Diseño e implementación de un detector de frecuencia cardiaca y respiratoria utilizando un sensor de banda milimétrica (mmWave)
dc.contributor.advisor | Cangrejo Aljure, Libia Denisse | spa |
dc.contributor.author | Quevedo Gutierrez, Fernando Andres | spa |
dc.contributor.researchgroup | ANGeoSc | spa |
dc.date.accessioned | 2025-01-24T17:10:03Z | |
dc.date.available | 2025-01-24T17:10:03Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | Este trabajo detalla el diseño e implementación de un dispositivo capaz de capturar signos vitales de manera inalámbrica, como la frecuencia cardiaca y respiratoria mediante la tecnología de radar conocida como Frecuencia Modulada de Onda Continua (FMCW). A lo largo de este documento, se presentará un reconocimiento teórico de esta tecnología y, mediante una revisión sistemática de la literatura, se identificarán diferentes metodologías de procesamiento de señales abordadas por otros investigadores, las cuales servirán de base para el diseño del sensor de signos vitales. Una vez identificadas, estas metodologías se implementarán utilizando MATLAB. Por último, se realizarán varias mediciones para contrastar el rendimiento del sensor FMCW implementado con el rendimiento de un monitor de signos vitales certificado (Texto tomado de la fuente). | spa |
dc.description.abstract | This document details the design and implementation of a device capable of wirelessly capturing vital signs using radar technology known as FMCW. Throughout this document, a theoretical recognition of this technology will be presented, and through a systematic literature review, different signal processing methodologies addressed by other researchers will be identified, which will serve as the basis for the design of the vital signs’ sensor. Once identified, these methodologies will be implemented using MATLAB. Finally, several measures will be taken to contrast the performance of the implemented FMCW sensor with the performance of a certified vital signs monitor. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Telecomunicaciones | spa |
dc.description.methods | Dada la necesidad del grupo de investigación AnGeosc de capturar y diagnosticar los signos vitales relacionados con el COVID-19, y debido que el trabajo propuesto en la construcción de este prototipo contempla el registro de los signos vitales de frecuencia cardiaca y respiratoria, se observa que estas son características de una investigación con enfoque cuantitativo. Así lo plantea Hernández-Sampieri et al. (2) cuando exponen que algunas de las características de este enfoque son reflejar la necesidad de medir o estimar magnitudes y representarlas mediante números. Adicionalmente, este trabajo propone cumplir los objetivos mediante el diseño de un procedimiento secuencial en el cual cada una de las fases diseñadas precede a la siguiente, tal como lo muestra la Figura 1. Esto se ajusta con la definición explicada por Hernández-Sampieri et al. (2) quienes indican que el enfoque cuantitativo cumple con unos procesos secuenciales y probatorios. El estudio propuesto pretende establecer las diferentes propiedades y características de los sensores de radar FMCW en la captura de los signos vitales de frecuencias cardiaca y respiratoria. De esta manera, el alcance de este estudio es descriptivo. Según lo argumentado por Hernández-Sampieri et al. (2), este tipo de alcance consiste en describir un contexto recolectando información de manera independiente sobre las variables a las que se refieren. Teniendo en cuenta que este estudio solo desea medir las variables físicas relacionadas con los signos vitales mencionados, en ningún momento se desea interferir o manipular estas observaciones, únicamente se capturarán, digitalizarán y procesarán. Así, este es un estudio no experimental. Hernández-Sampieri et al. (2) definen dichos estudios como unos en los que no se varía de forma intencional las variables independientes para ver su efecto sobre otras variables, es decir, el estudio solo se limita a observar fenómenos en su contexto natural. | spa |
dc.description.researcharea | Señales e información | spa |
dc.format.extent | 97 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87375 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones | spa |
dc.relation.references | Rahaman MdS. Home Quarantine Guidelines: COVID 19 Panorama. SSRN Electronic Journal. 2020;(2005). | spa |
dc.relation.references | Sampieri R, Collado C, Lucio P. Metodologia de la investigaci6n. Edici6n McGraw-Hill. 1996. | spa |
dc.relation.references | Shaffer, David. Kigin, Colleen. Kaput, James and Gazelle G. What is digital medicine? Studies in health technology and informatics. 2002;80:195–204. | spa |
dc.relation.references | Jeong I, Bychkov D, Searson PC. Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Transactions on Biomedical Engineering. 2018;PP(c):1. | spa |
dc.relation.references | Ashisha GR, Mary XA, Rajasekaran K, Jegan R. IoT-Based Continuous Bedside Monitoring Systems. Springer Singapore; 1882. 401–410 p. | spa |
dc.relation.references | Hill JR, Caldwell BS, Downs M, Miller MJ, Hill JR, Caldwell BS, et al. Remote physiological monitoring in a Mars Analog field setting. IISE Transactions on Healthcare Systems Engineering. 2019;8(3):227–36. | spa |
dc.relation.references | Skolnik M. Radar Handbook. Vol. 7, Journal of Headache and Pain. Mc Graw Hill; 2006. p. 1–2. | spa |
dc.relation.references | Mahafza BR. Radar Systems Analysis and Design using MATLAB. 2013. | spa |
dc.relation.references | Richards MA, Scheer JA, Holm WA. Principles of modern radar: Basic principles. Principles of Modern Radar: Basic Principles. 2010. 1–925 p. | spa |
dc.relation.references | Zhao Y, Sark V, Krstic M, Grass E. Multi-Target Vital Signs Remote Monitoring Using mmWave FMCW Radar. In: Proceedings of 2021 IEEE Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 290–5. | spa |
dc.relation.references | Soumya A, Krishna Mohan C, Cenkeramaddi LR. Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review. Vol. 23, Sensors (Basel, Switzerland). 2023. | spa |
dc.relation.references | Alizadeh M, Shaker G, Almeida JCM De, Morita PP, Safavi-Naeini S. Remote monitoring of human vital signs using mm-Wave FMCW Radar. IEEE Access. 2019;7:54958–68. | spa |
dc.relation.references | Du Y, Yang A, Li B, Zhang F. 77GHz Millimeter-Wave Radar Vital Signs Detection Based on GA-VMD Algorithm. | spa |
dc.relation.references | Wang Z, Li C, Tu S, Liu Z. A Novel Rotary FMCW Radar for Omnidirectional Multiperson Localization and Vital Signs Detection. IEEE Transactions on Microwave Theory and Techniques. 2024 Mar 1;72(3):1886–99. | spa |
dc.relation.references | Hu Y, Toda T. Remote Vital Signs Measurement of Indoor Walking Persons Using mm-Wave FMCW Radar. IEEE Access. 2022;10:78219–30. | spa |
dc.relation.references | Hong Li, Ming. Ju Wu, Kuan. Lung Yang C. Multi-target Monitoring for Distinguishable Range Improvement Using a Hybrid FMCW-FSK 24 GHz Radar. In: International Symposium on Antennas and Propagation (ISAP). Institute of Electrical and Electronics Engineers Inc.; 2021. | spa |
dc.relation.references | Li Y, Zheng K, Gu C. A Fast and Efficient FMCW Radar Phase Extraction Technique at Ultra-Narrow Range for Vital Sign Detection. In: IEEE MTT-S International Microwave Symposium Digest. Institute of Electrical and Electronics Engineers Inc.; 2024. p. 1057–60. | spa |
dc.relation.references | Kitchenham, Barbara. Charters S. Guidelines for performing systematic literature reviews in software engineering. Technical report, Ver 23 EBSE Technical Report EBSE. 2007;(January 2007):1–57. | spa |
dc.relation.references | Liu, Kang. Ding, Chengxu. Zhang Yuanhui. A Coarse-to-Fine Robust Estimation of FMCW Radar Signal for Vital Sign Detection. In: A Coarse-to-Fine Robust Estimation of FMCW Radar Signal for Vital Sign Detection. IEEE; 2020. | spa |
dc.relation.references | Kang W, Ke F, Chang YC. Non-Contact Realtime Vital Signs Monitoring System Based on Millimeter Wave FMCW Radar. In: 2023 9th International Conference on Computer and Communications, ICCC 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 1594–9. | spa |
dc.relation.references | Su G, Petrov N, Yarovoy A. Dynamic Estimation of Vital Signs with mm-wave FMCW Radar. EuRAD 2020 - 2020 17th European Radar Conference. 2021;(January):206–9. | spa |
dc.relation.references | Zhou M, Liu Y, Wu S, Wang C, Chen Z, Li H. A Novel Scheme of High-Precision Heart Rate Detection with a mm-Wave FMCW Radar. IEEE Access. 2023;11:85118–36. | spa |
dc.relation.references | Joshi M, Moadi AK, Theilmann P, Fathy AE. Compact Millimeter Wave Radar for Vital Sign Detection: A Comprehensive Study. In: 2023 International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 114–7. | spa |
dc.relation.references | Joshi M, Moadi AK, Theilmann P, Fathy AE. Compact Millimeter Wave Radar for Vital Sign Detection: A Comprehensive Study. In: 2023 International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 114–7. | spa |
dc.relation.references | Jung D, Cheon S, Kim D, Yoon J, Kim B. Short-Time Remote Heart Rate Measurement Based on mmWave FMCW Radar Frame Structure. IEEE Antennas and Wireless Propagation Letters. 2023 Jun 1;22(6):1301–5. | spa |
dc.relation.references | Kebe M, Gadhafi R, Mohammad B, Sanduleanu M, Saleh H, Al-qutayri M. Human vital signs detection methods and potential using radars: A review. Sensors (Switzerland). 2020;20(5). | spa |
dc.relation.references | Gupta K, Srinivas MB, Soumya J, Pandey OJ, Cenkeramaddi LR. Automatic Contact-Less Monitoring of Breathing Rate and Heart Rate Utilizing the Fusion of mmWave Radar and Camera Steering System. IEEE Sensors Journal. 2022 Nov 15;22(22):22179–91. | spa |
dc.relation.references | Chang, Hsin-Yuan and Lin, Chia-Hung and Lin, Yu-Chien and Chung, Wei-Ho and Lee TS. DL-Aided NOMP: a Deep Learning-Based Vital Sign Estimating Scheme Using FMCW Radar. In IEEE; 2020. p. 1–7. | spa |
dc.relation.references | Chang, Hsin-Yuan and Lin, Chia-Hung and Lin, Yu-Chien and Chung, Wei-Ho and Lee TS. DL-Aided NOMP: a Deep Learning-Based Vital Sign Estimating Scheme Using FMCW Radar. In IEEE; 2020. p. 1–7. | spa |
dc.relation.references | Qu L, Liu C, Yang T, Sun Y. Vital Sign Detection of FMCW Radar Based on Improved Adaptive Parameter Variational Mode Decomposition. IEEE Sensors Journal. 2023 Oct 15;23(20):25048–60. | spa |
dc.relation.references | Liu W, Zhang S, Yang J, Wang M. Human Vital Signs Detection Based on Millimeter Wave Radar and Digital Filtering. In: 2023 IEEE International Conference on Image Processing and Computer Applications, ICIPCA 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 569–74. | spa |
dc.relation.references | Liu H, Wang Y, Zhou M, Wang D, Xie L, Nie W. Millimeter-wave Radar Vital Signs Detection Based on Modified Independent Component Analysis. In: 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation, APCAP 2023 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2023. | spa |
dc.relation.references | Ni C, Pan J, Du D, Yang X, Shi C, Chen S, et al. Accurate Heart Rate Measurement Across Various Body Postures Using FMCW Radar. IEEE Transactions on Instrumentation and Measurement. 2024;73:1–13. | spa |
dc.relation.references | Upadhyay BR, Baral AB, Torlak M. Vital Sign Detection via Angular and Range Measurements With mmWave MIMO Radars: Algorithms and Trials. IEEE Access. 2022;10:106017–32. | spa |
dc.relation.references | Senigagliesi L, Ricciuti M, Ciattaglia G, De Santis A, Gambi E. Comparison of Video and Radar Contactless Heart Rate Measurements. In: Communications in Computer and Information Science. Springer Science and Business Media Deutschland GmbH; 2021. p. 96–113. | spa |
dc.relation.references | Ma S, Xue W, Chen K, Wang Z. Radar Vital Signs Detection Method Based on Variational Mode Decomposition and Wavelet Transform. In: Proceeding - 2021 China Automation Congress, CAC 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 7469–74. | spa |
dc.relation.references | Chen Y, Yuan J, Wang G, Sun H. An Improved Non-contact Vital Signs Detection Algorithm. In: 2023 3rd International Symposium on Computer Technology and Information Science, ISCTIS 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 356–9. | spa |
dc.relation.references | Wang K, Zhao Y, Fang J. Separation and Denoising of Respiratory Heartbeat Signals based on Millimeter-wave Radar. In: 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems, ICPICS 2022. Institute of Electrical and Electronics Engineers Inc.; 2022. p. 950–4. | spa |
dc.relation.references | Sun L, Huang S, Li Y, Gu C, Pan H, Hong H, et al. Remote Measurement of Human Vital Signs Based on Joint-Range Adaptive EEMD. IEEE Access. 2020;8:68514–24. | spa |
dc.relation.references | Zhao Y, Wang K, Gao J. Accurate 77-GHz Millimeter-Wave Radar Noncontact Vital Sign Detection Using the Optimized Variational Mode Decomposition Algorithm. Journal of Signal Processing Systems. 2023 Nov 1;95(11):1297–310. | spa |
dc.relation.references | Zhao, Peijun Zhao. Lu, Chris Xiaoxuan . Wang, Bing . Chen, Changhao . Xie, Linhai . Wang M., Trigoni, Niki. Markham Andrew. Heart Rate Sensing with a Robot Mounted mmWave Radar. 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020; | spa |
dc.relation.references | Han K, Hong S. Phase-extraction method with multiple frequencies of FMCW radar for human body motion tracking. IEEE Microwave and Wireless Components Letters. 2020 Sep 1;30(9):927–30. | spa |
dc.relation.references | Rajab KZ, Wu B, Alizadeh P, Alomainy A. Multi-target tracking and activity classification with millimeter-wave radar. Applied Physics Letters. 2021 Jul 19;119(3). | spa |
dc.relation.references | Wu J, Dahnoun N. A health monitoring system with posture estimation and heart rate detection based on millimeter-wave radar. Microprocessors and Microsystems. 2022 Oct 1;94. | spa |
dc.relation.references | Ahmed S, Park J, Cho SH. Effects of Receiver Beamforming for Vital Sign Measurements Using FMCW Radar at Various Distances and Angles. Sensors. 2022 Sep 1;22(18). | spa |
dc.relation.references | Lv W, Zhao Y, Zhang W, Liu W, Hu A, Miao J. Remote Measurement of Short-Term Heart Rate with Narrow Beam Millimeter Wave Radar. IEEE Access. 2021;9:165049–58. | spa |
dc.relation.references | Antolinos E, García-Rial F, Hernández C, Montesano D, Godino-Llorente JI, Grajal J. Cardiopulmonary activity monitoring using millimeterwave radars. Remote Sensing. 2020 Jul 1;12(14). | spa |
dc.relation.references | Zhang W, Li N, Wang D, Yao J, Wang L, Li W, et al. A Compact Commercialization-Aimed 120 GHz Radar Module for Vital Sign Detection. In: 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation, APCAP 2022 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2022. | spa |
dc.relation.references | Lv W, He W, Lin X, Miao J. Non-contact monitoring of human vital signs using fmcw millimeter wave radar in the 120 ghz band. Sensors. 2021 Apr 2;21(8). | spa |
dc.relation.references | Albrecht, Nils. Weiland, Jan. Langer, Dominik. Wenzel, Marvin . Koelpin Alexander. Characterization of the Influence of Clothing and Other Materials on Human Vital Sign Sensing using mmWave Radar. IEEE; 2023. | spa |
dc.relation.references | Wenzel M, Tegowski B, Albrecht NC, Langer D, Koelpin A. Heart Sound Detection Using an Ultra-Wideband FMCW Radar. In: IEEE MTT-S International Microwave Symposium Digest. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 1192–5. | spa |
dc.relation.references | Cardillo E, Li C, Caddemi A. Vital Sign Detection and Radar Self-Motion Cancellation through Clutter Identification. IEEE Transactions on Microwave Theory and Techniques. 2021 Mar 1;69(3):1932–42. | spa |
dc.relation.references | Johnson J, Kim C, Shay O. Arterial Pulse Measurement with Wearable Millimeter Wave Device. | spa |
dc.relation.references | Liu Y, Li N, Zhang Y, Cheng J, Ma T, Yue W. Research on non-contact vital sign detection based on 24 GHz FMCW radar. In: 2023 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2023 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2023. | spa |
dc.relation.references | Liu J, Li Y, Li C, Gu C, Mao JF. Accurate Measurement of Human Vital Signs with Linear FMCW Radars under Proximity Stationary Clutters. IEEE Transactions on Biomedical Circuits and Systems. 2021 Dec 1;15(6). | spa |
dc.relation.references | Xiong J, Hong H, Sun J, Zhu X. Vital Signs Detection With Difference Beamforming and Orthogonal Projection Filter Based on SIMO-FMCW Radar. In: IEEE Radio and Wireless Symposium, RWS. IEEE Computer Society; 2022. p. 34–6. | spa |
dc.relation.references | Rohman BPA, Rudrappa MT, Shargorodskyy M, Herschel R, Nishimoto M. Moving Human Respiration Sign Detection Using mm-Wave Radar via Motion Path Reconstruction. In: Proceeding - 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications: Managing the Impact of Covid-19 Pandemic: Together Facing Challenges Through Electronics and ICTs, ICRAMET 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 196–200. | spa |
dc.relation.references | Li Y, Gu C, Mao J. A Robust and Accurate FMCW MIMO Radar Vital Sign Monitoring Framework With 4-D Cardiac Beamformer and Heart-Rate Trace Carving Technique. IEEE Transactions on Microwave Theory and Techniques. 2024; | spa |
dc.relation.references | Ahmad WA, Lu JH, Sutbas B, Ng HJ, Kissinger D. Contactless Vital Signs Monitoring by mmWave Efficient Modulatorless Tracking Radar. In: 2021 IEEE Global Conference on Artificial Intelligence and Internet of Things, GCAIoT 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 142–6. | spa |
dc.relation.references | Liu X, Li X, Wang J. Extraction of Vital Signs from FMCW Millimeter Wave Radar Based on All-phase FFT. 2022. | spa |
dc.relation.references | Gao Z, Ali L, Wang C, Liu R, Wang C, Qian C, et al. Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection. Sensors. 2022 Oct 1;22(19). | spa |
dc.relation.references | Liu L, Zhang J, Qu Y, Zhang S, Xiao W. mmRH: Noncontact Vital Sign Detection With an FMCW mm-Wave Radar. IEEE Sensors Journal. 2023 Apr 15;23(8):8856–66. | spa |
dc.relation.references | Hsieh SH, Tsay YJ, Chen YW, Huang YY, Yu YX. Integrating FMCW Radar and RGBD Sensor for Vital Sign Detection. In: 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, ECBIOS 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 175–7. | spa |
dc.relation.references | Shen, Mengjiao. Tan Kai. Detection of Breathing in Multi-Person Scenario With MIMO-FMCW Radar. In: 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China) : 15-18 Aug, 2023. [IEEE]; 2023. | spa |
dc.relation.references | Liu H, Wang Y, Zhou M, Wang D, Xie L, Nie W. Millimeter-wave Radar Vital Signs Detection Based on Modified Independent Component Analysis. In: 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation, APCAP 2023 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2023. | spa |
dc.relation.references | Zhao Y, Sark V, Krstic M, Grass E. Multi-Target Vital Signs Remote Monitoring Using mmWave FMCW Radar. In: Proceedings of 2021 IEEE Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 290–5. | spa |
dc.relation.references | Chen GZ, Yang CL. Real-Time Random Body Movement Cancellation and Heart Rate Extraction by RLMD-based Algorithm in an FMCW Radar System. In: Asia-Pacific Microwave Conference Proceedings, APMC. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 309–11. | spa |
dc.relation.references | Wang Z, Li C, Tu S, Liu Z. A Novel Rotary FMCW Radar for Omnidirectional Multiperson Localization and Vital Signs Detection. IEEE Trans Microw Theory Tech. 2024 Mar 1;72(3):1886–99. | spa |
dc.relation.references | Wei JY, Huang L, Tong PP, Tan B, Bai J, Wu ZJ. Realtime Multi-target Vital Sign Detection with 79GHz FMCW Radar. In: 2020 IEEE MTT-S International Wireless Symposium, IWS 2020 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2020. | spa |
dc.relation.references | Zhao Y, Sark V, Krstic M, Grass E. Multi-Target Vital Signs Remote Monitoring Using mmWave FMCW Radar. In: Proceedings of 2021 IEEE Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 290–5. | spa |
dc.relation.references | Li G, Ge Y, Wang Y, Chen Q, Wang G. Detection of Human Breathing in Non-Line-of-Sight Region by Using mmWave FMCW Radar. IEEE Trans Instrum Meas. 2022;71. | spa |
dc.relation.references | Liu L, Zhang J, Qu Y, Zhang S, Xiao W. mmRH: Noncontact Vital Sign Detection With an FMCW mm-Wave Radar. IEEE Sensors Journal. 2023 Apr 15;23(8):8856–66. | spa |
dc.relation.references | Wang FK, Juan PH, Chian DM, Wen CK. Multiple Range and Vital Sign Detection Based on Single-Conversion Self-Injection-Locked Hybrid Mode Radar with a Novel Frequency Estimation Algorithm. IEEE Transactions on Microwave Theory and Techniques. 2020 May 1;68(5):1908–20. | spa |
dc.relation.references | Li T, Shou H, Deng Y, Zhou Y, Shi C, Chen P. A Novel Heart Rate Estimation Method Exploiting Heartbeat Second Harmonic Reconstruction Via Millimeter Wave Radar. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2023. | spa |
dc.relation.references | Lin PY, Chang HY, Chang RY, Chung WH. Wireless Multi-Target Vital Sign Detection Using SIMO-FMCW Radar in Multipath Propagation Environments. In: IEEE Vehicular Technology Conference. Institute of Electrical and Electronics Engineers Inc.; 2023. | spa |
dc.relation.references | Xia ZL, Huai Wang X, Wei HB, Xu Y. Detection of Vital Signs Based on Variational Mode Decomposition Using FMCW Radar. In: 2021 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2021 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2021. | spa |
dc.relation.references | Fang GW, Huang CY, Yang CL. Switch-Based Low Intermediate Frequency System of a Vital Sign Radar for Simultaneous Multitarget and Multidirectional Detection. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2020 Dec 1;4(4):265–72. | spa |
dc.relation.references | Lu L, Ma X, Fan X, Hao R, Li L, Fan X. Vibrating Clutter Interference Removal Technique in FMCW Radar for Mechanical Vibration and Vital Sign Detection. In: 2021 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. | spa |
dc.relation.references | Zhu, Fang. Wang, Kuangda. Wu Ke. Doppler Radar Techniques for Vital Signs Detection Featuring Noise Cancellation. In: 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC),. IEEE; 2019. | spa |
dc.relation.references | Sun L, Bai G, Luo C, Huang S. A Large-scale Movement Path Fitting Based Phase Compensation Algorithm for FMCW Radar Vital Sign Detection. In: 2024 IEEE Radio and Wireless Week, RWW 2024 - 2024 IEEE Topical Conference on Wireless Sensors and Sensor Networks, WiSNeT 2024. Institute of Electrical and Electronics Engineers Inc.; 2024. p. 37–40. | spa |
dc.relation.references | Lv W, Zhao Y, Zhang W, Liu W, Hu A, Miao J. Remote Measurement of Short-Term Heart Rate with Narrow Beam Millimeter Wave Radar. IEEE Access. 2021;9:165049–58. | spa |
dc.relation.references | Srihari P, Vandana GS. Experimental Study of 24GHz Sense2Gol Pulse Radar Sensor for Human Vital Sign Measurement. In: Proceedings of CONECCT 2021: 7th IEEE International Conference on Electronics, Computing and Communication Technologies. Institute of Electrical and Electronics Engineers Inc.; 2021. | spa |
dc.relation.references | Kebe M, Gadhafi R, Mohammad B, Sanduleanu M, Saleh H, Al-qutayri M. Human vital signs detection methods and potential using radars: A review. Sensors (Switzerland). 2020;20(5). | spa |
dc.relation.references | Merdjanovska E, Rashkovska A. Comprehensive survey of computational ECG analysis: Databases, methods and applications. Expert Systems with Applications. 2022;203(April):117206. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::003 - Sistemas | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | RECEPTORES DE FRECUENCIA MODULADA | spa |
dc.subject.lemb | Radio frequency modulation - receivers and reception | eng |
dc.subject.lemb | COMPLEJOS CW | spa |
dc.subject.lemb | Cw complexes | eng |
dc.subject.lemb | SIGNOS VITALES-MEDICIONES | spa |
dc.subject.lemb | Vital Signs - Measurement | eng |
dc.subject.other | Biosensores | spa |
dc.subject.other | Biosensors | eng |
dc.subject.other | Detectores | spa |
dc.subject.other | Detectors | eng |
dc.subject.proposal | mmWave radar | spa |
dc.subject.proposal | FMCW (Frequency Modulated Continuous Wave) | spa |
dc.subject.proposal | IWR6843, FFT (Fast Fourier Transform) | spa |
dc.subject.proposal | Signal Vitals Detection | eng |
dc.subject.proposal | Heart Rate Detection | eng |
dc.subject.proposal | Breathing Rate Detection | eng |
dc.title | Diseño e implementación de un detector de frecuencia cardiaca y respiratoria utilizando un sensor de banda milimétrica (mmWave) | spa |
dc.title.translated | Design and implementation of a heart rate and respiratory rate detector using a millimeter-wave (mmWave) sensor | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Diseño e implementación de un detector de frecuencia cardiaca y respiratoria utilizando un sensor de banda milimétrica (mmWave).pdf
- Tamaño:
- 2.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Telecomunicaciones
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: