc.relation.referencesDawson, L., & Van Belle, J.-P. (2013). Critical success factors for business intelligence in the South African financial services sector. SA Journal of Information Management, 15(1). https://doi.org/10.4102/sajim.v15i1.545spa
dc.relation.referencesDeloitte. (2021). Government Trends 2021:Global transformative in the public sector.spa
dc.relation.referencesDelone, W., & McLean, E. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748spa
dc.relation.referencesDuan, Y., Cao, G., & Edwards, J. S. (2020). Understanding the impact of business analytics on innovation. European Journal of Operational Research, 281(3), 673–686. https://doi.org/10.1016/j.ejor.2018.06.021spa
dc.relation.referencesEckerson, W. (2004). Best Practices in Business Performance Management: Business and Technical Strategies. www.dw-institute.comspa
dc.relation.referencesElbashir, M. Z., Collier, P. A., & Davern, M. J. (2008). Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. International Journal of Accounting Information Systems, 9(3), 135–153. https://doi.org/10.1016/j.accinf.2008.03.001spa
dc.relation.referencesElbashir, M. Z., Sutton, S. G., Arnold, V., & Collier, P. A. (2022). Leveraging business intelligence systems to enhance management control and business process performance in the public sector. Meditari Accountancy Research, 30(4), 914–940. https://doi.org/10.1108/MEDAR-04-2021-1287spa
dc.relation.referencesGangadharan, G. R., & Swami, S. N. (2004). Business intelligence systems: design and implementation strategies. 26th International Conference on Information Technology Interfaces.spa
dc.relation.referencesGartner Inc. (2023). What We Do and How We Got Here | Gartner. https://www.gartner.com/en/aboutspa
dc.relation.referencesGeiger, J. (2009). How to Start a Business Intelligence Program. Information Management, 19(6).spa
dc.relation.referencesGhosbal, S., & Kim, S. K. (1986). Building effective intelligence systems for competitive advantage. Sloan Management Review, 27, 49–58.spa
dc.relation.referencesGilad, B., & Gilad, T. (1985). A system approach to Business Intelligence. Business Horizons, 28(6), 65–70.spa
dc.relation.referencesGoienetxea Uriarte, A., Ruiz Zúñiga, E., Urenda Moris, M., & Ng, A. H. C. (2017). How can decision makers be supported in the improvement of an emergency department? A simulation, optimization and data mining approach. Operations Research for Health Care, 15, 102–122. https://doi.org/10.1016/j.orhc.2017.10.003spa
dc.relation.referencesGolfarelli, M., Rizzi, S., & Cella, I. (2004). Beyond data warehousing. Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, 1–6. https://doi.org/10.1145/1031763.1031765spa
dc.relation.referencesGreenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619.spa
dc.relation.referencesGudfinnsson, K., Strand, M., & Berndtsson, M. (2015). Analyzing business intelligence maturity. Journal of Decision Systems, 24, 37–54.spa
dc.relation.referencesGupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004spa
dc.relation.referencesGupta, R., & Awasthy, R. (2015). Qualitative Research in Management: Methods and experiences. (R. Gupta & R. Awasthy, Eds.). SAGE.spa
dc.relation.referencesHannula, M., & Pirttimäki, V. (2003). Business Intelligence Empirical Study on the top 50 Finnish Companies. The Journal of American Academy of Business, 2(2), 593–599.spa
dc.relation.referencesHawking, P., & Sellitto, C. (2010). Business Intelligence (BI) Critical Success Factors (Vol. 4). http://aisel.aisnet.org/acis2010/4spa
dc.relation.referencesHein, S. F., & Austin, W. J. (2001). Empirical and hermeneutic approaches to phenomenological research in psychology: A comparison. Psychological Methods, 4(1), 3–17.spa
dc.relation.referencesHolsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130–141. https://doi.org/10.1016/j.dss.2014.05.013spa
dc.relation.referencesHospital Universitario Nacional. (2023). Informe de Gestionspa
dc.relation.referencesHospital Universitario Nacional. (2024a). https://www.hun.edu.co/spa
dc.relation.referencesHospital Universitario Nacional. (2024b). Portafolio de Servicios.spa
dc.relation.referencesHospital Universitario Nacional. (2024c). Quienes Somos. https://www.hun.edu.co/quienes-somosspa
dc.relation.referencesIBM Corporation. (2021). 5 trends for 2022 and beyond Building persistence, resilience, and a sense of purpose.spa
dc.relation.referencesIşik, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information and Management, 50(1), 13–23. https://doi.org/10.1016/j.im.2012.12.001spa
dc.relation.referencesJourdan, Z., Rainer, R. K., & Marshall, T. E. (2008). Business intelligence: An analysis of the literature. Information Systems Management, 25(2), 121–131. https://doi.org/10.1080/10580530801941512spa
dc.relation.referencesKelemen, M. L., & Rumens, N. (2008). An Introduction to Critical Management Research. SAGE Publications, Ltd.spa
dc.relation.referencesKhaleefeh Mohammad, Muflih, Yousef Tariq, & Tariq Jawarneh. (2011). An Examination of ICT Skills Possession and Adoption amongst Faculty Members at Jordan University of Science and Technology (JUST) in Relation to Rogers’ Diffusion of Innovation Model Background for the Study. International Journal for Research in Education, 30, 29–59.spa
dc.relation.referencesKraus, M., Feuerriegel, S., & Oztekin, A. (2020). Deep learning in business analytics and operations research: Models, applications and managerial implications. European Journal of Operational Research, 281(3), 628–641. https://doi.org/10.1016/j.ejor.2019.09.018spa
dc.relation.referencesKulkarni, U., Robles-Flores, J., & Popovič, A. (2017). Business Intelligence Capability: The Effect of Top Management and the Mediating Roles of User Participation and Analytical Decision Making Orientation. Journal of the Association for Information Systems, 18(7), 516–541. https://doi.org/10.17705/1jais.00462spa
dc.relation.referencesLarson, D., & Chang, V. (2016). A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management, 36(5), 700–710. https://doi.org/10.1016/j.ijinfomgt.2016.04.013spa
dc.relation.referencesLarson, S. (2010). Information Systems and strategic decisions: A literature Review. SAIS 2009 Proceedings.spa
dc.relation.referencesLeavy, P. (2014). The Oxford Handbook of Qualitative Research. Oxford University Press.spa
dc.relation.referencesLeavy, P. (2017). Research Design: Quantitative, Qualitative, Mixed Methods, Arts-Based, and Community-Based Participatory Research Approaches.spa
dc.relation.referencesLee, C. K. H., Tse, Y. K., Ho, G. T. S., & Chung, S. H. (2021). Uncovering insights from healthcare archives to improve operations: An association analysis for cervical cancer screening. Technological Forecasting and Social Change, 162, 120375. https://doi.org/10.1016/j.techfore.2020.120375spa
dc.relation.referencesLiang, T.-P., & Liu, Y.-H. (2018). Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Systems with Applications, 111, 2–10. https://doi.org/10.1016/j.eswa.2018.05.018spa
dc.relation.referencesLönnqvist, A., & Pirttimäki, V. (2006). The Measurement of Business Intelligence. Information Systems Management, 23(1), 32–40. https://doi.org/10.1201/1078.10580530/45769.23.1.20061201/91770.4spa
dc.relation.referencesLönnqvist, A., & Puhakka, V. (2009). The measurement of business intelligence. EDPACS, 40(3), 1–14. https://doi.org/10.1080/07366980903446611spa
dc.relation.referencesLopes, J., Guimarães, T., & Santos, M. F. (2020). Adaptive Business Intelligence: A New Architectural Approach. Procedia Computer Science, 177, 540–545. https://doi.org/10.1016/j.procs.2020.10.075spa
dc.relation.referencesM. Olszak, C., & Ziemba, E. (2012). Critical Success Factors for Implementing Business Intelligence Systems in Small and Medium Enterprises on the Example of Upper Silesia, Poland. Interdisciplinary Journal of Information, Knowledge, and Management, 7, 129–150. https://doi.org/10.28945/1584spa
dc.relation.referencesManikam, S., Sahibudin, S., & Kasinathan, V. (2019). Business intelligence addressing service quality for big data analytics in public sector. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 491–499.spa
dc.relation.referencesManikam, S., Sahibudin, S., & Selamat, H. (2017). Big Data Analytics Initiatives using BIMM Approach in Public Sector. Advanced Science Letters, 23(5), 4097–4100.spa
dc.relation.referencesMcAfee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution. Harvard Business Review.spa
dc.relation.referencesMcKinsey & Company. (2023). Our Research | McKinsey Global Institute | McKinsey & Company. https://www.mckinsey.com/mgi/our-research/all-researchspa
dc.relation.referencesMedeiros, M. M. de, Hoppen, N., & Maçada, A. C. G. (2020). Data science for business: benefits, challenges and opportunities. The Bottom Line, 33(2), 149–163. https://doi.org/10.1108/BL-12-2019-0132spa
dc.relation.referencesMeyer, G., Adomavicius, G., Johnson, P. E., Elidrisi, M., Rush, W. A., Sperl-Hillen, J. M., & O’Connor, P. J. (2014). A Machine Learning Approach to Improving Dynamic Decision Making. Information Systems Research, 25(2), 239–263. https://doi.org/10.1287/isre.2014.0513spa
dc.relation.referencesMikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. In Information and Management (Vol. 57, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.im.2019.103237spa
dc.relation.referencesMoro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314–1324. https://doi.org/10.1016/j.eswa.2014.09.024spa
dc.relation.referencesMoss, T. L., & Atre, S. (2003). Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications (1st edition). Addison-Wesley Professional.spa
dc.relation.referencesMyers, M. (1997). Qualitative Research in Information Systems. MISQ Discovery, 1–19.spa
dc.relation.referencesNasab, S. S., Jaryani, F., Selamat, H. Bin, & Masrom, M. (2017). Critical success factors for business intelligence system implementation in public sector organisation. International Journal of Information Systems and Change Management, 9(1), 22. https://doi.org/10.1504/IJISCM.2017.086210spa
dc.relation.referencesNeri, Antonio. (2022). Public sector risks losing trust as digital transformation lags | World Economic Forum. https://www.weforum.org/agenda/2022/05/the-public-sector-must-accelerate-digital-transformation-or-risk-losing-sovereignty-and-trust/spa
dc.relation.referencesNewVantage Partners. (2022). The Quest to Achieve Data-Driven Leadership: A Progress Report on the State of Corporate Data Initiatives EXECUTIVE SUMMARY OF FINDINGS DATA AND AI LEADERSHIP EXECUTIVE SURVEY 2022 Special Report.spa
dc.relation.referencesNewVantage Partners. (2023). Home | NewVantage Partners. https://www.newvantage.com/about-1spa
dc.relation.referencesPark, Y., El Sawy, O. A., & Fiss, P. C. (2017). The Role of Business Intelligence and Communication Technologies in Organizational Agility: A Configurational Approach. Journal of the Association for Information Systems, 18(9), 648–686. https://doi.org/10.17705/1jais.00467spa
dc.relation.referencesPatton, M. (2002). Qualitative Research & Evaluation Methods.spa
dc.relation.referencesPawar, B. S., & Sharda, R. (1997). Obtaining Business Intelligence on the Internet. Long Range Planning, 30(1), 110–121. https://doi.org/10.1016/S0024-6301(96)00100-8spa
dc.relation.referencesPopovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729–739. https://doi.org/10.1016/j.dss.2012.08.017spa
dc.relation.referencesPower, D. J. (2007). A Brief History of Decision Support Systems (pp. 1–10).spa
dc.relation.referencesPower, D. J., Heavin, C., McDermott, J., & Daly, M. (2018). Defining business analytics: an empirical approach. Journal of Business Analytics, 1(1), 40–53. https://doi.org/10.1080/2573234X.2018.1507605spa
dc.relation.referencesPress, G. (1993). Business intelligence: is it worth the investment? Competitive Intelligence Review, 4(1), 30–32.spa
dc.relation.referencesRajterič, I. H. (2010). OVERVIEW OF BUSINESS INTELLIGENCE MATURITY MODELS.spa
dc.relation.referencesRamalingam, S., Subramanian, M., Sreevallabha Reddy, A., Tarakaramu, N., Ijaz Khan, M., Abdullaev, S., & Dhahbi, S. (2024). Exploring business intelligence applications in the healthcare industry: A comprehensive analysis. Egyptian Informatics Journal, 25, 100438. https://doi.org/10.1016/j.eij.2024.100438spa
dc.relation.referencesRedman, T. C. (2013). Data’s credibility problem. Harvard Business Review, 91(12), 84–88.spa
dc.relation.referencesR.M., S. P., Maddikunta, P. K. R., M., P., Koppu, S., Gadekallu, T. R., Chowdhary, C. L., & Alazab, M. (2020). An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Computer Communications, 160, 139–149. https://doi.org/10.1016/j.comcom.2020.05.048spa
dc.relation.referencesRodrigues, M. H. P., Azevedo, P. A., & Reis, J. L. (2019). Business Intelligence, e-government marketing, and Information Technology to support Tax Planning decision making. Revista Ibérica de Sistemas e Tecnologias de Informação, 198–207.spa
dc.relation.referencesSabherwal, R., & Becerra-Fernandez, I. (2013). Business Intelligence: Practices, Technologies, and Management (1st ed.). Wiley.spa
dc.relation.referencesSahay, B. S., & Ranjan, J. (2008). Real time business intelligence in supply chain analytics. Information Management & Computer Security, 16(1), 28–48. https://doi.org/10.1108/09685220810862733spa
dc.relation.referencesSAS Institute Inc. (2018). Data Mining Using SAS ® Enterprise Miner TM : A Case Study Approach, Fourth Edition SAS ® Documentation (Fourth Edition).spa
dc.relation.referencesSaunder, M. N. K., Lewis, P., & Thornhill, A. (2019). Research Methods for Business Students (8th Edition). Pearson.spa
dc.relation.referencesScandura, T. A., & Williams, E. A. (2000). RESEARCH METHODOLOGY IN MANAGEMENT: CURRENT PRACTICES, TRENDS, AND IMPLICATIONS FOR FUTURE RESEARCH. Academy of Management Journal, 43(6), 1248–1264. https://doi.org/10.2307/1556348spa
dc.relation.referencesScopus. (2024, October). Analyze search results.spa
dc.relation.referencesShahid Ansari, Md., Jain, D., Harikumar, H., Rana, S., Gupta, S., Budhiraja, S., & Venkatesh, S. (2021). Identification of predictors and model for predicting prolonged length of stay in dengue patients. Health Care Management Science, 24(4), 786–798. https://doi.org/10.1007/s10729-021-09571-3spa
dc.relation.referencesShamim, S., Zeng, J., Shariq, S. M., & Khan, Z. (2019). Role of big data management in enhancing big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Information & Management, 56(6), 103135. https://doi.org/10.1016/j.im.2018.12.003spa
dc.relation.referencesSiegel, C. F. (2000). Introducing Marketing Students to Business Intelligence Using Project-Based Learning on the World Wide Web. JOURNAL OF MARKETING EDUCATION, 22(2), 90–98.spa
dc.relation.referencesSimons, H. (2009). Case Study Research in Practice. SAGE Publications, Ltd.spa
dc.relation.referencesSimons, H. (2014). Case Study Research: In-Depth Understanding in Contex. In P. Leavy (Ed.), The Oxford Handbook of Qualitative Research (pp. 1–756). Oxford University Press.spa
dc.relation.referencesSimsek, S., Tiahrt, T., & Dag, A. (2020). Stratifying no-show patients into multiple risk groups via a holistic data analytics-based framework. Decision Support Systems, 132, 113269. https://doi.org/10.1016/j.dss.2020.113269spa
dc.relation.referencesSousa, M. J., Pesqueira, A. M., Lemos, C., Sousa, M., & Rocha, Á. (2019). Decision-Making based on Big Data Analytics for People Management in Healthcare Organizations. Journal of Medical Systems, 43(9), 290. https://doi.org/10.1007/s10916-019-1419-xspa
dc.relation.referencesSpencer, R., Pryce, J. M., & Walsh, J. (2014). Philosophical Approaches to Qualitative Research. In P. Levy (Ed.), The Oxford handbook of Qualitative Research (pp. 1–756). Oxford University Press.spa
dc.relation.referencesSprague, R. H., & Watson, H. J. (1996). Decision support for management. Prentice Hall.spa
dc.relation.referencesStadler, J. G., Donlon, K., Siewert, J. D., Franken, T., & Lewis, N. E. (2016). Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards. Big Data, 4(2), 129–135. https://doi.org/10.1089/big.2015.0059spa
dc.relation.referencesStatista. (2023). Total data volume worldwide 2010-2025 | Statista. https://www.statista.com/statistics/871513/worldwide-data-created/spa
dc.relation.referencesThunder Bay Regional Health Science Center: Strategic Plan 2026. (2023).spa
dc.relation.referencesThunder Bay Regional Health Science Centre. (2024a). Annual Report 2023 - 2024spa
dc.relation.referencesThunder Bay Regional Health Science Centre. (2024b). Consolidated Financial Statements 2023-2024spa
dc.relation.referencesTremblay, M. C., Hevner, A. R., & Berndt, D. J. (2012). Design of an information volatility measure for health care decision making. Decision Support Systems, 52(2), 331–341. https://doi.org/10.1016/J.DSS.2011.08.009spa
dc.relation.referencesTrieu, V.-H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111–124. https://doi.org/10.1016/j.dss.2016.09.019spa
dc.relation.referencesTrkman, P., McCormack, K., De Oliveira, M. P. V., & Ladeira, M. B. (2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318–327. https://doi.org/10.1016/j.dss.2010.03.007spa
dc.relation.referencesTurban, E., Sharda, R., & Delen, D. (Eds.). (2011). Decision Support And Business Intelligence Systems (9th Edition). Pearson.spa
dc.relation.referencesUnited Nations. (2023). Sustainable Development Goals | United Nations Development Programme. https://www.undp.org/sustainable-development-goalsspa
dc.relation.referencesVidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023spa
dc.relation.referencesWaller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010spa
dc.relation.referencesWatson, H. J., Abraham, D. L., Chen, D. Q., Preston, D. S., & Thomas, D. (2004). Data warehousing ROI: Justifying and assessing a data warehouse. Business Intelligence Journal, 6–17.spa
dc.relation.referencesWatson, H., & Wixom, B. (2007). The Current State of Business Intelligence.spa
dc.relation.referencesWilliams, C. (2007). Research Methods. Journal of Business & Economic Research, 5, 65–72.spa
dc.relation.referencesWilliams, S., & Williams, N. (2004). Assesing BI Readiness: The key to BI ROI. Business Intelligence Journal, 9(3), 1–11spa
dc.relation.referencesWilliams, S., & Williams, N. (2007). The Profit Impact of Business Intelligence (1st ed.). Morgan Kaufmannspa
dc.relation.referencesWixom, B., & Watson, H. (2010). The BI-Based Organization. International Journal of Business Intelligence Research, 1(1), 13–28. https://doi.org/10.4018/jbir.2010071702spa
dc.relation.referencesWorld Economic Forum. (2020). A New Paradigm for Business of Dataspa
dc.relation.referencesWorld Economic Forum. (2023). Davos 2022: Who’s coming and everything else you need to know | World Economic Forum. https://www.weforum.org/agenda/2022/05/davos-2022-whos-coming-and-everything-else-you-need-to-know/spa
dc.relation.referencesYahaya, J., Deraman, A., Abai, N. H. Z., Mansor, Z., & Jusoh, Y. Y. (2016). Business Intelligence and Big Data Analytics for Organizational Performance Management in Public Sector: The Conceptual Framework. Advanced Science Letters, 22(8), 1919–1923. https://doi.org/10.1166/asl.2016.7741spa
dc.relation.referencesYahaya, J., Hani, N., Deraman, A., & Yah, Y. (2019). The Implementation of Business Intelligence and Analytics Integration for Organizational Performance Management: A Case Study in Public Sector. International Journal of Advanced Computer Science and Applications, 10(11). https://doi.org/10.14569/IJACSA.2019.0101140spa
dc.relation.referencesYeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. In Journal of computer information systems (Vol. 50, Issue 3). http://hdl.handle.net/10536/DRO/DU:30033043spa
dc.relation.referencesYeoh, W., Koronios, A., & Gao, J. (2008). Managing the Implementation of Business Intelligence Systems. International Journal of Enterprise Information Systems, 4(3), 79–94. https://doi.org/10.4018/jeis.2008070106spa
dc.relation.referencesYeoh, W., & Popovič, A. (2016). Extending the understanding of critical success factors for implementing business intelligence systems. Journal of the Association for Information Science and Technology, 67(1), 134–147. https://doi.org/10.1002/asi.23366spa
dc.relation.referencesYin, R. K. (2003). Case Study Research: Design and Methods (Third, Vol. 5). SAGE Publicationsspa
dc.relation.referencesZahrullaili, M., & Noordin, M. (2018). Towards Developing a Comprehensive Business Intelligence Maturity Model for Malaysian Public Sector: Application of Mixed Methodology. Fourth International Conference on Information Retrieval and Knowledge Management, 223–228spa
dc.relation.referencesAzvine, B., Cui, Z., Nauck, D. D., & Majeed, B. (2006b). Real Time Business Intelligence for the Adaptive Enterprise. The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06), 29–29. https://doi.org/10.1109/CEC-EEE.2006.73spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::606 - Organizacionesspa
dc.subject.lembNegociosspa
dc.subject.lembBusinesseng
dc.subject.lembSector públicospa
dc.subject.lembSaludspa
dc.subject.proposalbusinesseng
dc.subject.proposalintelligenceeng
dc.subject.proposalmaturityeng
dc.subject.proposalmodelseng
dc.subject.proposalhealthcareeng
dc.subject.proposalsectorspa
dc.titleKey factors for Business Intelligence & Analytics (BI&A) maturity in the public sector for strategical decision-making processeng
dc.title.translatedFactores clave para la madurez de Business Intelligence and Analytics (BI&A) en el sector público para el proceso de toma de decisiones estratégicasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020812025.2024.pdf
Tamaño:
3.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Administración

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: