Estudio de la incidencia de las características del concreto en el consumo de materiales en puentes segmentales, diseñados por el método de los voladizos balanceados

dc.contributor.advisorBlandón Valencia, John Jairo
dc.contributor.authorHerrera Baquero, Leonardo
dc.contributor.orcidBlandón Valencia, John Jairo [0000-0003-3229-6910]
dc.date.accessioned2025-08-22T20:28:39Z
dc.date.available2025-08-22T20:28:39Z
dc.date.issued2025-08-15
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractEmpleando la metodología de diseño de experimentos, se evalúa la incidencia de la implementación de concreto liviano de alto desempeño en el análisis y diseño de puentes segmentales, construidos por el método de los voladizos balanceados, empleando para este propósito el software de elementos finitos CSI BRIDGE licenciado por INTERACCION INGENIERIA SAS, donde se analiza la interacción de 3 factores: Luz principal del puente (L), densidad del concreto (ρc) y las dimensiones del canto de la viga cajón (H y h). Se evaluaron 4 variables respuesta principales para cada uno de los puentes analizados, la primera consistente en la relación de la demanda de momento negativo en construcción RM=(Mij/MCD), la segunda es relación de la cantidad de volumen de concreto de la super estructura por unidad de área del tablero RV=(Vij/VCD), la tercera relación corresponde a la demanda acero pasivo por unidad de área del tablero RA=(Aij/ACD), y la cuarta consiste en la relación de la demanda de acero de preesfuerzo por unidad de área del tablero, RP=(Pij/PCD), donde el subíndice i denota el tipo concreto convencional o liviano, el subíndice j denota el tipo de sección de análisis: diseño o reducidas y el subíndice CD denota Concreto Convencional y secciones de Diseño original. Las estructuras analizadas consisten en puentes ya construidos en Colombia diseñados por empresas reconocidas en el sector de la infraestructura, los cuales fueron escogidos buscando tener un rango amplio luces representativas, el primero el más corto Puente El Muña, es un puente de 130m de longitud y luz principal de 60m, construido en el municipio de Sibaté Cundinamarca diseñado por la Firma PEDELTA, el segundo es el puente La Molinilla de 270m de longitud total y luz principal de 130m construido en el municipio de San Vicente de Churri Santander diseñado por Farias y SIA, y el tercer puente corresponde al viaducto Moravia de 370m de longitud total y luz principal de 185m, construido en el municipio de Medellín Antioquia, diseñador por Ingenieros Civiles Consultores. La metodología consistió en replicar los análisis de diseño con concretos convencionales como punto de partida y de allí se procedió a realizar los análisis paralelos con la implementación de concreto liviano con el propósito de evaluar las variables respuesta objetivo. Se destaca de los resultados una disminución importante en el consumo de concreto tanto de la super estructura como de la subestructura, pues al tenerse una disminución de la masa sísmica participante se disminuye por consecuencia la cortante basal y esto indica intrínsicamente una economía en columnas y sistema de cimentación, por lo tanto para evaluar la conveniencia de la implementación de concretos liviano en la construcción de puentes por voladizos sucesivos es necesario revisarse de manera integral en el diseño. (Tomado de la fuente)spa
dc.description.abstractUsing the design of experiments methodology, the impact of the implementation of high-performance lightweight concrete in the analysis and design of segmental bridges, built by the balanced cantilever method, is evaluated, using for this purpose the CSI BRIDGE finite element software licensed by INTERACCION INGENIERIA SAS, where the interaction of 3 factors is analyzed: Main span of the bridge (L), concrete density (ρc) and the dimensions of the box girder edge (H and h). Four main response variables were evaluated for each of the bridges analyzed: the first is the ratio of the negative moment demand during construction RM=(Mij/MCD); the second is the ratio of the amount of concrete volume of the superstructure per unit area of the deck RV=(Vij/VCD); the third is the ratio of passive steel demand per unit area of the deck RA=(Aij/ACD); and the fourth is the ratio of prestressing steel demand per unit area of the deck, RP=(Pij/PCD), where the subscript i denotes the type of conventional or lightweight concrete, the subscript j denotes the type of analysis section: design or reduced, and the subscript CD denotes conventional concrete and original design sections. The structures analyzed consist of bridges already built in Colombia, designed by recognized companies in the infrastructure sector. These bridges were chosen to offer a wide range of representative spans. The first, the shortest, Puente El Muña, is a 130m long bridge with a main span of 60m, built in the municipality of Sibaté, Cundinamarca, designed by the firm PEDELTA. The second is the La Molinilla Bridge, 270m long with a main span of 130m, built in the municipality of San Vicente de Churri, Santander, designed by Farias and SIA. The third bridge is the Moravia Viaduct, 370m long with a main span of 185m, built in the municipality of Medellín, Antioquia, designed by Ingenieros Civiles Consultores. The methodology consisted of replicating the design analyses using conventional concrete as a starting point, and then proceeding to perform parallel analyses with the implementation of lightweight concrete to evaluate the target response variables. The results highlight a significant decrease in concrete consumption in both the superstructure and the substructure, since by having a decrease in the participating seismic mass, the basal shear is consequently reduced and this intrinsically indicates an economy in columns and foundation system, therefore, to evaluate the convenience of implementing lightweight concrete in the construction of bridges by successive cantilevers, it is necessary to comprehensively review the design.eng
dc.description.curricularareaIngeniería Civil.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería Estructuras
dc.description.methodsDiseño de experimentos
dc.description.notesContiene material didáctico, tablas, figuras y planosspa
dc.description.researchareaDiseño y construccion de puentes por voladizos sucesivos
dc.description.technicalinfoModelación matemática de puentes empleando el programa en CSI BRIDGEspa
dc.format.extent372 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88443
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructuras
dc.relation.indexedLaReferencia
dc.relation.references[1] Anon. (1984). Dauphin Island Bridge. Journal - Prestressed Concrete Institute, 29(1).
dc.relation.references[2] Ates, S. (2011). Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8),3809–3820. https://doi.org/10.1016/j.apm.2011.02.016
dc.relation.references[3] Bassi, K. G., & Lin, W. L. (1984). The Twelve Mile Creek Precast Prestressed Segmental Bridges. PCI Journal, 30–47.
dc.relation.references[4] Bayraktar, A., Kudu, F. N., Sömerkan, S., Demirtas, B., & Akköse, M. (2020). Near-fault vertical ground motion effects on the response of balanced cantilever bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 173(1), 17–33. https://doi.org/10.1680/jbren.19.00007
dc.relation.references[5] Bazant, B. Z. P., & Kim, J. (1990). Segmental boxgirder : deflection probability and bayesian updating, 115(10), 2528–2547.
dc.relation.references[6] Bellevue, L., & Towell, P. J. (2004). Creep and shrinkage effects in segmental bridges, 1–8. https://doi.org/10.1061/40492(2000)47
dc.relation.references[7] Bishara, A. G., & Papakonstantinou, N. G. (1990). Analysis Of Cast In-Place Concrete Segmental Cantilever Bridges. Journal of Structural Engineering, 1247–1268.
dc.relation.references[8] Burgess, C. J. (1872). Construction for Long-Span Bridges. Transportation Research Record 1712, 1155(0), 157–163.
dc.relation.references[9] Carvajal -Monsalve, N., & Carlos Botero -Palacio, J. (2017). Evolution of geometrical design parameters for cast in place bridges built using the cantilever method. In UIS Ingenierías (Vol. 16, Issue 1).
dc.relation.references[10] Castrodale, R. W. (2016). Lightweight Concrete For Long-Span Bridges-Past, Present And Future. Journal - Prestressed Concrete Institute.
dc.relation.references[11] Chadha, G., & Ketchek, K. (1972). Computerized structural design and analysis of continuous prestressed concrete box-girder bridges built by cantilever method of construction. Computers and Structures, 2(5–6), 915–932. https://doi.org/10.1016/0045-7949(72)90047-8
dc.relation.references[12] Cho, A. (2017). Elevated engineering. Engineering News-Record, 278(8), 16–20.
dc.relation.references[13] Domaneschi, M., Cucuzza, R., Marano, G. C., Chiaia, B., Ferro, G. A., Villa, V., Argyroudis, S., & Mitoulis, S. (2024). Resilience Analysis of Different Retrofitting Solutions for a Prestressed Concrete Viaduct. Procedia Structural Integrity, 62, 1028–1035. https://doi.org/10.1016/j.prostr.2024.09.137
dc.relation.references[14] Donnelly, L., & Wise, G. L. (2015). Adelaide’s south road superway. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 168(4), 275–286. https://doi.org/10.1680/bren.14.00012
dc.relation.references[15] Fergestad, S., & Sturla K. Rarnbjør, S. (1999). Raftsundet Bridge in Lofoten, Norway. Structural Engineering International, 96–99.
dc.relation.references[16] Fernández, C., and J. Manterola. 1970. “Construcción de Puentes Por Voladizos Sucesivos Mediante Dovelas Prefabricadas.” Revista de obras públicas.
dc.relation.references[17] Ferreira, A., & Lima, B. (2015). Comparative study of prestressing consumptions in 7 different constructive methods for 75 m multi-span box girders.
dc.relation.references[18] Gale, S. F. (2008). Modern marvel: The Otay River bridge. Modern marvel: The Otay River bridge, 53(6), 38–47.
dc.relation.references[19] Galvis, F., & Nelson Betancour. (2015). Diseño sísmico de puentes ordinarios y esenciales en Colombia Technology-based learning environments View project. Researchgate. https://www.researchgate.net/publication/317600968
dc.relation.references[20] Ganapathy Murugesh, & Cormier, K. (2007). When Lighter is Better, Benicia Martinez Bridge. California Department of Transportation, 20–29.
dc.relation.references[21] Ghali, A., Elbadry, M., & Megally, S. (2000). Two-year deflections of the confederation bridge. Canadian Journal of Civil Engineering, 27(6), 1139–1149. https://doi.org/10.1139/cjce-27-6-1139
dc.relation.references[22] Harridge, S. (2011). Launching gantries for building pre-cast segmental balanced cantilever bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 21(4), 406–412. https://doi.org/10.2749/101686611X13131377725406
dc.relation.references[23] Hedegaard, B. D., Anthony, S., Bridge, F., Modeling, I. I. F., ASCE, A. M., French, C. E. W. Asce, M. (2017). Time-Dependent Monitoring and Modeling of I-35W,22(7),1–15. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001054.
dc.relation.references[24] Hedjazi, S., Rahai, A., & Sennah, K. (2007). Evaluation of creep effects on the time-dependent deflections and stresses in prestressed concrete bridges. Bridge Structures, 3(2), 119–132. https://doi.org/10.1080/15732480701496629
dc.relation.references[25] Hedjazi, S., Rahai, A., & Sennah, K. (2005). Long-term behavior of segmentally-erected prestressed concrete box-girder bridges. Structural Engineering and Mechanics, 20(6), 1–44. https://doi.org/10.12989/sem.2005.20.6.673
dc.relation.references[26] Herbert, T. J. (1990). Computer Analysis of Deflections and Stresses in Stage Constructed Concrete Bridges. PCI Journal, 52–63.
dc.relation.references[27] Iglesias, C. (2006). Long-term behavior of precast segmental cantilever bridges. Journal of Bridge Engineering, 11(3), 340–349. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:3(340)
dc.relation.references[28] Jung, S., Ghaboussi, J., & Marulanda, C. (2007). Field calibration of time-dependent behavior in segmental bridges using self-learning simulation. Engineering Structures, 29(10), 2692–2700. https://doi.org/10.1016/j.engstruct.2006.12.017
dc.relation.references[29] Kamaitis, Z. (2008). Field investigation of joints in precast post- tensioned segmental concrete bridges. Baltic Journal of Road and Bridge Engineering, 198–205. https://doi.org/10.3846/1822- 427X.2008.3.198-205 Dept.
dc.relation.references[30] Kwak, H. G., & Son, J. K. (2004). Span ratios in bridges constructed using a balanced cantilever method. Construction and Building Materials, 18(10), 767–779. https://doi.org/10.1016/j.conbuildmat.2004.04.022
dc.relation.references[31] Kwak, H. G., & Son, J. K. (2004). Design moment variations in bridges constructed using a balanced cantilever method. Construction and Building Materials, 18(10), 753–766. https://doi.org/10.1016/j.conbuildmat.2004.04.021
dc.relation.references[32] Kwak, H.-G., & Son, J.-K. (2002). Determination of Design Moments in Bridges Constructed by Balanced Cantilever Method. Engineering Structures, 24(5), 639–648. https://doi.org/10.1016/S0141-0296(01)00128-6
dc.relation.references[32] Kwak, H.-G., & Son, J.-K. (2002). Determination of Design Moments in Bridges Constructed by Balanced Cantilever Method. Engineering Structures, 24(5), 639–648. https://doi.org/10.1016/S0141-0296(01)00128-6
dc.relation.references[34] Liu, X. P., Y.W., Q., LEUNG, Z. P., & YUE, L. (2007). Construction of the Precast Segmental Approach Structures for Sutong Bridge. ICE Conference, (May 2007), 1–9.
dc.relation.references[35] Lucko, G., & de la Garza, J. M. (2003). Constructability Considerations for Balanced Cantilever Construction. Practice Periodical on Structural Design and Construction, 8(1), 47–56. https://doi.org/10.1061/(ASCE)1084-0680(2003)8:1(47)
dc.relation.references[36] Maguire, M., Moen, C. D., Roberts-Wollmann, C., & Cousins, T. (2015). Field Verification of Simplified Analysis Procedures for Segmental Concrete Bridges. Journal of Structural Engineering, 141(1), D4014007. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001111
dc.relation.references[37] Maldar, M., Kianoush, M. R., & Lachemi, M. (2024). Time-dependant effects on curved precast segmentally constructed balanced cantilever bridges. Engineering Structures, 310. https://doi.org/10.1016/j.engstruct.2024.118147
dc.relation.references[38] Malm, R., & Sundquist, H. (2010). Time-dependent analyses of segmentally constructed balanced cantilever bridges. Engineering Structures, 32(4), 1038–1045. https://doi.org/10.1016/j.engstruct.2009.12.030
dc.relation.references[39] Marshall, Vernon, Gamble, W. L. (1981). Time-Dependent Deformations In Segmental Prestressed Concrete Bridges. Civil Engineering Studies, Structural Research Series (University of Illinois at Urbana-Champaign, Department of Civil Engineering), 495, 242.
dc.relation.references[40] Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., Buelvas-Moya, H. A., Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., & Armando Buelvas-Moya, H. (2019). Factor de amplificación dinámico ante la caída del carro de avance durante la construcción de un puente de viga cajón por el método de voladizos sucesivos. UIS Ingenierías, 18(3), 193–202. https://doi.org/10.18273/revuin.v18n3-2019020
dc.relation.references[40] Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., Buelvas-Moya, H. A., Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., & Armando Buelvas-Moya, H. (2019). Factor de amplificación dinámico ante la caída del carro de avance durante la construcción de un puente de viga cajón por el método de voladizos sucesivos. UIS Ingenierías, 18(3), 193–202. https://doi.org/10.18273/revuin.v18n3-2019020
dc.relation.references[41] Matt, P. (1982). Status of Segmental Bridge Construction in Europe. PCI Journal, 104–125.
dc.relation.references[42] Matt, Peter, Voumard, Jean-Marc, Marti, Peter, Thurlimann, Bruno, Voumard, J.-M. (1988). Main River Span Structure Of Thegateway Bridge. Concrete International, 10(5), 34–43.
dc.relation.references[43] Megally, S. H., Seible, F., & Dowell, R. K. (2003). Seismic performance of precast segmental bridges: Segment-to-segment joints subjected to high flexural moments and high shears. PCI Journal, 48(3), 72–90. https://doi.org/10.15554/pcij.05012003.72.90
dc.relation.references[44] Megally, S. H., Veletzos, M. J., Burnell, K., Restrepo, J. I., & Seible, F. (2009). Seismic performance of precast concrete segmental bridges: Summary of experimental research on segment-to-segment joints. PCI Journal, 54(2), 116–142. https://doi.org/10.15554/pcij.03012009.116.142
dc.relation.references[45] Moreton, a J. (1990). Segmental Bridge Construction in Florida; a Review and Perspective. ICE Proceedings, 88(August), 381–419. https://doi.org/10.1680/iicep.1990.6842
dc.relation.references[46] Nair, R. S. & Iverson, J. K., (1982). Design and Construction of the Kishwaukee River Bridges. Prestressed Concrete Institute, 22–47.
dc.relation.references[47] Najafi, R., Hedjazi, S., & Sennah, K. (2016). Finite-Element Modeling for Frp Strengthening of Prestressed Concrete Box Girder Bridges Built By. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 1–12.
dc.relation.references[48] Pimanmas, A. (2007). The effect of long-term creep and prestressing on moment redistribution of balanced cantilever cast-in-place segmental bridge. Songklanakarin Journal of Science and Technology, 29(1), 205–216.
dc.relation.references[49] Pothecary C. H. & Christie, T. J. C., (1989). Torridge bridge. Structural Engineering Group, 191–210.
dc.relation.references[50] Rahai, A., & Abasi, A. (2018). Seismic Performance And Long-Term Behavior Of Balanced Cantilever Light-Weight Concrete Bridges. Earthquake Engineering. https://www.researchgate.net/publication/341903083
dc.relation.references[51] Ramakko, 0. E. (1984). The Twelve Mile Creek bridges - Design and construction’ 0 . Canadian Journal of Civil Engineering, 771–781.
dc.relation.references[52] Robertson, I. N. (2005). Prediction of vertical deflections for a long- span prestressed concrete bridge structure. Engineering Structures, 27(12 SPEC. ISS.), 1820–1827. https://doi.org/10.1016/j.engstruct.2005.05.013
dc.relation.references[53] Saunders, J. R. (1991). River Dee Viaduct - Design. Proceedings of the Institution of Civil Engineers Part 1-Design and Construction, 90(April), 237–257.
dc.relation.references[54] Shiu, K.-N., & Russell, H. (1987). Effects of time-dependent concrete properties on prestress losses. Canadian Journal of Civil Engineering, (14), 649–654. https://doi.org/10.1139/l87-095
dc.relation.references[55] Shushkewich, K. W. (1998). Design of Segmental Bridges for Thermal Gradient. PCI JOURNAL, 120–137. https://doi.org/10.15554/pcij.07011998.92.120.137
dc.relation.references[56] Shushkewich, K. W. (1986). Time-dependent analysis of segmental bridges. Computers and Structures, 23(1), 95–118. https://doi.org/10.1016/0045-7949(86)90111-2
dc.relation.references[57] Song, X., Melhem, H., Li, J., Xu, Q., & Cheng, L. (2016). Effects of Solar Temperature Gradient on Long-Span Concrete Box Girder during Cantilever Construction. Journal of Bridge Engineering, 21(3), 4015061. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000844
dc.relation.references[58] Suttipan, C., Dir, P., Vonganan, B., Mgr, T., & Bridges, M. (2002). Wat Nakorn-In Bridge, Bangkok Thailand. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 156–157.
dc.relation.references[59] Tadros, M. K. (1979). Long-Term Stresses and Deformation of Segmental Bridges. PCI Journal, 66–87.
dc.relation.references[60] Taib, I. B. M., Nandy, S., Liew, C., & Ishak, B. (2009). Subang Kelana Link, Malaysia. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 19(1), 53–57.
dc.relation.references[61] Van Zyl, Stefanus, F., & Alexander, C. (1979). Documents. ASCE J Struct Div, 105(11), 2399–2417.
dc.relation.references[62] Veletzos, M. J., & Restrepo, J. I. (2009). Influence of vertical earthquake motion and pre- earthquake stress on joint response of precast concrete segmental bridges. PCI Journal, 99–128. https://doi.org/10.15554/pcij.06012009.99.128
dc.relation.references[63] Vokunnaya, Ravindranatha, & Tanaji.Thite. (2017). Construction Stage Analysis of Segmental. International Journal of Civil Engineering and Technology (IJCIET), 8(2), 373–382.
dc.relation.references[64] Vurpillot, S., Krueger, G., Benouaich, D., Clément, D., & Inaudi, D. (1998). Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements. ACI Structural Journal. https://doi.org/10.14359/566
dc.relation.references[65] Wang, S., & Fu, C. C. (2015). Simplification of Creep and Shrinkage Analysis of Segmental Bridges. Journal of Bridge Engineering, 20(8), B6014001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000728
dc.relation.references[66] Wang, Y., Zhu, J., Jia, S., & Akiyama, M. (2025). Time-dependent deflection prediction of long-span prestressed concrete bridges considering the environmental effects. Engineering Structures, 322. https://doi.org/10.1016/j.engstruct.2024.119163
dc.relation.references[67] Yu, C. K., (1984). Segmental Box Girders for the High Level West Seattle Bridge, (1), 52–67.
dc.relation.references[68] González-La Rotta, E. C., & Becerra-Fernández, M. (2017). Plataformas de intercambio con ruteo de vehículos. Una revisión del estado del arte. In DYNA (Colombia) (Vol. 84, Issue 200, pp.271–280). Universidad Nacional de Colombia.
dc.relation.references[69] Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary study. In Information and Software Technology (Vol. 52, Issue 8, pp. 792–805). Elsevier B.V. https://doi.org/10.1016/j.infsof.2010.03.006
dc.relation.references[70] Patankar, S. V. (1980). Numerical-heat-transfer-and-fluid-flow (Hemisphere Publishing Corporation, Ed.).
dc.relation.references[71] Peña Tibaduiza, E. M., Garavito Hernández, E. A., Pérez Figueredo, L. E., & Moratto Chimenty, E. (2017). Revisión de la Literatura sobre el Problema de Programación de “Flow Shop” Híbrido con Máquinas Paralelas no Relacionadas. Ingeniería, 22(1), 46. https://doi.org/10.14483/udistrital.jour.reving.2017.1.a03
dc.relation.references[72] Rudas, J. S., Gómez, L. M., & Toro, A. O. (n.d.). Revisión sistemática de literatura. Caso de estudio: Modelamiento de un par deslizante con fines de predecir desgaste Systematic literature reviews. Case of study: Modeling of a rubbing pair for wear purpose.
dc.relation.references[73] Velásquez, J. D. (2014a). Una guía corta para escribir Revisiones Sistemáticas de Literatura Parte 2. In DYNA (Colombia). http://orcid.org/0000-0003-3043-3037
dc.relation.references[74] Velásquez, J. D. (2014b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura Parte 1. In DYNA (Colombia) (Vol. 81, Issue 187, pp. 216–234). Asian Social Science. http://orcid.org/0000-0003-3043-3037
dc.relation.references[75] Velásquez, J. D. (2015a). Una guía corta para escribir revisiones sistemáticas de literatura Parte 3. In DYNA (Colombia) (Vol. 82, Issue 189, pp. 9–12). Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v82n189.48931
dc.relation.references[76] Velásquez, J. D. (2015b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura Parte 4. In DYNA (Colombia) (Vol. 82, Issue 190, pp. 9–12). Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v82n190.49511
dc.relation.references[77] Carrillo, J., Lizarazo, J. M., & Bonett, R. (2015). Effect of lightweight and low-strength concrete on seismic performance of thin lightly-reinforced shear walls. Engineering Structures, 93, 61–69. https://doi.org/10.1016/j.engstruct.2015.03.022
dc.relation.references[78] Colmenares, K. C. (2016). Análisis de la conveniencia del uso del concreto liviano como material estructural mediante la comparación de cuantías de materiales de construcción de edificaciones de muros portantes ubicadas en la ciudad de Bogotá. Escuela Colombiana de Ingenieria Julio Garavito.
dc.relation.references[79] Comite ACI 213. (2014). Guide For Structural Lightweight-Aggregate ACI 213R-14 (American Concrete Institute, Ed.). ISBN:978-0-87031-897-9.
dc.relation.references[80] Comite ACI 318. (2014). Requisitos de Reglamento para Concreto Estructural (ACI 318S-14) (American Concrete Institute, Ed.). ISBN: 978-0-87031-964-8.
dc.relation.references[81] Dilli, M. E., Atahan, H. N., & Şengül, C. (2015). A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Construction and Building Materials, 101, 260–267. https://doi.org/10.1016/j.conbuildmat.2015.10.080
dc.relation.references[82] Falconi, A., Hou Huang, D., & Caicedo, J. (2009). Tesina de Grado, Hormigones Livianos De Alto Desempeño. https://www.researchgate.net/publication/28792438
dc.relation.references[83] FHWA-HIF-19-067. (2021). Lightweight Concrete Bridge Design Primer. Federal Highway Administration.
dc.relation.references[84] FHWA/RD-85/045. (1985). Criteria For Designing Lightweight Concrete Bridges National Technical Information Service. Federal Highway Administration.
dc.relation.references[85] López, M., & Kahn, L. F. (2007). Hormigón liviano de alto desempeño - Una comparación entre pérdidas de pretensado reales y estimadas por los códigos de diseño. Revista Ingenieria de Construccion, 22(1), 59–69. https://doi.org/10.4067/s0718-50732007000100006
dc.relation.references[86] Borges, H., Martínez, G., & Graciano, C. (2016). Impact response of expanded metal tubes: A numerical investigation. Thin-Walled Structures, 105, 71–80. https://doi.org/10.1016/j.tws.2016.04.005
dc.relation.references[87] Chen, V. C. P., Tsui, K. L., Barton, R. R., & Meckesheimer, M. (2006). A review on design, modeling and applications of computer experiments. In IIE Transactions (Institute of Industrial Engineers) (Vol. 38, Issue 4, pp. 273–291). https://doi.org/10.1080/07408170500232495
dc.relation.references[88] Graciano, C., & Mendes, J. (2014). Elastic buckling of longitudinally stiffened patch loaded plate girders using factorial design. Journal of Constructional Steel Research, 100, 229–236. https://doi.org/10.1016/j.jcsr.2014.04.030
dc.relation.references[89] Montgomery, D. C. . (2013). Diseño y análisis de experimentos (NORIEGA EDITORES, Ed.; Segunda). Limusa Wiley.
dc.relation.references[90] Simpson, T. W., Peplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. In Engineering with Computers (Vol. 17).
dc.relation.references[91] Tran, K. L., Douthe, C., Sab, K., Dallot, J., & Davaine, L. (2014). A preliminary design formula for the strength of stiffened curved panels by design of experiment method. Thin-Walled Structures, 79, 129–137. https://doi.org/10.1016/j.tws.2014.02.012
dc.relation.references[92] AASHTO. (1999). Guide Specifications for Design and Construction of Segmental Concrete Bridges (Segunda Edición). Published by the American Association of State Highway and Transportation.
dc.relation.references[93] AASHTO. (2013). Bridge design specifications (Highway subcommittee on bridges and structures, Ed.). American Association of State Highway and Transportation Officials (AASHTO).
dc.relation.references[94] AIS Comite 200. (2015). NORMA COLOMBIANA DE DISEÑO DE PUENTES-LRFD-CCP 14 (ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA – AIS, Ed.). Ministerio de transporte de Colombia.
dc.relation.references[95] Bo Hu, & Dongzhou Huang. (2020). Concrete Segmental Bridges (Taylor & Francis Group, Ed.; Primera Edición). CRC Press.
dc.relation.references[96] Castro, D., & Céspedes, E. (2017). Tesis De Maestría, Evaluación Presupuestal Para Dos Tipologías Estructurales De Puentes En Concreto. Universidad Católica De Colombia.
dc.relation.references[97] José Diogo Honório, by. (2007). Tesis de Maestría; Conceptual design of long-span cantilever constructed concrete bridges (Konceptuell utformning av konsolutbyggda betongbroar med långa spann). Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering.
dc.relation.references[98] Manterola, J. (2006). Puentes apuntes para su diseño, cálculo y construcción (Edicion Primera). COLEGIO DE INGENIEROS DE CAMINIOS, CANALES y PUERTOS.
dc.relation.references[99] Ministerio de Fomento. (2000). Obras de paso de nueva construcción. In Dirección General de Carreteras de España.
dc.relation.references[100] Sétra. (2003). Desing Guide, Prestressed concrete bridges built using the cantilever method. Service d’études techniques des routes et autoroutes -Technical Center for Highways and motorways) / Large Bridges Division.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembMateriales de construcción
dc.subject.lembDiseño de estructuras
dc.subject.lembConstrucción de puentes
dc.subject.lembEstructuras de hormigón
dc.subject.proposalVoladizos Balanceadosspa
dc.subject.proposalPuentes segmentalesspa
dc.subject.proposalConcreto livianospa
dc.subject.proposalConcreto de alta resistenciaspa
dc.subject.proposalConcreto postensadospa
dc.subject.proposalBalanced cantileverseng
dc.subject.proposalSegmental bridgeseng
dc.subject.proposalLightweight concreteeng
dc.subject.proposalHigh-strength concreteeng
dc.subject.proposalPost-tensioned concreteeng
dc.titleEstudio de la incidencia de las características del concreto en el consumo de materiales en puentes segmentales, diseñados por el método de los voladizos balanceadosspa
dc.title.translatedStudy of the impact of concrete characteristics on material consumption in segmental, bridges designed using the balanced cantilever methodeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Estructuras
Tamaño:
13.51 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: