Biolixiviación de níquel a partir de un saprolito garnierítico usando dos cepas de Acidithiobacillus thiooxidans
| dc.contributor.advisor | Márquez Godoy, Marco Antonio | spa |
| dc.contributor.author | Escobar Cuéllar, Andrea | spa |
| dc.date.accessioned | 2020-02-10T19:45:32Z | spa |
| dc.date.available | 2020-02-10T19:45:32Z | spa |
| dc.date.issued | 2019 | spa |
| dc.description.abstract | This study evaluated independently two commercial strains of Acidithiobacillus thiooxidans, in the nickel bioleaching of a high grade laterite saprolite type sample, from the Cerro Matoso mine in Montelíbano, Colombia. The sample was characterized using spectroscopic methods such as XRF, XRD, FTIR and SEM-EDS. It was determined that the main mineral phase in the sample was quartz, accompanied by phyllosilicates from the serpentine group and to a lesser extent inosilicates from the amphibole group. Its composition revealed a high nickel oxide concentration of 14.7%. Initially, the adaptation of the strains was carried out using progressive concentrations of the ore, from 2% to 16% pulp density (w/v). The highest nickel solubilization was 39.2% in a period of 12 days with 2% ore pulp and these values were reduced by increasing the solids concentration. During the process the formation of precipitates with different concentrations of nickel and other ions was observed, this was a consequence of low acid concentrations in the medium. Subsequently, different variables were evaluated in order to increase the extraction of nickel from the ore. Experiments were performed with distinct initial pH in the medium, the residence time of the ore was increased and various elemental sulfur concentrations of 2, 3, 4 and 6% were tested. No significant differences were found in nickel leached with initial pH of 2, 1.7 and 1.4, but between these and the initial pH of 2.8 used in the adaptation phase. By increasing the residence time of the mineral to 30 days, the bacteria can reduce the pH to values that accelerate nickel dissolution, which was 54%. Additionally, it was found that the increase in elemental sulfur percentages has significant effects on the production speed of sulfuric acid, allowing extracting up to 91% of nickel from the ore. Through the tests carried out, it was determined that the sample exhibited a more refractory behavior. The leaching kinetics of nickel does not correspond to that reported for saprolite and resembles more to limonite leaching kinetics. On the other hand, this study allowed creating a high nickel resistance in both A. thiooxidans strains, reaching concentrations of 14.2 g/L Ni2+ in solution. Finally, FTIR spectra executed during the experiments, showed a reduction in the intensity of bands associated with octahedral and tetrahedral components with re-precipitation of amorphous silica. The high nickel leaching achieved in this study, the adaptation of the strains to strong stress conditions and the low expenditure in reagents and energy, constitute a potential biotechnology applicable to the processing of this type of ores as well as other materials. | spa |
| dc.description.abstract | Este estudio evaluó independientemente dos cepas comerciales de Acidithiobacillus thiooxidans, en la biolixiviación de níquel de una muestra de laterita de alto grado tipo saprolito, proveniente de la mina Cerro Matoso en Montelíbano, Colombia. La muestra se caracterizó utilizando métodos espectroscópicos como FRX, DRX, FTIR y SEM-EDS. Se determinó que la principal fase mineral que la compone es cuarzo, acompañado de filosilicatos del grupo de la serpentina y en menor medida inosilicatos anfíboles. Su composición reveló una alta concentración de óxido de níquel de 14.7%. Inicialmente, se realizó una adaptación de las cepas utilizando concentraciones progresivas del mineral, desde 2% hasta 16% de pulpa (p/v). La mayor solubilización de níquel fue de 39.2% en un período de 12 días con 2% de pulpa mineral y estos valores se redujeron al aumentar la concentración de sólidos. Durante este proceso se observó la formación de precipitados con diferentes concentraciones de níquel y otros iones, producto de bajas concentraciones de ácido en el medio. Posteriormente, se evaluaron distintas variables con el fin de incrementar la extracción de níquel del mineral. Se realizaron ensayos con diferentes pH de inicio en el medio, se incrementó el tiempo de residencia del mineral y se probaron diferentes concentraciones de azufre elemental de 2, 3, 4 y 6%. No se encontraron diferencias significativas en el níquel extraído con pH de inicio 2, 1.7 y 1.4, pero sí entre éstos y el pH inicial de 2.8 usado en la fase de adaptación. Al incrementar el tiempo de residencia del mineral a 30 días, las bacterias pueden reducir el pH a valores que aceleran la solubilización de níquel, la cual fue del 54%. Adicionalmente, se encontró que el aumento en los porcentajes de azufre elemental, tiene efectos significativos sobre la velocidad de producción de ácido sulfúrico, permitiendo extraer hasta el 91% del níquel. Mediante los diversos ensayos realizados, se determinó que la muestra presentaba un comportamiento más refractario. La cinética de solubilización del níquel, no corresponde con l la que se reporta para las lateritas tipo saprolito y se asemeja más a la cinética de la limonita. Por otro lado, este estudio generó una alta resistencia al níquel en ambas cepas de A. thiooxidans, el cual alcanzó concentraciones de 14.2 g/L en solución. Finalmente, los espectros FTIR realizados durante los diferentes ensayos, mostraron reducción en la intensidad de bandas asociadas a componentes octaédricos y tetraédricos con re-precipitación de sílice amorfo. La alta lixiviación de níquel lograda en este estudio, la adaptación de las cepas a fuertes condiciones de estrés y el bajo gasto en reactivos y energía, constituyen una potencial biotecnología aplicable al procesamiento de este tipo de minerales así como al de otros materiales | spa |
| dc.description.additional | Maestría en Ciencias - Biotecología Línea de Investigación: Biomineralogía y biohidrometalurgia Grupo de Investigación: Minería Aplicada y Bioprocesos | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 135 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/75574 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Escuela de biociencias | spa |
| dc.relation.references | Acevedo F. 2000. The use of reactors in biomining processes. Electronic J. Biotechnol., 3 (3), 184-194. | spa |
| dc.relation.references | Acevedo F. 2002. Present and future of bioleaching in developing countries. Electronic J. Biotechnol., 5 (2), 196-199. | spa |
| dc.relation.references | Alibhai, K.A.K., Dudeney, A.W.L., Leak, D.J., Agatzini, S., Tzeferis, P. 1993. Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiol. Rev., 11, 87-96. | spa |
| dc.relation.references | American Public Health Association (APHA). 1999. Standard methods for the examination of water and wastewater. 20th Edition. APHA, Washington. 1325 p. | spa |
| dc.relation.references | Behera, S.K., Panda, P.P., Singh, S., Pradhan, N., Sukla, L.B., Mishra, B.K. 2011. Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens. Int. Biodeterior. Biodegrad., 65, 1035-1042. | spa |
| dc.relation.references | Blake, R.C., Shute, E.A., Howard, G.T. 1994. Solubilization of minerals by bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite and sulfur. Appl. Environ. Microbiol., 60 (9), 3349-3357. | spa |
| dc.relation.references | Brandl, H. 2001. Microbial leaching of metals. En: Rehm, H.-J., Reed, G. (Eds.), Biotechnology set. Second edition. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 192-224. | spa |
| dc.relation.references | Brock, T.D., Gustafson, J. 1976. Ferric iron reduction by sulfur and iron-oxidizing bacteria. Appl. Environ. Microbiol., 32 (4), 567-571. | spa |
| dc.relation.references | Cameron, R.A., Lastra, R., Mortazavi, S., Gould, W.D., Thibault, Y, Bedard, P.L., et al. 2009. Elevated-pH bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at 5 to 45 °C. Hydrometallurgy. 99, 77-83. | spa |
| dc.relation.references | Chou, L., Wollast, R. 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci., 285, 963-993. | spa |
| dc.relation.references | Coto, O., Galizia, F., Hernández, I., Marrero, J., Donati, E. 2008. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy. 94, 18-22. | spa |
| dc.relation.references | Crundwell, F.K. 2014. The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II Application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy. 149, 265-275. | spa |
| dc.relation.references | Cruz, F.L.S., Oliveira, V.A., Guimarães, D., Souza, A.D., Leão, V.A. 2010. Hightemperature bioleaching of nickel sulfides: thermodynamic and kinetic implications. Hydrometallurgy. 105, 103-109. | spa |
| dc.relation.references | Dean, J.A. 1992. Lange's handbook of chemistry (14a ed.). McGraw-Hill, New York. Deutsch, W.J., Siegel, R. 1997. Groundwater Geochemistry: Fundamentals and Applications to Contamination. Lewis Publishers, Florida, pp. 29-38. | spa |
| dc.relation.references | Dopson, M., Baker-Austin, C., Koppineedi, P.R., Bond, P.L. 2003. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic microorganisms. Microbiology. 149, 1959-1970 | spa |
| dc.relation.references | Du Plessis, C.A., Slabbert, W., Hallberg, K.B., Johnson, D.B. 2011. Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy. 109, 221-229. | spa |
| dc.relation.references | Fuchs, Y., Linares, J., Mellini, M. 1998. Mossbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Phys. Chem. Minerals. 26, 111-115. | spa |
| dc.relation.references | García, O., Bigham, J.M., Moretto, R., Tuovinen, O.H. 1997. Products of oxidative dissolution of a complex sulfide mineral system by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. En: Watling HR. The bioleaching of nickel-copper sulfides. Hydrometallurgy. 2008; 91, 70-88. | spa |
| dc.relation.references | Ghoorah, M., Dlugogorski, B.Z., Oskierski, H.C., Kennedy, E.M. 2014. Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide. Miner. Eng., 59, 17-30. | spa |
| dc.relation.references | Gramp, J.P., Jones, F.S., Bigham, J.M., Tuovinen, O.H. 2008. Monovalent cation concentrations determine the types of Fe(III) hydroxysulfate precipitates formed in bioleach solutions. Hydrometallurgy. 94, 29-33. | spa |
| dc.relation.references | Harvey, T.J., Van Der Merwe, W., Afewu, K. 2002. The application of the GeoBiotics GEOCOAT® biooxidation technology for the treatment of sphalerite at Kumba resources Rosh Pinah mine. Miner. Eng., 15, 823-829 | spa |
| dc.relation.references | Heinzle, T., Miller, D., Nagel, V. 1999. Results of an integrated pilot plant operation using the BioNIC® process to produce nickel. En: Watling, H.R. The bioleaching of nickel-copper sulfides. Hydrometallurgy. 2008; 91, 70-88. | spa |
| dc.relation.references | Hellmann, R., Wirth, R., Daval, D., Barnes, J-P., Penisson, J-M., Tisserand, D., et al. 2012. Unifying natural and laboratory chemical weathering with interfacial dissolutionreprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chemical Geology. 294–295, 203–216 | spa |
| dc.relation.references | Johnson, D.B. 2008. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates. Trans. Nonferrous Met. Soc. China., 18, 1367-1373 | spa |
| dc.relation.references | Kebukawa, Y., Nakashima, S., Nakamura-Messenger, K., Zolensky, M.E., 2009. Submicron distribution of organic matter of carbonaceous chondrite using near-field infrared microspectroscopy. Chem. Lett., 38, 22-23. | spa |
| dc.relation.references | Leduc, L.G., Ferroni, G.D., Trevors, J.T. 1997. Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J. Microb. Biot., 13, 453-455 | spa |
| dc.relation.references | Lee, E.Y., Lee, N.Y., Cho, K-S., Ryu, H.W. 2006. Removal of hydrogen sulfide by sulfateresistant Acidithiobacillus thiooxidans AZ11. J. Biosci. Bioeng., 101 (4), 309-314. | spa |
| dc.relation.references | Liu, K., Chen, Q., Hu, H., Yin, Z. 2010. Characterization and leaching behaviour of lizardite in Yuanjiang laterite ore. Appl. Clay Sci., 47, 311-316. | spa |
| dc.relation.references | Luo, W., Feng, Q., Ou, F., Zhang, G., Lu, Y. 2009. Fast dissolution of nickel from a lizarditerich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy. 96, 171- 175. | spa |
| dc.relation.references | MacCarthy, J., Nosrati, A., Skinner, W., Addai-Mensah, J. 2015. Acid leaching and rheological behaviour of a siliceous goethitic nickel laterite ore: Influence of particle size and temperature. Miner. Eng., 77, 52–63. | spa |
| dc.relation.references | Mirete, S., Figueras, C.G., González, J.E. 2007. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl. Environ. Microbiol., 73 (19), 6001-6011. | spa |
| dc.relation.references | Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B. 2007. Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy. 85, 1-8. | spa |
| dc.relation.references | Morin, D., Lips, A., Pinches, A., Huisman, J., Frias, C., Norberg, A., Forssberg, E. 2006. BioMinE Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy. 83, 69-76. | spa |
| dc.relation.references | Natarajan, K.A. 2008. Microbial aspects of acid mine drainage and its bioremediation. Trans. Nonferrous Met. Soc. China. 18, 1352-1360. | spa |
| dc.relation.references | Nogami, Y., Maeda, T., Negishi, A., Sugio, T. 1997. Inhibition of sulfur oxidizing activity by nickel ion in Thiobacillus ferrooxidans NB1-3 isolated from the corroded concrete. Biosci. Biotechnol. Biochem., 61, 1373-1375. | spa |
| dc.relation.references | Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., MacKenzie, K.J.D. 2005. Preparation of porous silica from chlorite by selective acid leaching. Applied Clay Science 30 (2), 116-124. | spa |
| dc.relation.references | Pogliani, C., Donati, E. 2000. Immobilization of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem., 35, 997-1004. | spa |
| dc.relation.references | Quast, K., Skinner, W., Nosrati, A., Hilder, T., Robinson, D.J., Addai-Mensah, J. 2013. Column leaching of nickel laterite agglomerates: Effect of feed size. Hydrometallurgy. 134, 144-149 | spa |
| dc.relation.references | Rawlings, D.E., Dew, D., du Plessis, C.A. 2003. Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology. 21 (1), 38-44. | spa |
| dc.relation.references | Rawlings, D.E. 2005. Characteristics and adaptability of iron and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact., 4 (13), 1-15. | spa |
| dc.relation.references | Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W. 2003. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63, 239-248. | spa |
| dc.relation.references | Rohwerder, T., Sand, W. 2007. Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. En: Donati, E.R., Sand, W. (Eds.), Microbial processing of metal sulfides, Springer, Dordrecht, pp. 35-58. | spa |
| dc.relation.references | Sahu, S., Kavuri, N.C., Kundu, M. 2011. Dissolution kinetics of nickel laterite ore using different secondary metabolic acids. Braz. J. Chem. Eng., 28 (2), 251-258 | spa |
| dc.relation.references | Sakaguchi, H., Torma, A.E., Silver, M. 1976. Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 31 (1), 7-10. | spa |
| dc.relation.references | Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A. 2001. Biochemistry of bacterial leachingdirect vs. indirect bioleaching. Hydrometallurgy. 59, 159-175. | spa |
| dc.relation.references | Schippers, A., Sand, W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol., 65 (1), 319-321. | spa |
| dc.relation.references | Scholtzová, E., Tunega, D., Nagy, L.T. 2003. Theoretical study of cation substitution in trioctahedral sheet of phyllosilicates. An effect on inner OH group. J. Mol. Struct., (Theochem). 620, 1-8. | spa |
| dc.relation.references | Schulz, K.J., Chandler, V.W., Nicholson, S.W., Piatak, N., Seal II, R.R., Woodruff, L.G., Zientek, M.L. 2010. Magmatic sulfide-rich nickel-copper deposits related to picrite and (or) tholeiitic basalt dike-sill complexes: A preliminary deposit model: U.S. Geological Survey Open-File Report 1179, 25 pp. Disponible en: http://pubs.usgs.gov/of/2010/1179/ | spa |
| dc.relation.references | Silverman, M.P., Lundgren, D.G. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and harvesting procedure for securing high cell yields. J. Bacteriol., 77, 642-647 | spa |
| dc.relation.references | Solari, J.A., Huerta, G., Escobar, B., Vargas, T., Ohlbaum, R., Rubio, J. 1992. Interfacial phenomena affecting the adhesión of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloids surf., 69, 159-166 | spa |
| dc.relation.references | Sukla, L.V., Panchanadikar, V.V., Kar, R.N. 1993. Microbial leaching of Iateritic nickel ore. World J. Microbiol. Biotechnol., 9, 255-257 | spa |
| dc.relation.references | Sufriadin., Idrus, A., Pramumijoyo, S., Warmada, I.W., Imai, A. 2011. Study on mineralogy and chemistry of the saprolitic nickel ores from Soroako, Sulawesi, Indonesia: implication for the lateritic ore processing. J. SE Asian Appl. Geol., 3 (1), 23-33. | spa |
| dc.relation.references | Swain, P.K., Chaudhury, G.R., Sukla, L.B., Misra, V.N. 2005. Leaching of nickel from laterite nickel ore using mineral and organic acids. En: Misra, V.N., Das, S.C., Subbaiah, T., editors. Emerging trends in mineral processing and extractive metallurgy. New Delhi: Allied Publishers PVT. LTD. pp. 197-202. | spa |
| dc.relation.references | Travisany, D., Cortés, M.P., Latorre, M., Di Genova, A., Budinich, M., Bobadilla-Fazzini, R.A., et al. 2014. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res. Microbiol., 165 (9), 743-752 | spa |
| dc.relation.references | Uehara, G. 1995. Management of isoelectric soils of the humid tropics. En: Kimble, J.M., Levine, E.R., Stewart, B.A. (Eds.), Soil management and greenhouse effect. CRC Press, Boca Raton, US, pp. 271-278. | spa |
| dc.relation.references | U.S. GeologicaL Survey. 2017. Mineral commodity summaries 2017, pp. 162. Disponible en: https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf | spa |
| dc.relation.references | Violette, A., Goddéris, Y., Maréchal, J-C., Riotte, R., Oliva, P., Mohan Kumar, M.S., et al. 2010. Modelling the chemical weathering fluxes at the watershed scale in the Tropics (Mule Hole, South India): Relative contribution of the smectite/kaolinite assemblage versus primary minerals. Chem. Geol., 277, 42-60. | spa |
| dc.relation.references | Whittington, B.I., McDonald, R.G., Johnson, J.A., Muir, D.M. 2003a. Pressure acid leaching of arid-region nickel laterite ore. Part I: effect of water quality. Hydrometallurgy. 70, 31-46. | spa |
| dc.relation.references | Wunder, B., Deschamps, F., Watenphul, A., Guillot, S., Meixner, A., Romer, R.L., Wirth, R. 2010. The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation. Contrib. Mineral. Petrol., 159, 781-790. | spa |
| dc.relation.references | Zakaznova-Herzog, V.P., Nesbitt, H.W., Bancroft, G.M., Tse, J.S. 2008. Characterization of leached layers on olivine and pyroxenes using high-resolution XPS and density functional calculations. Geochim. Cosmochim. Acta. 72, 69-86 | spa |
| dc.relation.references | Zhao, Q., Liu, C-j., Jiang, M., Saxén, H., Zevenhoven, R. 2015. Preparation of magnesium hydroxide from serpentinite by sulfuric acid leaching for CO2 mineral carbonation. Miner. Eng., 79, 116-124 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | Química y ciencias afines::Mineralogía | spa |
| dc.subject.proposal | Lixiviación de níquel | spa |
| dc.subject.proposal | Nickel leaching | eng |
| dc.subject.proposal | mineralogical characterization | eng |
| dc.subject.proposal | lateritas | spa |
| dc.subject.proposal | Acidithiobacillus thiooxidans | spa |
| dc.subject.proposal | Caracterización mineralógica | spa |
| dc.title | Biolixiviación de níquel a partir de un saprolito garnierítico usando dos cepas de Acidithiobacillus thiooxidans | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

