Estudio de la incidencia de las características del concreto en el consumo de materiales en puentes segmentales, diseñados por el método de los voladizos balanceados
dc.contributor.advisor | Blandón Valencia, John Jairo | |
dc.contributor.author | Herrera Baquero, Leonardo | |
dc.contributor.orcid | Blandón Valencia, John Jairo [0000-0003-3229-6910] | |
dc.date.accessioned | 2025-08-22T20:28:39Z | |
dc.date.available | 2025-08-22T20:28:39Z | |
dc.date.issued | 2025-08-15 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | Empleando la metodología de diseño de experimentos, se evalúa la incidencia de la implementación de concreto liviano de alto desempeño en el análisis y diseño de puentes segmentales, construidos por el método de los voladizos balanceados, empleando para este propósito el software de elementos finitos CSI BRIDGE licenciado por INTERACCION INGENIERIA SAS, donde se analiza la interacción de 3 factores: Luz principal del puente (L), densidad del concreto (ρc) y las dimensiones del canto de la viga cajón (H y h). Se evaluaron 4 variables respuesta principales para cada uno de los puentes analizados, la primera consistente en la relación de la demanda de momento negativo en construcción RM=(Mij/MCD), la segunda es relación de la cantidad de volumen de concreto de la super estructura por unidad de área del tablero RV=(Vij/VCD), la tercera relación corresponde a la demanda acero pasivo por unidad de área del tablero RA=(Aij/ACD), y la cuarta consiste en la relación de la demanda de acero de preesfuerzo por unidad de área del tablero, RP=(Pij/PCD), donde el subíndice i denota el tipo concreto convencional o liviano, el subíndice j denota el tipo de sección de análisis: diseño o reducidas y el subíndice CD denota Concreto Convencional y secciones de Diseño original. Las estructuras analizadas consisten en puentes ya construidos en Colombia diseñados por empresas reconocidas en el sector de la infraestructura, los cuales fueron escogidos buscando tener un rango amplio luces representativas, el primero el más corto Puente El Muña, es un puente de 130m de longitud y luz principal de 60m, construido en el municipio de Sibaté Cundinamarca diseñado por la Firma PEDELTA, el segundo es el puente La Molinilla de 270m de longitud total y luz principal de 130m construido en el municipio de San Vicente de Churri Santander diseñado por Farias y SIA, y el tercer puente corresponde al viaducto Moravia de 370m de longitud total y luz principal de 185m, construido en el municipio de Medellín Antioquia, diseñador por Ingenieros Civiles Consultores. La metodología consistió en replicar los análisis de diseño con concretos convencionales como punto de partida y de allí se procedió a realizar los análisis paralelos con la implementación de concreto liviano con el propósito de evaluar las variables respuesta objetivo. Se destaca de los resultados una disminución importante en el consumo de concreto tanto de la super estructura como de la subestructura, pues al tenerse una disminución de la masa sísmica participante se disminuye por consecuencia la cortante basal y esto indica intrínsicamente una economía en columnas y sistema de cimentación, por lo tanto para evaluar la conveniencia de la implementación de concretos liviano en la construcción de puentes por voladizos sucesivos es necesario revisarse de manera integral en el diseño. (Tomado de la fuente) | spa |
dc.description.abstract | Using the design of experiments methodology, the impact of the implementation of high-performance lightweight concrete in the analysis and design of segmental bridges, built by the balanced cantilever method, is evaluated, using for this purpose the CSI BRIDGE finite element software licensed by INTERACCION INGENIERIA SAS, where the interaction of 3 factors is analyzed: Main span of the bridge (L), concrete density (ρc) and the dimensions of the box girder edge (H and h). Four main response variables were evaluated for each of the bridges analyzed: the first is the ratio of the negative moment demand during construction RM=(Mij/MCD); the second is the ratio of the amount of concrete volume of the superstructure per unit area of the deck RV=(Vij/VCD); the third is the ratio of passive steel demand per unit area of the deck RA=(Aij/ACD); and the fourth is the ratio of prestressing steel demand per unit area of the deck, RP=(Pij/PCD), where the subscript i denotes the type of conventional or lightweight concrete, the subscript j denotes the type of analysis section: design or reduced, and the subscript CD denotes conventional concrete and original design sections. The structures analyzed consist of bridges already built in Colombia, designed by recognized companies in the infrastructure sector. These bridges were chosen to offer a wide range of representative spans. The first, the shortest, Puente El Muña, is a 130m long bridge with a main span of 60m, built in the municipality of Sibaté, Cundinamarca, designed by the firm PEDELTA. The second is the La Molinilla Bridge, 270m long with a main span of 130m, built in the municipality of San Vicente de Churri, Santander, designed by Farias and SIA. The third bridge is the Moravia Viaduct, 370m long with a main span of 185m, built in the municipality of Medellín, Antioquia, designed by Ingenieros Civiles Consultores. The methodology consisted of replicating the design analyses using conventional concrete as a starting point, and then proceeding to perform parallel analyses with the implementation of lightweight concrete to evaluate the target response variables. The results highlight a significant decrease in concrete consumption in both the superstructure and the substructure, since by having a decrease in the participating seismic mass, the basal shear is consequently reduced and this intrinsically indicates an economy in columns and foundation system, therefore, to evaluate the convenience of implementing lightweight concrete in the construction of bridges by successive cantilevers, it is necessary to comprehensively review the design. | eng |
dc.description.curriculararea | Ingeniería Civil.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ingeniería Estructuras | |
dc.description.methods | Diseño de experimentos | |
dc.description.notes | Contiene material didáctico, tablas, figuras y planos | spa |
dc.description.researcharea | Diseño y construccion de puentes por voladizos sucesivos | |
dc.description.technicalinfo | Modelación matemática de puentes empleando el programa en CSI BRIDGE | spa |
dc.format.extent | 372 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88443 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Estructuras | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | [1] Anon. (1984). Dauphin Island Bridge. Journal - Prestressed Concrete Institute, 29(1). | |
dc.relation.references | [2] Ates, S. (2011). Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8),3809–3820. https://doi.org/10.1016/j.apm.2011.02.016 | |
dc.relation.references | [3] Bassi, K. G., & Lin, W. L. (1984). The Twelve Mile Creek Precast Prestressed Segmental Bridges. PCI Journal, 30–47. | |
dc.relation.references | [4] Bayraktar, A., Kudu, F. N., Sömerkan, S., Demirtas, B., & Akköse, M. (2020). Near-fault vertical ground motion effects on the response of balanced cantilever bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 173(1), 17–33. https://doi.org/10.1680/jbren.19.00007 | |
dc.relation.references | [5] Bazant, B. Z. P., & Kim, J. (1990). Segmental boxgirder : deflection probability and bayesian updating, 115(10), 2528–2547. | |
dc.relation.references | [6] Bellevue, L., & Towell, P. J. (2004). Creep and shrinkage effects in segmental bridges, 1–8. https://doi.org/10.1061/40492(2000)47 | |
dc.relation.references | [7] Bishara, A. G., & Papakonstantinou, N. G. (1990). Analysis Of Cast In-Place Concrete Segmental Cantilever Bridges. Journal of Structural Engineering, 1247–1268. | |
dc.relation.references | [8] Burgess, C. J. (1872). Construction for Long-Span Bridges. Transportation Research Record 1712, 1155(0), 157–163. | |
dc.relation.references | [9] Carvajal -Monsalve, N., & Carlos Botero -Palacio, J. (2017). Evolution of geometrical design parameters for cast in place bridges built using the cantilever method. In UIS Ingenierías (Vol. 16, Issue 1). | |
dc.relation.references | [10] Castrodale, R. W. (2016). Lightweight Concrete For Long-Span Bridges-Past, Present And Future. Journal - Prestressed Concrete Institute. | |
dc.relation.references | [11] Chadha, G., & Ketchek, K. (1972). Computerized structural design and analysis of continuous prestressed concrete box-girder bridges built by cantilever method of construction. Computers and Structures, 2(5–6), 915–932. https://doi.org/10.1016/0045-7949(72)90047-8 | |
dc.relation.references | [12] Cho, A. (2017). Elevated engineering. Engineering News-Record, 278(8), 16–20. | |
dc.relation.references | [13] Domaneschi, M., Cucuzza, R., Marano, G. C., Chiaia, B., Ferro, G. A., Villa, V., Argyroudis, S., & Mitoulis, S. (2024). Resilience Analysis of Different Retrofitting Solutions for a Prestressed Concrete Viaduct. Procedia Structural Integrity, 62, 1028–1035. https://doi.org/10.1016/j.prostr.2024.09.137 | |
dc.relation.references | [14] Donnelly, L., & Wise, G. L. (2015). Adelaide’s south road superway. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 168(4), 275–286. https://doi.org/10.1680/bren.14.00012 | |
dc.relation.references | [15] Fergestad, S., & Sturla K. Rarnbjør, S. (1999). Raftsundet Bridge in Lofoten, Norway. Structural Engineering International, 96–99. | |
dc.relation.references | [16] Fernández, C., and J. Manterola. 1970. “Construcción de Puentes Por Voladizos Sucesivos Mediante Dovelas Prefabricadas.” Revista de obras públicas. | |
dc.relation.references | [17] Ferreira, A., & Lima, B. (2015). Comparative study of prestressing consumptions in 7 different constructive methods for 75 m multi-span box girders. | |
dc.relation.references | [18] Gale, S. F. (2008). Modern marvel: The Otay River bridge. Modern marvel: The Otay River bridge, 53(6), 38–47. | |
dc.relation.references | [19] Galvis, F., & Nelson Betancour. (2015). Diseño sísmico de puentes ordinarios y esenciales en Colombia Technology-based learning environments View project. Researchgate. https://www.researchgate.net/publication/317600968 | |
dc.relation.references | [20] Ganapathy Murugesh, & Cormier, K. (2007). When Lighter is Better, Benicia Martinez Bridge. California Department of Transportation, 20–29. | |
dc.relation.references | [21] Ghali, A., Elbadry, M., & Megally, S. (2000). Two-year deflections of the confederation bridge. Canadian Journal of Civil Engineering, 27(6), 1139–1149. https://doi.org/10.1139/cjce-27-6-1139 | |
dc.relation.references | [22] Harridge, S. (2011). Launching gantries for building pre-cast segmental balanced cantilever bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 21(4), 406–412. https://doi.org/10.2749/101686611X13131377725406 | |
dc.relation.references | [23] Hedegaard, B. D., Anthony, S., Bridge, F., Modeling, I. I. F., ASCE, A. M., French, C. E. W. Asce, M. (2017). Time-Dependent Monitoring and Modeling of I-35W,22(7),1–15. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001054. | |
dc.relation.references | [24] Hedjazi, S., Rahai, A., & Sennah, K. (2007). Evaluation of creep effects on the time-dependent deflections and stresses in prestressed concrete bridges. Bridge Structures, 3(2), 119–132. https://doi.org/10.1080/15732480701496629 | |
dc.relation.references | [25] Hedjazi, S., Rahai, A., & Sennah, K. (2005). Long-term behavior of segmentally-erected prestressed concrete box-girder bridges. Structural Engineering and Mechanics, 20(6), 1–44. https://doi.org/10.12989/sem.2005.20.6.673 | |
dc.relation.references | [26] Herbert, T. J. (1990). Computer Analysis of Deflections and Stresses in Stage Constructed Concrete Bridges. PCI Journal, 52–63. | |
dc.relation.references | [27] Iglesias, C. (2006). Long-term behavior of precast segmental cantilever bridges. Journal of Bridge Engineering, 11(3), 340–349. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:3(340) | |
dc.relation.references | [28] Jung, S., Ghaboussi, J., & Marulanda, C. (2007). Field calibration of time-dependent behavior in segmental bridges using self-learning simulation. Engineering Structures, 29(10), 2692–2700. https://doi.org/10.1016/j.engstruct.2006.12.017 | |
dc.relation.references | [29] Kamaitis, Z. (2008). Field investigation of joints in precast post- tensioned segmental concrete bridges. Baltic Journal of Road and Bridge Engineering, 198–205. https://doi.org/10.3846/1822- 427X.2008.3.198-205 Dept. | |
dc.relation.references | [30] Kwak, H. G., & Son, J. K. (2004). Span ratios in bridges constructed using a balanced cantilever method. Construction and Building Materials, 18(10), 767–779. https://doi.org/10.1016/j.conbuildmat.2004.04.022 | |
dc.relation.references | [31] Kwak, H. G., & Son, J. K. (2004). Design moment variations in bridges constructed using a balanced cantilever method. Construction and Building Materials, 18(10), 753–766. https://doi.org/10.1016/j.conbuildmat.2004.04.021 | |
dc.relation.references | [32] Kwak, H.-G., & Son, J.-K. (2002). Determination of Design Moments in Bridges Constructed by Balanced Cantilever Method. Engineering Structures, 24(5), 639–648. https://doi.org/10.1016/S0141-0296(01)00128-6 | |
dc.relation.references | [32] Kwak, H.-G., & Son, J.-K. (2002). Determination of Design Moments in Bridges Constructed by Balanced Cantilever Method. Engineering Structures, 24(5), 639–648. https://doi.org/10.1016/S0141-0296(01)00128-6 | |
dc.relation.references | [34] Liu, X. P., Y.W., Q., LEUNG, Z. P., & YUE, L. (2007). Construction of the Precast Segmental Approach Structures for Sutong Bridge. ICE Conference, (May 2007), 1–9. | |
dc.relation.references | [35] Lucko, G., & de la Garza, J. M. (2003). Constructability Considerations for Balanced Cantilever Construction. Practice Periodical on Structural Design and Construction, 8(1), 47–56. https://doi.org/10.1061/(ASCE)1084-0680(2003)8:1(47) | |
dc.relation.references | [36] Maguire, M., Moen, C. D., Roberts-Wollmann, C., & Cousins, T. (2015). Field Verification of Simplified Analysis Procedures for Segmental Concrete Bridges. Journal of Structural Engineering, 141(1), D4014007. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001111 | |
dc.relation.references | [37] Maldar, M., Kianoush, M. R., & Lachemi, M. (2024). Time-dependant effects on curved precast segmentally constructed balanced cantilever bridges. Engineering Structures, 310. https://doi.org/10.1016/j.engstruct.2024.118147 | |
dc.relation.references | [38] Malm, R., & Sundquist, H. (2010). Time-dependent analyses of segmentally constructed balanced cantilever bridges. Engineering Structures, 32(4), 1038–1045. https://doi.org/10.1016/j.engstruct.2009.12.030 | |
dc.relation.references | [39] Marshall, Vernon, Gamble, W. L. (1981). Time-Dependent Deformations In Segmental Prestressed Concrete Bridges. Civil Engineering Studies, Structural Research Series (University of Illinois at Urbana-Champaign, Department of Civil Engineering), 495, 242. | |
dc.relation.references | [40] Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., Buelvas-Moya, H. A., Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., & Armando Buelvas-Moya, H. (2019). Factor de amplificación dinámico ante la caída del carro de avance durante la construcción de un puente de viga cajón por el método de voladizos sucesivos. UIS Ingenierías, 18(3), 193–202. https://doi.org/10.18273/revuin.v18n3-2019020 | |
dc.relation.references | [40] Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., Buelvas-Moya, H. A., Martínez-Leal, S., Osorio-Osorio, D., Benjumea-Royero, J., & Armando Buelvas-Moya, H. (2019). Factor de amplificación dinámico ante la caída del carro de avance durante la construcción de un puente de viga cajón por el método de voladizos sucesivos. UIS Ingenierías, 18(3), 193–202. https://doi.org/10.18273/revuin.v18n3-2019020 | |
dc.relation.references | [41] Matt, P. (1982). Status of Segmental Bridge Construction in Europe. PCI Journal, 104–125. | |
dc.relation.references | [42] Matt, Peter, Voumard, Jean-Marc, Marti, Peter, Thurlimann, Bruno, Voumard, J.-M. (1988). Main River Span Structure Of Thegateway Bridge. Concrete International, 10(5), 34–43. | |
dc.relation.references | [43] Megally, S. H., Seible, F., & Dowell, R. K. (2003). Seismic performance of precast segmental bridges: Segment-to-segment joints subjected to high flexural moments and high shears. PCI Journal, 48(3), 72–90. https://doi.org/10.15554/pcij.05012003.72.90 | |
dc.relation.references | [44] Megally, S. H., Veletzos, M. J., Burnell, K., Restrepo, J. I., & Seible, F. (2009). Seismic performance of precast concrete segmental bridges: Summary of experimental research on segment-to-segment joints. PCI Journal, 54(2), 116–142. https://doi.org/10.15554/pcij.03012009.116.142 | |
dc.relation.references | [45] Moreton, a J. (1990). Segmental Bridge Construction in Florida; a Review and Perspective. ICE Proceedings, 88(August), 381–419. https://doi.org/10.1680/iicep.1990.6842 | |
dc.relation.references | [46] Nair, R. S. & Iverson, J. K., (1982). Design and Construction of the Kishwaukee River Bridges. Prestressed Concrete Institute, 22–47. | |
dc.relation.references | [47] Najafi, R., Hedjazi, S., & Sennah, K. (2016). Finite-Element Modeling for Frp Strengthening of Prestressed Concrete Box Girder Bridges Built By. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 1–12. | |
dc.relation.references | [48] Pimanmas, A. (2007). The effect of long-term creep and prestressing on moment redistribution of balanced cantilever cast-in-place segmental bridge. Songklanakarin Journal of Science and Technology, 29(1), 205–216. | |
dc.relation.references | [49] Pothecary C. H. & Christie, T. J. C., (1989). Torridge bridge. Structural Engineering Group, 191–210. | |
dc.relation.references | [50] Rahai, A., & Abasi, A. (2018). Seismic Performance And Long-Term Behavior Of Balanced Cantilever Light-Weight Concrete Bridges. Earthquake Engineering. https://www.researchgate.net/publication/341903083 | |
dc.relation.references | [51] Ramakko, 0. E. (1984). The Twelve Mile Creek bridges - Design and construction’ 0 . Canadian Journal of Civil Engineering, 771–781. | |
dc.relation.references | [52] Robertson, I. N. (2005). Prediction of vertical deflections for a long- span prestressed concrete bridge structure. Engineering Structures, 27(12 SPEC. ISS.), 1820–1827. https://doi.org/10.1016/j.engstruct.2005.05.013 | |
dc.relation.references | [53] Saunders, J. R. (1991). River Dee Viaduct - Design. Proceedings of the Institution of Civil Engineers Part 1-Design and Construction, 90(April), 237–257. | |
dc.relation.references | [54] Shiu, K.-N., & Russell, H. (1987). Effects of time-dependent concrete properties on prestress losses. Canadian Journal of Civil Engineering, (14), 649–654. https://doi.org/10.1139/l87-095 | |
dc.relation.references | [55] Shushkewich, K. W. (1998). Design of Segmental Bridges for Thermal Gradient. PCI JOURNAL, 120–137. https://doi.org/10.15554/pcij.07011998.92.120.137 | |
dc.relation.references | [56] Shushkewich, K. W. (1986). Time-dependent analysis of segmental bridges. Computers and Structures, 23(1), 95–118. https://doi.org/10.1016/0045-7949(86)90111-2 | |
dc.relation.references | [57] Song, X., Melhem, H., Li, J., Xu, Q., & Cheng, L. (2016). Effects of Solar Temperature Gradient on Long-Span Concrete Box Girder during Cantilever Construction. Journal of Bridge Engineering, 21(3), 4015061. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000844 | |
dc.relation.references | [58] Suttipan, C., Dir, P., Vonganan, B., Mgr, T., & Bridges, M. (2002). Wat Nakorn-In Bridge, Bangkok Thailand. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 156–157. | |
dc.relation.references | [59] Tadros, M. K. (1979). Long-Term Stresses and Deformation of Segmental Bridges. PCI Journal, 66–87. | |
dc.relation.references | [60] Taib, I. B. M., Nandy, S., Liew, C., & Ishak, B. (2009). Subang Kelana Link, Malaysia. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 19(1), 53–57. | |
dc.relation.references | [61] Van Zyl, Stefanus, F., & Alexander, C. (1979). Documents. ASCE J Struct Div, 105(11), 2399–2417. | |
dc.relation.references | [62] Veletzos, M. J., & Restrepo, J. I. (2009). Influence of vertical earthquake motion and pre- earthquake stress on joint response of precast concrete segmental bridges. PCI Journal, 99–128. https://doi.org/10.15554/pcij.06012009.99.128 | |
dc.relation.references | [63] Vokunnaya, Ravindranatha, & Tanaji.Thite. (2017). Construction Stage Analysis of Segmental. International Journal of Civil Engineering and Technology (IJCIET), 8(2), 373–382. | |
dc.relation.references | [64] Vurpillot, S., Krueger, G., Benouaich, D., Clément, D., & Inaudi, D. (1998). Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements. ACI Structural Journal. https://doi.org/10.14359/566 | |
dc.relation.references | [65] Wang, S., & Fu, C. C. (2015). Simplification of Creep and Shrinkage Analysis of Segmental Bridges. Journal of Bridge Engineering, 20(8), B6014001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000728 | |
dc.relation.references | [66] Wang, Y., Zhu, J., Jia, S., & Akiyama, M. (2025). Time-dependent deflection prediction of long-span prestressed concrete bridges considering the environmental effects. Engineering Structures, 322. https://doi.org/10.1016/j.engstruct.2024.119163 | |
dc.relation.references | [67] Yu, C. K., (1984). Segmental Box Girders for the High Level West Seattle Bridge, (1), 52–67. | |
dc.relation.references | [68] González-La Rotta, E. C., & Becerra-Fernández, M. (2017). Plataformas de intercambio con ruteo de vehículos. Una revisión del estado del arte. In DYNA (Colombia) (Vol. 84, Issue 200, pp.271–280). Universidad Nacional de Colombia. | |
dc.relation.references | [69] Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary study. In Information and Software Technology (Vol. 52, Issue 8, pp. 792–805). Elsevier B.V. https://doi.org/10.1016/j.infsof.2010.03.006 | |
dc.relation.references | [70] Patankar, S. V. (1980). Numerical-heat-transfer-and-fluid-flow (Hemisphere Publishing Corporation, Ed.). | |
dc.relation.references | [71] Peña Tibaduiza, E. M., Garavito Hernández, E. A., Pérez Figueredo, L. E., & Moratto Chimenty, E. (2017). Revisión de la Literatura sobre el Problema de Programación de “Flow Shop” Híbrido con Máquinas Paralelas no Relacionadas. Ingeniería, 22(1), 46. https://doi.org/10.14483/udistrital.jour.reving.2017.1.a03 | |
dc.relation.references | [72] Rudas, J. S., Gómez, L. M., & Toro, A. O. (n.d.). Revisión sistemática de literatura. Caso de estudio: Modelamiento de un par deslizante con fines de predecir desgaste Systematic literature reviews. Case of study: Modeling of a rubbing pair for wear purpose. | |
dc.relation.references | [73] Velásquez, J. D. (2014a). Una guía corta para escribir Revisiones Sistemáticas de Literatura Parte 2. In DYNA (Colombia). http://orcid.org/0000-0003-3043-3037 | |
dc.relation.references | [74] Velásquez, J. D. (2014b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura Parte 1. In DYNA (Colombia) (Vol. 81, Issue 187, pp. 216–234). Asian Social Science. http://orcid.org/0000-0003-3043-3037 | |
dc.relation.references | [75] Velásquez, J. D. (2015a). Una guía corta para escribir revisiones sistemáticas de literatura Parte 3. In DYNA (Colombia) (Vol. 82, Issue 189, pp. 9–12). Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v82n189.48931 | |
dc.relation.references | [76] Velásquez, J. D. (2015b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura Parte 4. In DYNA (Colombia) (Vol. 82, Issue 190, pp. 9–12). Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v82n190.49511 | |
dc.relation.references | [77] Carrillo, J., Lizarazo, J. M., & Bonett, R. (2015). Effect of lightweight and low-strength concrete on seismic performance of thin lightly-reinforced shear walls. Engineering Structures, 93, 61–69. https://doi.org/10.1016/j.engstruct.2015.03.022 | |
dc.relation.references | [78] Colmenares, K. C. (2016). Análisis de la conveniencia del uso del concreto liviano como material estructural mediante la comparación de cuantías de materiales de construcción de edificaciones de muros portantes ubicadas en la ciudad de Bogotá. Escuela Colombiana de Ingenieria Julio Garavito. | |
dc.relation.references | [79] Comite ACI 213. (2014). Guide For Structural Lightweight-Aggregate ACI 213R-14 (American Concrete Institute, Ed.). ISBN:978-0-87031-897-9. | |
dc.relation.references | [80] Comite ACI 318. (2014). Requisitos de Reglamento para Concreto Estructural (ACI 318S-14) (American Concrete Institute, Ed.). ISBN: 978-0-87031-964-8. | |
dc.relation.references | [81] Dilli, M. E., Atahan, H. N., & Şengül, C. (2015). A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Construction and Building Materials, 101, 260–267. https://doi.org/10.1016/j.conbuildmat.2015.10.080 | |
dc.relation.references | [82] Falconi, A., Hou Huang, D., & Caicedo, J. (2009). Tesina de Grado, Hormigones Livianos De Alto Desempeño. https://www.researchgate.net/publication/28792438 | |
dc.relation.references | [83] FHWA-HIF-19-067. (2021). Lightweight Concrete Bridge Design Primer. Federal Highway Administration. | |
dc.relation.references | [84] FHWA/RD-85/045. (1985). Criteria For Designing Lightweight Concrete Bridges National Technical Information Service. Federal Highway Administration. | |
dc.relation.references | [85] López, M., & Kahn, L. F. (2007). Hormigón liviano de alto desempeño - Una comparación entre pérdidas de pretensado reales y estimadas por los códigos de diseño. Revista Ingenieria de Construccion, 22(1), 59–69. https://doi.org/10.4067/s0718-50732007000100006 | |
dc.relation.references | [86] Borges, H., Martínez, G., & Graciano, C. (2016). Impact response of expanded metal tubes: A numerical investigation. Thin-Walled Structures, 105, 71–80. https://doi.org/10.1016/j.tws.2016.04.005 | |
dc.relation.references | [87] Chen, V. C. P., Tsui, K. L., Barton, R. R., & Meckesheimer, M. (2006). A review on design, modeling and applications of computer experiments. In IIE Transactions (Institute of Industrial Engineers) (Vol. 38, Issue 4, pp. 273–291). https://doi.org/10.1080/07408170500232495 | |
dc.relation.references | [88] Graciano, C., & Mendes, J. (2014). Elastic buckling of longitudinally stiffened patch loaded plate girders using factorial design. Journal of Constructional Steel Research, 100, 229–236. https://doi.org/10.1016/j.jcsr.2014.04.030 | |
dc.relation.references | [89] Montgomery, D. C. . (2013). Diseño y análisis de experimentos (NORIEGA EDITORES, Ed.; Segunda). Limusa Wiley. | |
dc.relation.references | [90] Simpson, T. W., Peplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. In Engineering with Computers (Vol. 17). | |
dc.relation.references | [91] Tran, K. L., Douthe, C., Sab, K., Dallot, J., & Davaine, L. (2014). A preliminary design formula for the strength of stiffened curved panels by design of experiment method. Thin-Walled Structures, 79, 129–137. https://doi.org/10.1016/j.tws.2014.02.012 | |
dc.relation.references | [92] AASHTO. (1999). Guide Specifications for Design and Construction of Segmental Concrete Bridges (Segunda Edición). Published by the American Association of State Highway and Transportation. | |
dc.relation.references | [93] AASHTO. (2013). Bridge design specifications (Highway subcommittee on bridges and structures, Ed.). American Association of State Highway and Transportation Officials (AASHTO). | |
dc.relation.references | [94] AIS Comite 200. (2015). NORMA COLOMBIANA DE DISEÑO DE PUENTES-LRFD-CCP 14 (ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA – AIS, Ed.). Ministerio de transporte de Colombia. | |
dc.relation.references | [95] Bo Hu, & Dongzhou Huang. (2020). Concrete Segmental Bridges (Taylor & Francis Group, Ed.; Primera Edición). CRC Press. | |
dc.relation.references | [96] Castro, D., & Céspedes, E. (2017). Tesis De Maestría, Evaluación Presupuestal Para Dos Tipologías Estructurales De Puentes En Concreto. Universidad Católica De Colombia. | |
dc.relation.references | [97] José Diogo Honório, by. (2007). Tesis de Maestría; Conceptual design of long-span cantilever constructed concrete bridges (Konceptuell utformning av konsolutbyggda betongbroar med långa spann). Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering. | |
dc.relation.references | [98] Manterola, J. (2006). Puentes apuntes para su diseño, cálculo y construcción (Edicion Primera). COLEGIO DE INGENIEROS DE CAMINIOS, CANALES y PUERTOS. | |
dc.relation.references | [99] Ministerio de Fomento. (2000). Obras de paso de nueva construcción. In Dirección General de Carreteras de España. | |
dc.relation.references | [100] Sétra. (2003). Desing Guide, Prestressed concrete bridges built using the cantilever method. Service d’études techniques des routes et autoroutes -Technical Center for Highways and motorways) / Large Bridges Division. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.lemb | Materiales de construcción | |
dc.subject.lemb | Diseño de estructuras | |
dc.subject.lemb | Construcción de puentes | |
dc.subject.lemb | Estructuras de hormigón | |
dc.subject.proposal | Voladizos Balanceados | spa |
dc.subject.proposal | Puentes segmentales | spa |
dc.subject.proposal | Concreto liviano | spa |
dc.subject.proposal | Concreto de alta resistencia | spa |
dc.subject.proposal | Concreto postensado | spa |
dc.subject.proposal | Balanced cantilevers | eng |
dc.subject.proposal | Segmental bridges | eng |
dc.subject.proposal | Lightweight concrete | eng |
dc.subject.proposal | High-strength concrete | eng |
dc.subject.proposal | Post-tensioned concrete | eng |
dc.title | Estudio de la incidencia de las características del concreto en el consumo de materiales en puentes segmentales, diseñados por el método de los voladizos balanceados | spa |
dc.title.translated | Study of the impact of concrete characteristics on material consumption in segmental, bridges designed using the balanced cantilever method | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Estructuras
- Tamaño:
- 13.51 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: