Desarrollo y caracterización de un material de referencia de especies de mercurio en peces

dc.contributor.advisorCastillo Serna, Elianna
dc.contributor.advisorAhumada-Forigua, Diego Alejandro
dc.contributor.authorGarzón Zuluaga, Diego Alexander
dc.contributor.researchgroupGrupo de Investigación en Metrología Química y Bioanálisis del Instituto Nacional de Metrología de Colombiaspa
dc.coverage.regionAmérica del Surspa
dc.coverage.regionAmérica Centralspa
dc.coverage.regionAmazonasspa
dc.date.accessioned2024-07-17T17:41:53Z
dc.date.available2024-07-17T17:41:53Z
dc.date.issued2023
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractEl mercurio es un elemento toxico ampliamente estudiado y la determinación de sus especies se ha priorizado, sin embargo, en la actualidad no hay disponibles referencias de medición en especies características de la región Latinoamericana y del Amazonas. En este sentido el objetivo de esta investigación fue producir un material de referencia de mercurio total y metilmercurio en bagre rayado. Con este propósito se desarrollaron y validaron métodos de medición que permitieron determinar la homogeneidad, estabilidad del material y la medición de los analitos de interés. Los métodos desarrollados tuvieron un alcance entre 0.25 mg/kg y 20 mg/kg y para todos se obtuvieron variaciones y sesgos aceptables. Finalmente, para resolver esta problemática se obtuvo un material de referencia certificado de especies de mercurio en bagre rayado; el INM-017-1, con un tamaño de lote de 119 unidades, de 15 g de contenido con un valor certificado de HgTotal de 3.94 ± 0.28 mg/kg (k= 1.97) y de MeHg 3.80 ± 0.32 mg/kg (k= 1.97) (Texto tomado de la fuente).spa
dc.description.abstractMercury is a widely studied toxic element and the determination of its species has been prioritized, however, currently there are no measurement references available in species characteristic of the Latin American and Amazon region. In this sense, the objective of this research was to produce a reference material for total mercury and methylmercury in striped catfish. For this purpose, measurement methods were developed and validated that allowed determining the homogeneity, stability of the material and the measurement of the analytes of interest. The developed methods had a range between 0.25 mg/kg and 20 mg/kg and acceptable variations and biases were obtained for all of them. Finally, to solve this problem, certified reference material of mercury species in striped catfish was obtained; the INM-017-1, with a batch size of 119 units, 15 g content with a certified value of HgTotal of 3.93 ± 0.27 mg/kg (k= 1.97) and MeHg 3.79 ± 0.32 mg/kg (k = 1.97).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Químicaspa
dc.description.researchareaMetrología química aplicadaspa
dc.description.sponsorshipInstituto Nacional de Metrologia de Colombiaspa
dc.format.extentxx, 22-172 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86533
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesT. W. Clarkson, “Human toxicology of Mercury,” The Journal of Trace Elements in Experimental Medicine, vol. 11, no. 23, pp. 303–317, 1998, doi: 10.1002/(sici)1520-670x(1998)spa
dc.relation.references“FAO - News Article: Codex Alimentarius Commission:17-22 July 2017.” Accessed: Apr. 12, 2021. [Online]. Available: http://www.fao.org/news/story/en/item/1024512/icode/spa
dc.relation.references“La importancia de detectar metales pesados en los alimentos - TierraFértil®.” Accessed: Jan. 26, 2024. [Online]. Available: https://tierrafertil.com.mx/2023/06/21/la-importancia-de-detectar-metales-pesados-en-los-alimentos/spa
dc.relation.referencesM. allister Universidad de Antioquia. Facultad de Ciencias Agrarias. and Colegio de Médicos Veterinarios y de Zootecnistas de Antioquia., Revista colombiana de ciencias pecuarias, vol. 22, no. 3. Colvesa, 1978. Accessed: Jan. 26, 2024. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300009&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesDiego A. Ahumada, Cristhian Paredes, Johanna Abella, and Ivonne González, VALIDACIÓN DE MÉTODOS EN ANÁLISIS QUÍMICO CUANTITATIVO. 2023. Accessed: Jun. 04, 2023. [Online]. Available: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdfspa
dc.relation.referencesC. I. P. Thomas, “The Future of Food Safety,” in In Food We Trust, UNP - Nebraska, 2017, pp. 162–186. doi: 10.2307/j.ctt1d9nmqm.14.spa
dc.relation.referencesCONGRESO DE COLOMBIA, “Ley 1892. Por Medio De La Cual Se Aprueba El Convenio De Minamata Sobre El Mercurio, Hecho En Kumamoto (Japón) El 10 De Octubre De 2013,” no. 1892, 2018, [Online]. Available: http://es.presidencia.gov.co/normativa/normativa/LEY 1892 DEL 11 DE MAYO DE 2018.pdfspa
dc.relation.references“Ley 1658 de 2013 - Gestor Normativo - Función Pública.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=53781#spa
dc.relation.referencesL. Córdoba-Tovar, J. Marrugo-Negrete, P. A. Ramos Barón, and S. Díez, “Ecological and human health risk from exposure to contaminated sediments in a tropical river impacted by gold mining in Colombia,” Environ Res, vol. 236, Nov. 2023, doi: 10.1016/j.envres.2023.116759.spa
dc.relation.referencesG. Caicedo-Rivas, M. Salas-Moreno, and J. Marrugo-Negrete, “Health Risk Assessment for Human Exposure to Heavy Metals via Food Consumption in Inhabitants of Middle Basin of the Atrato River in the Colombian Pacific,” Int J Environ Res Public Health, vol. 20, no. 1, Jan. 2023, doi: 10.3390/ijerph20010435.spa
dc.relation.referencesC. L. López-Jiménez, J. Uribe-Guevara, and J. J. Cuesta-Ramírez, “Perceived impact on the artisanal miner’s health from quinchía´s municipality (Colombia) by the use of cyanide and mercury in the amalgamation process of gold,” Revista de Salud Publica, vol. 21, no. 3, pp. 1–8, 2019, doi: 10.15446/RSAP.V21N3.81048.spa
dc.relation.referencesL. Suárez-Criado, P. Rodríguez-González, J. Marrugo-Negrete, J. I. García Alonso, and S. Díez, “Determination of methylmercury and inorganic mercury in human hair samples of individuals from Colombian gold mining regions by double spiking isotope dilution and GC-ICP-MS,” Environ Res, vol. 231, Aug. 2023, doi: 10.1016/j.envres.2023.115970.spa
dc.relation.referencesM. F. Lizarazo et al., “Contamination of staple crops by heavy metals in Sibaté, Colombia,” Heliyon, vol. 6, no. 7, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04212.spa
dc.relation.referencesH. A. Chamizo-García, “Exposición a la contaminación antropogénica por mercurio y sus efectos en la salud. Revisión Bibliográfica.,” Revista de Ciencias Ambientales, vol. 57, no. 2, pp. 1–24, Jun. 2023, doi: 10.15359/rca.57-2.12.spa
dc.relation.referencesC. Hu, T. Hu, and L. Liang, “Spatial variation and potential ecological risk assessment of trace elements in the sediments of Chaohu Lake in China,” J Freshw Ecol, vol. 39, no. 1, Dec. 2024, doi: 10.1080/02705060.2023.2294129.spa
dc.relation.referencesK. Prabakaran, P. Sompongchaiyakul, S. Bureekul, X. Wang, and C. Charoenpong, “Heavy metal bioaccumulation and risk assessment in fishery resources from the Gulf of Thailand,” Mar Pollut Bull, vol. 198, Jan. 2024, doi: 10.1016/j.marpolbul.2023.115864.spa
dc.relation.referencesK. Novotná Kružíková, Z. Široká, and Z. Svobodová, “Total mercury content in selected tissues of common carp (Cyprinus carpio) pond farmed in the Czech Republic,” Acta Veterinaria Brno, vol. 92, no. 4, pp. 419–425, 2023, doi: 10.2754/avb202392040419.spa
dc.relation.referencesT. H. Kim et al., “Methylmercury determination in fish by direct mercury analyzer,” J AOAC Int, vol. 103, no. 1, pp. 244–249, 2021, doi: 10.5740/jaoacint.18-0254.spa
dc.relation.referencesM. Winter, F. Lessmann, and V. Harth, “A method for reliable quantification of mercury in occupational and environmental medical urine samples by inductively coupled plasma mass spectrometry,” Analytical Methods, 2023, doi: 10.1039/d2ay02051c.spa
dc.relation.referencesH. Polkowska-Motrenko et al., “Preparation of Three New Certified Reference Materials for Food and Environmental Analysis and Certification Using Laboratory Intercomparison as well as Primary Reference Measurement Procedures,” Food Anal Methods, vol. 15, no. 2, pp. 377–390, Feb. 2022, doi: 10.1007/s12161-021-02081-6.spa
dc.relation.referencesJ. C. Ulrich and J. E. S. Sarkis, “Preparation and certification of a reference material for the total mercury and methylmercury mass fractions in fish,” Accreditation and Quality Assurance, vol. 18, no. 6, pp. 511–516, 2013, doi: 10.1007/s00769-013-1019-2.spa
dc.relation.referencesV. Ivanova, C. Oster, A. Surleva, and P. Fisicaro, “Comparative evaluation of methods for quantification of mercury at trace level in aquatic biota samples as a bio-indicator,” 2022.spa
dc.relation.referencesT. A. Saleh, G. Fadillah, E. Ciptawati, and M. Khaled, “Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas,” TrAC - Trends in Analytical Chemistry, vol. 132, pp. 1–12, 2020, doi: 10.1016/j.trac.2020.116016.spa
dc.relation.referencesE. M. Krupp, Z. Gajdosechova, T. Schwerdtle, and H. Lohren, “Mercury Toxicity and Speciation Analysis,” in Metallomics Analytical Techniques and Speciation Methods, 2016. doi: 10.1002/9783527694907.ch9.spa
dc.relation.referencesT. Charette, M. Rosabal, and M. Amyot, “Mapping metal (Hg, As, Se), lipid and protein levels within fish muscular system in two fish species (Striped Bass and Northern Pike),” Chemosphere, vol. 265, 2021, doi: 10.1016/j.chemosphere.2020.129036.spa
dc.relation.referencesJ. Feldmann et al., “Microwave-Assisted Sample Preparation for Element Speciation,” in Microwave-Assisted Sample Preparation for Trace Element Analysis, Elsevier, 2014, pp. 281–312. doi: 10.1016/B978-0-444-59420-4.00010-6.spa
dc.relation.referencesJ. L. M. Viana, A. A. Menegário, and A. H. Fostier, “Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques,” Talanta, vol. 226, no. September 2020, 2021, doi: 10.1016/j.talanta.2021.122119.spa
dc.relation.referencesJ. E. Sánchez Uría and A. Sanz-Medel, “Inorganic and methylmercury speciation in environmental samples,” Talanta, vol. 47, no. 3, pp. 509–524, 1998, doi: 10.1016/S0039-9140(98)00116-7.spa
dc.relation.referencesO. F. X. Donard and J. A. Caruso, “Trace metal and metalloid species determination: evolution and trends,” Spectrochim Acta Part B At Spectrosc, vol. 53, no. 2, pp. 157–163, Feb. 1998, doi: 10.1016/S0584-8547(98)00092-5.spa
dc.relation.referencesK. Leopold, M. Foulkes, and P. Worsfold, “Methods for the determination and speciation of mercury in natural waters-A review,” Analytica Chimica Acta, vol. 663, no. 2. pp. 127–138, Mar. 2010. doi: 10.1016/j.aca.2010.01.048.spa
dc.relation.referencesS. L. C. Ferreira et al., “Analytical strategies of sample preparation for the determination of mercury in food matrices — A review,” Microchemical Journal, vol. 121, pp. 227–236, Jul. 2015, doi: 10.1016/j.microc.2015.02.012.spa
dc.relation.referencesJ. V. Cizdziel, T. A. Hinners, and E. M. Heithmar, “Determination of total mercury in fish tissues using combustion atomic absorption spectrometry with gold amalgamation,” Water Air Soil Pollut, vol. 135, no. 1–4, pp. 355–370, 2002, doi: 10.1023/A:1014798012212.spa
dc.relation.referencesB. D. Barst et al., “Determination of mercury speciation in fish tissue with a direct mercury analyzer,” Environ Toxicol Chem, vol. 32, no. 6, pp. 1237–1241, 2013, doi: 10.1002/etc.2184.spa
dc.relation.referencesAOAC, “AOAC Official Method 2015.01 Heavy Metals in Food Inductively Coupled Plasma–Mass Spectrometry First Action 2015,” AOAC Official Method 2015.01, pp. 1–15, 2015, [Online]. Available: doi: 10.5740/jaoac.int.2012.007spa
dc.relation.referencesJ. García-Bellido, L. Freije-Carrelo, M. Moldovan, and J. R. Encinar, “Recent advances in GC-ICP-MS: Focus on the current and future impact of MS/MS technology,” TrAC - Trends in Analytical Chemistry, vol. 130, 2020, doi: 10.1016/j.trac.2020.115963.spa
dc.relation.referencesL. Yang, V. Colombini, P. Maxwell, Z. Mester, and R. E. Sturgeon, “Application of isotope dilution to the determination of methylmercury in fish tissue by solid-phase microextraction gas chromatography–mass spectrometry,” J Chromatogr A, vol. 1011, no. 1–2, pp. 135–142, Sep. 2003, doi: 10.1016/S0021-9673(03)01122-1.spa
dc.relation.referencesT. Kuballa, E. Leonhardt, K. Schoeberl, and D. W. Lachenmeier, “Determination of methylmercury in fish and seafood using optimized digestion and derivatization followed by gas chromatography with atomic emission detection,” European Food Research and Technology, vol. 228, no. 3, pp. 425–431, 2009, doi: 10.1007/s00217-008-0949-0.spa
dc.relation.referencesR. Rai, W. Maher, and F. Kirkowa, “Measurement of inorganic and methylmercury in fish tissues by enzymatic hydrolysis and HPLC-ICP-MS,” J Anal At Spectrom, vol. 17, no. 11, pp. 1560–1563, 2002, doi: 10.1039/b208041a.spa
dc.relation.referencesM. P. Rodríguez-Reino, R. Rodríguez-Fernández, E. Peña-Vázquez, R. Domínguez-González, P. Bermejo-Barrera, and A. Moreda-Piñeiro, “Mercury speciation in seawater by liquid chromatography-inductively coupled plasma-mass spectrometry following solid phase extraction pre-concentration by using an ionic imprinted polymer based on methyl-mercury-phenobarbital interaction,” J Chromatogr A, vol. 1391, no. 1, pp. 9–17, 2015, doi: 10.1016/j.chroma.2015.02.068.spa
dc.relation.referencesJ. Qvarnström and W. Frech, “Mercury species transformations during sample pre-treatment of biological tissues studied by HPLC-ICP-MS,” J Anal At Spectrom, vol. 17, no. 11, pp. 1486–1491, 2002, doi: 10.1039/b205246f.spa
dc.relation.referencesM. J. Griffin et al., “A Nanoengineered Conductometric Device for Accurate Analysis of Elemental Mercury Vapor,” Environ Sci Technol, vol. 50, no. 3, pp. 1384–1392, 2016, doi: 10.1021/acs.est.5b05700.spa
dc.relation.referencesA. Shah et al., “Amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions,” Electrochim Acta, vol. 321, 2019, doi: 10.1016/j.electacta.2019.134658.spa
dc.relation.referencesR. Koplík, I. Klimešová, K. Mališová, and O. Mestek, “Determination of mercury species in foodstuffs using LC-ICP-MS: The applicability and limitations of the method,” Czech Journal of Food Sciences, vol. 32, no. 3, pp. 249–259, 2014, doi: 10.17221/577/2013-cjfs.spa
dc.relation.referencesY. Cai and J. M. Bayona, “Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry,” J Chromatogr A, vol. 696, no. 1, pp. 113–122, Apr. 1995, doi: 10.1016/0021-9673(94)01177-G.spa
dc.relation.referencesP. Rodríguez-González, J. M. Marchante-Gayón, J. I. García Alonso, and A. Sanz-Medel, “Isotope dilution analysis for elemental speciation: a tutorial review,” Spectrochim Acta Part B At Spectrosc, vol. 60, no. 2, pp. 151–207, Feb. 2005, doi: 10.1016/j.sab.2005.01.005.spa
dc.relation.referencesR. Wahlen, “A comparison of GC-ICP-MS and HPLC-ICP-MS for the analysis of organotin compounds,” LC GC Eur, no. October, pp. 1–8, 2002, [Online]. Available: http://www.chem.agilent.com/Library/applications/5988-6697.pdf%5Cnhttp://prdwww.lvld.agilent.com/Library/applications/5988-6697.pdfspa
dc.relation.referencesX. P. Yan, Y. Li, and Y. Jiang, “Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry,” Anal Chem, vol. 75, no. 10, pp. 2251–2255, 2003, doi: 10.1021/ac026415f.spa
dc.relation.referencesM. Horvat, A. R. Byrne, and K. May, “A modified method for the determination of methylmercury by gas chromatography,” Talanta, vol. 37, no. 2, pp. 207–212, Feb. 1990, doi: 10.1016/0039-9140(90)80024-A.spa
dc.relation.referencesY. G. Yin, J. F. Liu, and G. Bin Jiang, “Recent advances in speciation analysis of mercury, arsenic and selenium,” Chinese Science Bulletin, vol. 58, no. 2, pp. 150–161, 2013, doi: 10.1007/s11434-012-5497-0.spa
dc.relation.referencesY. Cai and J. M. Bayona, “Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry,” J Chromatogr A, vol. 696, no. 1, pp. 113–122, 1995, doi: 10.1016/0021-9673(94)01177-G.spa
dc.relation.referencesN. Demuth and K. G. Heumann, “Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS,” Anal Chem, 2001, doi: 10.1021/ac010366+.spa
dc.relation.referencesY. Mao, G. Liu, G. Meichel, Y. Cai, and G. Jiang, “Simultaneous speciation of monomethylmercury and monoethylmercury by aqueous phenylation and purge-and-trap preconcentration followed by atomic spectrometry detection,” Anal Chem, vol. 80, no. 18, pp. 7163–7168, 2008, doi: 10.1021/ac800908b.spa
dc.relation.referencesInes. Baer, B. de la. Calle, Inge. Verbist, E. Institute for Reference Materials and Measurements., and R. Piotr, IMEP-30 : total arsenic, cadmium, lead and mercury, as well as methylmercury and inorganic arsenic in seafood : interlaboratory comparison report. Publications Office, 2010. Accessed: Jun. 30, 2019. [Online]. Available: http://publications.jrc.ec.europa.eu/repository/handle/JRC61380spa
dc.relation.references“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=1677spa
dc.relation.references“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=1189spa
dc.relation.references“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=441spa
dc.relation.references“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=864spa
dc.relation.referencesA. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, Apr. 2012, doi: 10.1007/s00769-011-0827-5.spa
dc.relation.referencesW. R. Kelly, B. S. MacDonald, and W. F. Guthrie, “Gravimetric approach to the standard addition method in instrumental analysis. 1,” Anal Chem, vol. 80, no. 16, pp. 6154–6158, Aug. 2008, doi: 10.1021/ac702437f.spa
dc.relation.referencesR. Ketrin, E. M. Handayani, and I. Komalasari, “Bracketing method with certified reference materials for high precision and accuracy determination of trace cadmium in drinking water by Inductively Coupled Plasma - Mass Spectrometry,” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2017. doi: 10.1063/1.4973185.spa
dc.relation.referencesB. Magnusson and U. Ornemark, La Adecuación al Uso de los Métodos Analíticos, vol. 1. 2014. doi: ST/NAR/41.spa
dc.relation.referencesP.P Morillas y colaboradores, Guía Eurachem: La adecuación al uso de los Métodos Analíticos, vol. 1. 2016. doi: ST/NAR/41.spa
dc.relation.referencesD. Garzón, D. Ahumada, J. Abella Gamba, J. Ágreda, and E. Castillo, “Quantification of Arsenic, Cadmium, Mercury and Lead in Pineapple: Method Development, Validation and Evaluation of In-House Reference Materials,” J Braz Chem Soc, vol. 31, no. 6, pp. 1296–1305, 2020, doi: 10.21577/0103-5053.20200015.spa
dc.relation.referencesJ. Abella Gamba, “MANUAL DE PRODUCCIÓN DE MATERIALES DE REFERENCIA Y ACTIVIDADES DE LA SMQB. MANUAL TECNICO,” Subdirección de Metrologia Quimica y Biologia, vol. 1, no. Instituto Nacional de Metrologia de Colombia, 2021.spa
dc.relation.referencesD. A. AHUMADA F. and J. A. GUERRERO D., “STUDY OF MATRIX EFFECT IN PESTICIDE ANALYSIS BY GAS CHROMATOGRAPHY,” Vitae, vol. 17, no. 1, pp. 51–58, Mar. 2010, doi: 10.17533/udea.vitae.4974.spa
dc.relation.referencesM. V. Salvia, C. Cren-Olivé, and E. Vulliet, “Statistical evaluation of the influence of soil properties on recoveries and matrix effects during the analysis of pharmaceutical compounds and steroids by quick, easy, cheap, effective, rugged and safe extraction followed by liquid chromatography-tandem mass spectrometry,” J Chromatogr A, vol. 1315, pp. 53–60, Nov. 2013, doi: 10.1016/j.chroma.2013.09.056.spa
dc.relation.referencesL. Cuadros-Rodríguez et al., “Correction function on biased results due to matrix effects Application to the routine analysis of pesticide residues,” 2003.spa
dc.relation.referencesAlexander Mateus, Diego Alejandro Ahumada, and Elianna Castillo, “Determinación de mercurio total en peces por espectroscopia de absorción atómica de vapor en frío (CV-AAS) y espectrometría de masas con plasma acoplado inductivamente (ICP-MS) ,” Poster, Universidad Nacional de Colombia, Bogota, Colombia, 2019.spa
dc.relation.referencesP. Morrillas, V. Barwick, Ellison Stephen, J. Engman, and B. Magnusson, Guía Eurachem: La adecuación al uso de los métodos analíticos – Una Guía de laboratorio para la validación de métodos y temas relacionados. 2016. doi: ST/NAR/41.spa
dc.relation.referencesS. Clémens, M. Monperrus, O. F. X. Donard, D. Amouroux, and T. Guérin, “Mercury speciation analysis in seafood by species-specific isotope dilution: Method validation and occurrence data,” Anal Bioanal Chem, vol. 401, no. 9, pp. 2699–2711, 2011, doi: 10.1007/s00216-011-5040-1.spa
dc.relation.referencesJCGM and Centro Español de Metrologia, Evaluación de datos de medición Guía para la Expresión de la Incertidumbre de Medida. 2008.spa
dc.relation.references“Metrodata GmbH - Home.” Accessed: Jan. 01, 2024. [Online]. Available: http://www.metrodata.de/index_en.htmlspa
dc.relation.referencesS. Rȷo-Segade and C. Bendicho, “Selective Reduction Method for Separate Determination of Inorganic and Total Mercury in Mussel Tissue by Flow-Injection Cold Vapor Technique,” Ecotoxicol Environ Saf, vol. 42, no. 3, pp. 245–252, Mar. 1999, doi: 10.1006/eesa.1998.1753.spa
dc.relation.referencesS. B. Adeloju and T. F. Mann, “Acid Effects on the Measurement of Mercury by Cold Vapor Atomic Absorption Spectrometry,” Anal Lett, vol. 20, no. 7, pp. 985–1000, Jul. 1987, doi: 10.1080/00032718708064586.spa
dc.relation.referencesCodex Alimentarius, “Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos,” CODEX STAN 193-1995. Adoptada en 1995. Revisión: 2009. Enmienda: 2016, no. Codex Stan 193-1995 (Enmienda 2015), p. 76, 1995, [Online]. Available: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B193-1995%252FCXS_193s.pdfspa
dc.relation.referencesS. L. R. Ellison and M. Thompson, “Standard additions: Myth and reality,” Analyst, vol. 133, no. 8, pp. 992–997, 2008, doi: 10.1039/b717660k.spa
dc.relation.references“¿Cómo detectar el efecto matriz en un método analítico? | Analytical.” Accessed: Sep. 17, 2023. [Online]. Available: https://www.analytical.cl/post/como-detectar-efecto-matriz-metodo-analitico/spa
dc.relation.referencesF. J. Egea González, M. E. Hernández Torres, L. Cuadros Rodríguez, E. Almansa López, and J. L. Martínez Vidal, “Estimation and correction of matrix effects in gas chromatographic pesticide multiresidue analytical methods with a nitrogen-phosphorus detector,” Analyst, vol. 127, no. 8, pp. 1038–1044, 2002, doi: 10.1039/b201461k.spa
dc.relation.referencesD. C. Wigfield and S. A. Eatock, “The Matrix Effect in the Cold-Vapor Atomic Absorption Analysis of Mercury in Various Biological Tissues,” J Anal Toxicol, vol. 11, no. 4, pp. 137–139, Jul. 1987, doi: 10.1093/jat/11.4.137.spa
dc.relation.referencesD. C. Wigfield, S. M. Croteau, and S. L. Perkins, “Elimination of the Matrix Effect in the Cold-Vapor Atomic Absorption Analysis of Mercury in Human Hair Samples,” J Anal Toxicol, vol. 5, no. 1, pp. 52–55, Jan. 1981, doi: 10.1093/jat/5.1.52.spa
dc.relation.referencesW. Horwitz and R. Albert, “The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision,” J AOAC Int, vol. 89, no. 4, pp. 1095–1109, Jul. 2006, doi: 10.1093/jaoac/89.4.1095.spa
dc.relation.referencesJ. Thompson and R. S. Houk, “A Study of Internal Standardization in Inductively Coupled Plasma-Mass Spectrometry,” 1987.spa
dc.relation.referencesF. Cubadda, “Inductively coupled plasma mass spectrometry,” in Food Toxicants Analysis, Elsevier, 2007, pp. 697–751. doi: 10.1016/B978-044452843-8/50020-1.spa
dc.relation.referencesN. Strigul, A. Koutsospyros, and C. Christodoulatos, “Tungsten speciation and toxicity: Acute toxicity of mono- and poly-tungstates to fish,” Ecotoxicol Environ Saf, vol. 73, no. 2, pp. 164–171, Feb. 2010, doi: 10.1016/j.ecoenv.2009.08.016.spa
dc.relation.referencesW. Espejo et al., “Biomagnification of Tantalum through Diverse Aquatic Food Webs,” Environ Sci Technol Lett, vol. 5, no. 4, pp. 196–201, Apr. 2018, doi: 10.1021/acs.estlett.8b00051.spa
dc.relation.referencesK. V Wood, S. A. McLuckeyt, and R. Graham Cooks, “The Effect of Ion Source Temperature on the Fragmentation of 2-Pentanone,” 1986.spa
dc.relation.referencesW. Genuit and N. M. M. Nibbering, “THE EFFECT OF TEMPERATURE MASS SPECTRA ON PHOTOIONISATION,” 1986.spa
dc.relation.referencesW. C. Davis et al., “Certification of methylmercury content in two fresh-frozen reference materials: SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis),” in Analytical and Bioanalytical Chemistry, Apr. 2007, pp. 2335–2341. doi: 10.1007/s00216-006-1106-x.spa
dc.relation.referencesL. D’Ulivo, L. Yang, Y.-L. Feng, and Z. Mester, “Acid extraction for the determination of methyl mercury in biotissues by isotope dilution gas chromatography inductively coupled plasma-mass spectrometry,” Analytical Methods, vol. 5, no. 24, p. 7127, 2013, doi: 10.1039/c3ay40909k.spa
dc.relation.referencesA. Boudou and F. Ribeyre, “Aquatic Ecotoxicology: From the Ecosystem to the Cellular and Molecular Levels,” Environ Health Perspect, vol. 105, p. 21, Feb. 1997, doi: 10.2307/3433395.spa
dc.relation.referencesR. C. R. Martín-Doimeadios, E. Krupp, D. Amouroux, and O. F. X. Donard, “Application of isotopically labeled methylmercury for isotope dilution analysis of biological samples using gas chromatography/ICPMS,” Anal Chem, vol. 74, no. 11, pp. 2505–2512, Jun. 2002, doi: 10.1021/ac011157s.spa
dc.relation.referencesJ. C. Ulrich and J. E. S. Sarkis, “Preparation and certification of a reference material for the total mercury and methylmercury mass fractions in fish,” Accreditation and Quality Assurance, vol. 18, no. 6, pp. 511–516, Dec. 2013, doi: 10.1007/s00769-013-1019-2.spa
dc.relation.referencesE. Bulska, A. Krata, M. Kałabun, and M. Wojciechowski, “On the use of certified reference materials for assuring the quality of results for the determination of mercury in environmental samples,” Environmental Science and Pollution Research, vol. 24, no. 9, pp. 7889–7897, Mar. 2017, doi: 10.1007/s11356-016-7262-4.spa
dc.relation.referencesA. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, Apr. 2012, doi: 10.1007/s00769-011-0827-5.spa
dc.relation.referencesM. Rutkowska, J. Namieśnik, and P. Konieczka, “Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury,” Microchemical Journal, vol. 153, Mar. 2020, doi: 10.1016/j.microc.2019.104338.spa
dc.relation.referencesH. M. Skip Kingston, L. H. Reyes, G. M. Mizanur Rahman, and T. Fahrenholz, “Comparison of methods with respect to efficiencies, recoveries, and quantitation of mercury species interconversions in food demonstrated using tuna fish,” Anal Bioanal Chem, vol. 390, no. 8, pp. 2123–2132, Apr. 2008, doi: 10.1007/s00216-008-1966-3.spa
dc.relation.referencesR. Jagtap, F. Krikowa, W. Maher, S. Foster, and M. Ellwood, “Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGAAS,” Talanta, vol. 85, no. 1, pp. 49–55, Jul. 2011, doi: 10.1016/j.talanta.2011.03.022.spa
dc.relation.referencesJCGM, “Vocabulario Internacional de Metrología - Conceptos fundamentales y generales, y términos asociados (VIM),” International Organization for Standardization Geneva ISBN, 2012, doi: 10.1016/0263-2241(85)90006-5.spa
dc.relation.referencesInternational Organization for Standardization, “ISO 17034:2016 General requirements for the competence of reference material producers,” 1.spa
dc.relation.referencesS. Valbuena-Rodríguez and M. Á. Navarro-Ramírez, “Mercurio total en bagre rayado y bocachico del río Meta, Colombia,” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 24, no. 2, Oct. 2021, doi: 10.31910/rudca.v24.n2.2021.1880.spa
dc.relation.referencesParques Nacionales Naturales de Colombia Dirección Territorial Amazonía, “El Mercurio en comunidades de la Amazonia Colombiana.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2019/07/MERCURIO-EN-COMUNIDADES-DE-LA-AMAZONIA-2018-1.pdfspa
dc.relation.referencesE. A. López-Barrera and R. G. Barragán-Gonzalez, “Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans,” Journal of Toxicology and Environmental Health - Part A: Current Issues, vol. 79, no. 5, pp. 232–243, Mar. 2016, doi: 10.1080/15287394.2016.1149130.spa
dc.relation.referencesJ. Olivero-Verbel, L. Carranza-Lopez, K. Caballero-Gallardo, A. Ripoll-Arboleda, and D. Muñoz-Sosa, “Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon,” Environmental Science and Pollution Research, vol. 23, no. 20, pp. 20761–20771, Oct. 2016, doi: 10.1007/s11356-016-7255-3.spa
dc.relation.referencesInternational Organization for Standardization, “ISO Guide 35: 2017 Reference materials - guidance for characterization and assessment of homogeneity and stability,” 4. Accessed: Jan. 28, 2019. [Online]. Available: https://www.iso.org/standard/60281.htmlspa
dc.relation.referencesF. Ulberth, “Certified reference materials for inorganic and organic contaminants in environmental matrices,” Anal Bioanal Chem, vol. 386, no. 4, pp. 1121–1136, Oct. 2006, doi: 10.1007/s00216-006-0660-6.spa
dc.relation.referencesK. Kupiec, P. Konieczka, and J. Namieśnik, “Prospects for the Production, Research and Utilization of Reference Materials,” Crit Rev Anal Chem, vol. 39, no. 4, pp. 311–322, Oct. 2009, doi: 10.1080/10408340903253182.spa
dc.relation.references“DORM-4 | National Research Council Canada.” Accessed: Mar. 29, 2022. [Online]. Available: https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/49/htmlspa
dc.relation.references“ERM-CE464 TUNA FISH (total Hg, methylmercury) - Certified Reference Materials catalogue of the JRC.” Accessed: Feb. 27, 2022. [Online]. Available: https://crm.jrc.ec.europa.eu/p/40456/40494/By-analyte-group/Extractable-element-species/ERM-CE464-TUNA-FISH-total-Hg-methylmercury/ERM-CE464spa
dc.relation.referencesS. Wood and A. Botha, “The new ISO Guide 80: Guidance for the in-house preparation of quality control materials (QCMs),” Accreditation and Quality Assurance. Accessed: Jan. 27, 2019. [Online]. Available: https://www.iso.org/standard/44313.htmlspa
dc.relation.references“EVISA’s Materials Database.” Accessed: Mar. 29, 2022. [Online]. Available: http://www.speciation.net/Database/Materials/?ACTION=SEARCH&Name=&Keyword=Mercury&Manufacture=&Type=0&Status=0&Material=0&Element=0&Species=spa
dc.relation.referencesD. A. Ahumada-Forigua, L. L. Soto-Morales, L. V. Morales-Erazo, and J. P. Abella-Gamba, “Development of a certified reference material for elemental analysis of drinking water,” Revista Colombiana de Quimica, vol. 48, no. 3, pp. 36–44, Sep. 2019, doi: 10.15446/rev.colomb.quim.v48n3.78660.spa
dc.relation.referencesH. Ebrahimi-Najafabadi, R. Leardi, and M. Jalali-Heravi, “Experimental design in analytical chemistry -Part I: Theory,” J AOAC Int, vol. 97, no. 1, pp. 3–11, 2014, doi: 10.5740/jaoacint.SGEEbrahimi1.spa
dc.relation.referencesJ. Díaz-Garzón, P. Fernández-Calle, and C. Ricós, “Modelos para estimar la variación biológica y la interpretación de resultados seriados: bondades y limitaciones,” Advances in Laboratory Medicine / Avances en Medicina de Laboratorio, vol. 1, no. 3, Sep. 2020, doi: 10.1515/almed-2020-0017.spa
dc.relation.referencesDiego A. Garzón, Leonardo Soto, Fabian Niño, and Diego Ahumada, “Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.imeko.org/publications/tc10-2020/IMEKO-TC10-2020-014.pdfspa
dc.relation.referencesA. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, 2016, doi: 10.1002/jrsm.1164.spa
dc.relation.referencesT. P. J. Linsinger, “Evaluation of CRM homogeneity in cases of insufficient method repeatability: Comparison of Bayesian analysis with substitutes for ANOVA based estimates,” Anal Chim Acta X, vol. 5, p. 100049, Jul. 2020, doi: 10.1016/j.acax.2020.100049.spa
dc.relation.referencesS. Caroli, “Certified reference materials: use, manufacture and certification,” Anal Chim Acta, vol. 283, no. 1, pp. 573–582, Nov. 1993, doi: 10.1016/0003-2670(93)85270-T.spa
dc.relation.referencesInternational Organization for Standardization, “ISO Guide 35: 2017 Reference materials - guidance for characterization and assessment of homogeneity and stability,” 4. Accessed: Jan. 28, 2019. [Online]. Available: https://www.iso.org/standard/60281.htmlspa
dc.relation.referencesT. P. J. Linsinger and H. Emons, “Characterization of reference materials: Proposal for a simplification of the options listed in ISO Guide 34,” Accreditation and Quality Assurance, vol. 18, no. 2, pp. 149–152, Apr. 2013, doi: 10.1007/s00769-013-0971-1.spa
dc.relation.referencesS. Zamuz et al., “Fat and fatty acids,” Food Lipids, pp. 155–172, Jan. 2022, doi: 10.1016/B978-0-12-823371-9.00012-5.spa
dc.relation.referencesS. B. Smith and L. Cisneros-Zevallos, “RAPID DETERMINATION OF MOISTURE AND FAT IN MEATS BY MICROWAVE AND NUCLEAR MAGNETIC RESONANCE ANALYSIS,” 2013.spa
dc.relation.referencesK. Inagaki et al., “Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis,” Anal Bioanal Chem, vol. 391, no. 6, pp. 2047–2054, Jul. 2008, doi: 10.1007/s00216-008-1957-4.spa
dc.relation.referencesJ. H. Mol, J. S. Ramlal, C. Lietar, and M. Verloo, “Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America,” Environ Res, vol. 86, no. 2, pp. 183–197, 2001, doi: 10.1006/ENRS.2001.4256.spa
dc.relation.referencesJ. Marrugo-Negrete, L. N. Benitez, and J. Olivero-Verbel, “Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia,” Arch Environ Contam Toxicol, vol. 55, no. 2, pp. 305–316, Aug. 2008, doi: 10.1007/S00244-007-9129-7.spa
dc.relation.referencesAOAC Official Method, “AOAC 930.15-1930(1999), Loss on drying (Moisture) for feeds.” Accessed: Jan. 04, 2024. [Online]. Available:http://www.aoacofficialmethod.org/index.php?main_page=product_info&pro ducts_id=2702spa
dc.relation.referencesC. J. Pillco Cochan, D. Guzmán Loayza, and J. E. Cuéllar Bautista, “COMPOSICIÓN FÍSICO QUÍMICA Y ANÁLISIS PROXIMAL DEL FRUTO DE SOFAIQUE ‘Geoffroea decorticans (Hook. et Arn.)’ PROCEDENTE DE LA REGIÓN ICA-PERÚ,” Revista de la Sociedad Química del Perú, vol. 87, no. 1, pp. 14–25, Mar. 2021, doi: 10.37761/rsqp.v87i1.319.spa
dc.relation.referencesB. Carrillo and M. Mosquera, “Evaluación de la extracción de ácidos grasos a partir de cabezas de sardina (Opisthonema libertate) subproducto de la industria pesquera,” Enfoque UTE, vol. 8, no. 4, pp. 68–85, Sep. 2017, doi: 10.29019/enfoqueute.v8n4.173.spa
dc.relation.referencesAOAC Official Method, “AOAC 960.39-1960, Fat (crude) or ether extract in meat.” Accessed: Jan. 04, 2024. [Online]. Available: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=605spa
dc.relation.referencesM. S. Levenson et al., “An approach to combining results from multiple methods motivated by the ISO GUM,” J Res Natl Inst Stand Technol, vol. 105, no. 4, p. 571, Jul. 2000, doi: 10.6028/jres.105.047.spa
dc.relation.referencesE. Vasileva, S. Azemard, J. Oh, P. Bustamante, and M. Betti, “Certification for trace elements and methyl mercury mass fractions in IAEA-452 scallop (Pecten Maximus) sample,” Accreditation and Quality Assurance, vol. 16, no. 8, pp. 439–447, Aug. 2011, doi: 10.1007/s00769-011-0793-y.spa
dc.relation.referencesS. Wati, A. Kasim, and H. Hasbullah, “Yield And Quality Of Flour From Peperek Fish (Leiognatus Equulus) In West Sumatera Waters,” International Journal of Progressive Sciences and Technologies (IJPSAT, vol. 24, no. 2, pp. 360–369, 2021, [Online]. Available: http://ijpsat.ijsht-journals.orgspa
dc.relation.referencesL. V Allen, “Quality Control: Water Activity Considerations for Beyond-use Dates.,” Int J Pharm Compd, vol. 22, no. 4, pp. 288–293, 2018.spa
dc.relation.referencesGustavo V. Barbosa‐Cánovas, Jr. Anthony J. Fontana, Shelly J. Schmidt, and Theodore P. Labuza, Water activity in food: Fundamentals and applications, Second. Pondicherry: Wiley, 2020.spa
dc.relation.referencesE. Kurniawati, B. Ibrahim, and Desniar, “Homogeneity and stability of a secondary microbiological reference material candidate for Salmonella in fish matrix,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1755-1315/404/1/012036.spa
dc.relation.referencesR. Dybczyński, H. Polkowska-Motrenko, Z. Samczyński, and Z. Szopa, “Virginia Tobacco Leaves (CTA-VTL-2) - New Polish CRM for inorganic trace analysis including microanalysis,” in Fresenius’ Journal of Analytical Chemistry, Springer Verlag, 1998, pp. 384–387. doi: 10.1007/s002160050718.spa
dc.relation.references“DOLT-5 | National Research Council Canada.” Accessed: Feb. 27, 2022. [Online]. Available: https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/40/htmlspa
dc.relation.referencesM. Horvat, L. Liang, S. Azemard, V. Mandić, J.-P. Villeneuve, and M. Coquery, “Certification of total mercury and methylmercury concentrations in mussel homogenate (Mytilus edulis) reference material, IAEA-142,” Fresenius J Anal Chem, vol. 358, no. 3, pp. 411–418, Jun. 1997, doi: 10.1007/s002160050439.spa
dc.relation.referencesA. A. Veroniki et al., “Methods to estimate the between‐study variance and its uncertainty in meta‐analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016, doi: 10.1002/jrsm.1164.spa
dc.relation.referencesR. H. Atallah and D. A. Kalman, “Selective Determination of Inorganic Mercury and Methylmercury in Tissues by Continuous Flow and Cold Vapor Atomic Absorption Spectrometry,” J Anal Toxicol, vol. 17, no. 2, pp. 87–92, Mar. 1993, doi: 10.1093/jat/17.2.87.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.lembMercurio en pecesspa
dc.subject.lembContaminación por mercuriospa
dc.subject.lembPeces - Efecto de los metalesspa
dc.subject.lembFishes -- Effect of metlaseng
dc.subject.lembBagresspa
dc.subject.lembIctaluridaeeng
dc.subject.lembBagre rayadospa
dc.subject.proposalMaterial de referencia certificadospa
dc.subject.proposalEspeciación químicaspa
dc.subject.proposalMercuriospa
dc.subject.proposalMetilmercuriospa
dc.subject.proposalCertified reference materialeng
dc.subject.proposalChemical speciationeng
dc.subject.proposalMercuryeng
dc.subject.proposalMethylmercuryeng
dc.subject.wikidataPseudoplatystoma magdaleniatumN/A
dc.titleDesarrollo y caracterización de un material de referencia de especies de mercurio en pecesspa
dc.title.translatedDevelopment and characterization of a reference material of mercury species in fisheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de referencias de medición para la cuantificación de especies tóxicas de mercurio y arsénico en alimentos”. CD 82489 CT ICETEX 2022-0760spa
oaire.awardtitleDesarrollo e implementación de herramientas analíticas para asegurar la calidad y la trazabilidad metrológica en las mediciones de elementos tóxicos de peces del Amazonasspa
oaire.fundernameMINCIENCIASspa
oaire.fundernamePhysikalisch-Technische Bundesanstaltspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015445404.2024.pdf
Tamaño:
7.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: