Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi

dc.contributor.advisorArdila Barrantes, Harold Duban
dc.contributor.advisorCoy Barrera, Ericsson David
dc.contributor.authorBarreto Pulido, Wanner Ernesto
dc.contributor.cvlacBarreto Pulido, Wanner [0001686629]spa
dc.contributor.orcidBarreto Puldio, Wanner [0009-0004-1085-1041]spa
dc.contributor.researchgroupEstudio de Actividades Metabolicas Vegetalesspa
dc.date.accessioned2023-07-28T12:54:05Z
dc.date.available2023-07-28T12:54:05Z
dc.date.issued2023-07-19
dc.descriptionilustraciones, diagramas, fotografías, gráficas, tablasspa
dc.description.abstractEn la presente investigación se estudió el efecto que tiene la aplicación de una disolución al 3% de fosfito de potasio en la bioquímica de raíces de clavel durante la inducción de resistencia al patógeno Fusarium oxysporum f. sp. dianthi. Si bien las disoluciones de fosfito de potasio han sido usadas como fertilizantes, fungicidas sistémicos o activadores de defensa natural, para el caso del cultivo del clavel, su uso ha sido limitado y existen solo algunos reportes recientes sobre su papel como inductor de resistencia. Es por ello que, con el fin de profundizar en los procesos involucrados en la acción de este inductor, en la presente investigación, aplicando herramientas de análisis metabolómico no dirigido, se estudiaron los metabolitos que se acumulan en raíces de la planta por acción de este inductor de resistencia y se estudió la expresión de genes asociados con algunos de los metabolitos de interés. Para ello, en una primera etapa se llevó a cabo un ensayo in vivo donde se seleccionó la estrategia para la aplicación de la disolución de fosfito en el suelo. Posteriormente, se realizó la obtención del perfil metabólico mediante GC-MS, con previa derivatización con agente sililante; en este punto se identificaron metabolitos diferenciables para los tratamientos estudiados, entre los cuales se destacan algunos aminoácidos, carbohidratos y ácidos orgánicos, entre otros. Estos resultados indicaron que mecanismos como el metabolismo de aminoácidos, transporte de nitrógeno, metabolismo de carbohidratos y señalización en plantas, son importantes en la inducción de resistencia. Finalmente, en una tercera etapa se estudiaron los niveles transcripcionales de los genes p5cr y npr1, los cuales participan en la biosíntesis de prolina y en la activación de RSA (Resistencia Sistémica Adquirida), respectivamente. Se encontró que la aplicación del inductor generó un aumento en los niveles transcripcionales de dichos genes en la variedad susceptible, confirmando a nivel molecular la activación de las rutas estudiadas en este fenómeno biológico. Los hallazgos encontrados en esta investigación permiten sugerir que el uso de fosfito de potasio, en su rol de inductor de resistencia, potencializa la síntesis de metabolitos asociados a defensa vegetal, muy probablemente asociada a la activación de RSA dependiente de ácido salicílico. (Texto tomado de la fuente)spa
dc.description.abstractIn the present study, the effect of 3% potassium phosphite solution on the carnation root biochemistry during the resistance induction to the pathogen Fusarium oxysporum f. sp. dianthi was evaluated. Although potassium phosphite solutions have been used as fertilizers, systemic fungicides, or natural defense activators, in the case of carnation cultivation, their use has been limited, and there are only a few recent reports on their role as a resistance inducer. Therefore, to deepen the processes involved in the action of this inducer, in the present investigation, applying untargeted metabolomics-based analysis tools, those metabolites differentially accumulated in plant roots due to the action of this resistance inducer, as well as the expression of genes associated with some of the top-ranked metabolites, were studied. In this regard, the first stage involved an in vivo test where the strategy for applying the phosphite solution in the soil was selected. Subsequently, the metabolic profile was obtained by GC-MS, with prior derivatization with a silylating agent. At this point, differentiable metabolites were identified for the studied treatments, among which some amino acids, carbohydrates, and organic acids, among others, were statistically recognized. These results indicated that mechanisms such as amino acid metabolism, nitrogen transport, carbohydrate metabolism, and plant signaling are relevant for resistance induction. Finally, the third stage comprised the evaluation of transcriptional levels of the p5cr and npr1 genes, which participate in proline biosynthesis and ASR (Acquired Systemic Resistance) activation, respectively. It was found that the inducer application generated a transcriptional level increase in the test genes for the susceptible carnation variety, confirming at the molecular level the activation of those pathways studied in this biological phenomenon. The findings in this research suggest that the use of potassium phosphite, in its role as a resistance inducer, potentiates the synthesis of metabolites associated with plant defense, most likely associated with salicylic acid-dependent ASR activation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.methodsPerfilado metabólico mediante metabolómica no dirigida, usando GC-MS.spa
dc.description.researchareaBioquímica de las interacciones Hospedero – Patógenospa
dc.description.sponsorshipFlorval QFC. - Ente encargada de proveer los esquejes Universidad Militar Nueva Granada - Ente con los equipos analíticos usadosspa
dc.format.extentxxii, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84346
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbu-Nada, Y. et al. (2007) ‘Temporal dynamics of pathogenesis-related metabolites and their plausible pathways of induction in potato leaves following inoculation with Phytophthora infestans’, European Journal of Plant Pathology, 118(4), pp. 375–391. doi: 10.1007/s10658-007-9150-8.spa
dc.relation.referencesAchary, V. M. M. et al. (2017) ‘Phosphite: a novel P fertilizer for weed management and pathogen control’, Plant Biotechnology Journal, 15(12), pp. 1493–1508. doi: 10.1111/pbi.12803spa
dc.relation.referencesAgulló-Antón, M. ángeles et al. (2013) ‘Evaluation of ploidy level and endoreduplication in carnation (Dianthus spp.)’, Plant Science. Elsevier Ireland Ltd, 201–202(1), pp. 1–11. doi: 10.1016/j.plantsci.2012.11.006.spa
dc.relation.referencesAharoni, A. and Galili, G. (2011) ‘Metabolic engineering of the plant primary-secondary metabolism interface’, Current Opinion in Biotechnology. Elsevier Ltd, 22(2), pp. 239–244. doi: 10.1016/j.copbio.2010.11.004spa
dc.relation.referencesAkashi, K., Miyake, C. and Yokota, A. (2001) ‘Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger’, FEBS Letters, 508(3), pp. 438–442. doi: 10.1016/S0014-5793(01)03123-4.spa
dc.relation.referencesAmir, R., Hacham, Y. and Galili, G. (2002) ‘Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants’, Trends in Plant Science. Elsevier Current Trends, 7(4), pp. 153–156. doi: 10.1016/S1360-1385(02)02227-6spa
dc.relation.referencesArbeláez, G. (1993) ‘Las enfermedades vasculares del clavel en colombia y en el mundo’, Agronomía Colombiana, 10(1), pp. 12–18spa
dc.relation.referencesArdila, H. (2013) Contribución al estudio de algunos mecanismos bioquímicos y moleculares de la resistencia del clavel a Fusarium oxysporum f. sp. dianthi raza 2, Tesis doctoral. Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá D.C.spa
dc.relation.referencesArdila, H. D. et al. (2014) ‘Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi’, Physiological and Molecular Plant Pathology. Academic Press, 85, pp. 42–52. doi: 10.1016/J.PMPP.2014.01.003spa
dc.relation.referencesArdila, H. D., Martínez, S. T. and Higuera, B. L. (2013) ‘Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi’, Acta Physiologiae Plantarum. Polish Academy of Sciences, Institute of Slavic Studies, 35(4), pp. 1233–1245. doi: 10.1007/S11738-012-1162-0/METRICS.spa
dc.relation.referencesArruda, P. and Barreto, P. (2020) ‘Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress’, Frontiers in Plant Science. Frontiers Media SA, 11. doi: 10.3389/FPLS.2020.00587.spa
dc.relation.referencesAshraf, M. and Harris, P. J. C. (2004) ‘Potential biochemical indicators of salinity tolerance in plants’, Plant Science, 166(1), pp. 3–16. doi: 10.1016/j.plantsci.2003.10.024.spa
dc.relation.referencesÁvalos, A. and Elena, G. (1998) ‘Metabolismo secundario de plantas’, Hidrobiológica, 8(2), pp. 125–132.spa
dc.relation.referencesBaenas, N., García-Viguera, C. and Moreno, D. A. (2014) ‘molecules Elicitation: A Tool for Enriching the Bioactive Composition of Foods’, Molecules, 19, pp. 13541–13563. doi: 10.3390/molecules190913541.spa
dc.relation.referencesBelhadj, A. et al. (2006) ‘Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator’, Journal of Agricultural and Food Chemistry. American Chemical Society, 54(24), pp. 9119–9125. doi: 10.1021/jf0618022.spa
dc.relation.referencesBender, D. A. et al. (2023) ‘CAPÍTULO 20: La vía de la pentosa fosfato y otras vías del metabolismo de hexosas’, in Bioquímica ilustrada, pp. 1–12.spa
dc.relation.referencesBernsdorff, F. et al. (2016) ‘Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways’, Plant Cell, 28(1), pp. 102–129. doi: 10.1105/tpc.15.00496.spa
dc.relation.referencesBilska, K. et al. (2018) ‘Resistance-Related l-Pyroglutamic Acid Affects the Biosynthesis of Trichothecenes and Phenylpropanoids by F. graminearum Sensu Stricto’, Toxins 2018, Vol. 10, Page 492. Multidisciplinary Digital Publishing Institute, 10(12), p. 492. doi: 10.3390/TOXINS10120492spa
dc.relation.referencesBolton, M. D. (2009) ‘Current review: Primary metabolism and plant defense-fuel for the fire’, Molecular Plant-Microbe Interactions, 22(5), pp. 487–497. doi: 10.1094/MPMI-22-5-0487.spa
dc.relation.referencesBönnighausen, J. et al. (2019) ‘Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility’, New Phytologist, 221(1), pp. 459–469. doi: 10.1111/nph.15377spa
dc.relation.referencesBoubakri, H. (2020) Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms, Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Elsevier Inc. doi: 10.1016/b978-0-12-817892-8.00005-2.spa
dc.relation.referencesBrodmann, D. et al. (2002) ‘Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae’, Molecular Plant-Microbe Interactions, 15(7), pp. 693–700. doi: 10.1094/MPMI.2002.15.7.693.spa
dc.relation.referencesCastiblanco, N. F. (2023) EFECTO DE LA APLICACIÓN DE INDUCTORES DE RESISTENCIA EN EL CLAVEL (Dianthus caryophyllus L) SOBRE LA EXPRESIÓN in vivo DE GENES CODIFICANTES PARA CANDIDATOS A FACTORES DE VIRULENCIA DEL PATÓGENO Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesCerqueira, A. et al. (2017) ‘Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 114, pp. 88–99. doi: 10.1016/j.plaphy.2017.02.020.spa
dc.relation.referencesCevallos, J. F., González, D. and Arbelaez, G. (1990) ‘Determinación de las razas fisiológicas de fusarium oxysporum f.sp. dianthi en clavel en la sabana de bogotá’. Universidad Nacional de Colombia, Facultad de Agronomía, Centro Editorial, 7, pp. 40–46. Available at: https://repositorio.unal.edu.co/handle/unal/33839 (Accessed: 25 January 2023)spa
dc.relation.referencesChaturvedi, R. and Shah, J. (2007) ‘Salicylic acid in plant disease resistance’, Salicylic Acid: A Plant Hormone, (Figure 1), pp. 335–370. doi: 10.1007/1-4020-5184-0_12.spa
dc.relation.referencesChen, C. et al. (2021) ‘Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 168(June), pp. 188–201. doi: 10.1016/j.plaphy.2021.10.004.spa
dc.relation.referencesChen, L. et al. (2019) ‘Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance’, Plant Physiology, 180(4), pp. 2167–2181. doi: 10.1104/pp.19.00091.spa
dc.relation.referencesCho, S. M. et al. (2010) ‘Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis Thaliana’, Botany, 88(5), pp. 452–461. doi: 10.1139/B10-009.spa
dc.relation.referencesChroumpi, T. et al. (2021) ‘Revisiting a “simple” fungal metabolic pathway reveals redundancy, complexity and diversity’, Microbial Biotechnology. John Wiley and Sons Ltd, 14(6), pp. 2525–2537. doi: 10.1111/1751-7915.13790.spa
dc.relation.referencesCorredor-Moreno, P. et al. (2021) ‘The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility’, Plant Cell, 33(5), pp. 1728–1747. doi: 10.1093/plcell/koab049.spa
dc.relation.referencesCrawford, N. M. (2006) ‘Mechanisms for nitric oxide synthesis in plants’, Journal of Experimental Botany, 57(3), pp. 471–478. doi: 10.1093/jxb/erj050spa
dc.relation.referencesCuervo Plata, D. C. (2018) ‘Estudio bioquímico y molécular de algunas enzimas asociadas al estres oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi’, Tesis de Maestria, p. 192.spa
dc.relation.referencesDangl, J. L. and Jones, J. D. G. (2001) ‘Plant pathogens and integrated defence responses to infection’, Nature, 411(6839), pp. 826–833. doi: 10.1038/35081161.spa
dc.relation.referencesDaniel, R. and Guest, D. (2006) ‘Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana’, Physiological and Molecular Plant Pathology, 67(3–5), pp. 194–201. doi: 10.1016/j.pmpp.2006.01.003.spa
dc.relation.referencesDemers, J. (2020) ‘The Biology of Dianthus caryophyllus L . ( Carnation )’, (February).spa
dc.relation.referencesDempsey, D. A. et al. (2011) ‘Salicylic Acid Biosynthesis and Metabolism’, The Arabidopsis Book, 9(9), p. e0156. doi: 10.1199/tab.0156.spa
dc.relation.referencesDong, X. (2004) ‘NPR1, all things considered’, Current Opinion in Plant Biology. Elsevier Current Trends, 7(5), pp. 547–552. doi: 10.1016/J.PBI.2004.07.005.spa
dc.relation.referencesVan Den Dool, H. and Kratz, P. (1963) ‘A GENERALIZATION OF THE RETENTION INDEX SYSTEM INCLUDING LINEAR TEMPERATURE PROGRAMMED GAS-LIQUID PARTITION CHROMATOGRAPHY’, Journal of Chromatography, pp. 463–471. doi: 10.1007/978-3-319-70262-9_7.spa
dc.relation.referencesDrew, S. W. and Demain, A. L. (1977) ‘Effect of primary metabolites on secondary metabolism.’, Annual review of microbiology, 31, pp. 343–356. doi: 10.1146/annurev.mi.31.100177.002015.spa
dc.relation.referencesEdel-Hermann, V. and Lecomte, C. (2019) ‘Current status of fusarium oxysporum formae speciales and races’, Phytopathology. American Phytopathological Society, 109(4), pp. 512–530. doi: 10.1094/PHYTO-08-18-0320-RVW/ASSET/IMAGES/LARGE/PHYTO-08-18-0320-RVW_T3.JPEGspa
dc.relation.referencesElmer, W. H. and Pignatello, J. J. (2011) ‘Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils’, Plant Disease, 95(8), pp. 960–966. doi: 10.1094/PDIS-10-10-0741.spa
dc.relation.referencesEshraghi, L. et al. (2011) ‘Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi’, Plant Pathology, 60(6), pp. 1086–1095. doi: 10.1111/j.1365-3059.2011.02471.x.spa
dc.relation.referencesEstrada-Ortiz, E. et al. (2012) ‘Phosphite on growth and fruit quality in strawberry’, Acta Horticulturae, 947, pp. 277–282. doi: 10.17660/ActaHortic.2012.947.35spa
dc.relation.referencesEstrada Rudas, C. (2022) Flores colombianas generan 200.000 empleos y son exportadas a más de 100 países. Available at: https://www.agronegocios.co/agricultura/flores-colombianas-generan-200-000-empleos-y-son-exportadas-a-mas-de-100-paises-3425195spa
dc.relation.referencesFabro, G. et al. (2004) ‘Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis’, Molecular Plant-Microbe Interactions, 17(4), pp. 343–350. doi: 10.1094/MPMI.2004.17.4.343.spa
dc.relation.referencesFiehn, O. (2002) ‘Metabolomics - The link between genotypes and phenotypes’, Plant Molecular Biology, 48(1–2), pp. 155–171. doi: 10.1023/A:1013713905833.spa
dc.relation.referencesFlor, H. H. (1971) ‘Current status of the gene-for-gene concept’, pp. 275–296.spa
dc.relation.referencesFörster, H. et al. (1998) ‘Effect of Phosphite on Tomato and Pepper Plants and on Susceptibility of Pepper to Phytophthora Root and Crown Rot in Hydroponic Culture’, (D).spa
dc.relation.referencesGalili, G. et al. (2001) ‘Lysine catabolism: A stress and development super-regulated metabolic pathway’, Current Opinion in Plant Biology, 4(3), pp. 261–266. doi: 10.1016/S1369-5266(00)00170-9.spa
dc.relation.referencesGao, X. et al. (2018) ‘Metabolomics Profile of Potato Tubers after Phosphite Treatment’, American Journal of Plant Sciences, 09(04), pp. 845–864. doi: 10.4236/ajps.2018.94065.spa
dc.relation.referencesGashaw, G., Alemu, T. and Tesfaye, K. (2014) ‘Evaluation of disease incidence and severity and yield loss of finger millet varieties and mycelial growth inhibition of Pyricularia grisea isolates using biological antagonists and fungicides in vitro condition .’, Journal of Applied Biosciences, 73, pp. 5883–5901.spa
dc.relation.referencesGerszten, R. E. and Wang, T. J. (2008) ‘The search for new cardiovascular biomarkers’, Nature, 451(7181), pp. 949–952. doi: 10.1038/nature06802.spa
dc.relation.referencesGilardi, G. et al. (2020) ‘Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by Phytophthora capsici, on zucchini in a closed soilless system’, Scientia Horticulturae, 265(December 2019). doi: 10.1016/j.scienta.2020.109207.spa
dc.relation.referencesGillaspy, G. . (2011) ‘The cellular language of myo-inositol signaling’, New Phytologist, 192(4), pp. 823–839. doi: https://doi.org/10.1111/j.1469-8137.2011.03939.x.spa
dc.relation.referencesGómez-Merino, F. C. and Trejo-Téllez, L. I. (2015) ‘Biostimulant activity of phosphite in horticulture’, Scientia Horticulturae, 196, pp. 82–90. doi: 10.1016/j.scienta.2015.09.035.spa
dc.relation.referencesGómez, S. et al. (2010) ‘Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato’, New Phytologist, 188(3), pp. 835–844. doi: 10.1111/j.1469-8137.2010.03414.x.spa
dc.relation.referencesGonzález, E. (2015) ‘Agentes bióticos y abióticos como inductores de resistencia a enfermedades en el cultivo de papa’, Universidad Autónoma Agraria Antonio Narro, (3), pp. 373–379.spa
dc.relation.referencesGordon, T. R. and Martyn, R. D. (1997) ‘The evolutionary biology of Fusarium oxysporum’, Annual Review of Phytopathology, 35(August), pp. 111–128. doi: 10.1146/annurev.phyto.35.1.111.spa
dc.relation.referencesGunning, T. K. et al. (2013) ‘Profiling of secondary metabolites in blue lupin inoculated with Phytophthora cinnamomi following phosphite treatment’, Functional Plant Biology, 40(11), pp. 1089–1097. doi: 10.1071/FP13023.spa
dc.relation.referencesHalket, J. M. and Zaikin, V. G. (2003) ‘Derivatization in mass spectrometry - 1. Silylation’, European Journal of Mass Spectrometry, 9(1), pp. 1–21. doi: 10.1255/ejms.527spa
dc.relation.referencesHan, D. J., Lee, B. H. and Yoo, S. H. (2021) ‘Physicochemical properties of turanose and its potential applications as a sucrose substitute’, Food Science and Biotechnology. The Korean Society of Food Science and Technology, 30(3), pp. 433–441. doi: 10.1007/S10068-021-00876-1/METRICSspa
dc.relation.referencesHan, X. et al. (2021) ‘Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum’, Ecotoxicology and Environmental Safety, 210, p. 111873. doi: 10.1016/j.ecoenv.2020.111873.spa
dc.relation.referencesHartmann, M. and Zeier, J. (2018) ‘l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants’, Plant Journal, 96(1), pp. 5–21. doi: 10.1111/tpj.14037.spa
dc.relation.referencesHayat, Q. et al. (2010) ‘Effect of exogenous salicylic acid under changing environment: A review’, Environmental and Experimental Botany, pp. 14–25. doi: 10.1016/j.envexpbot.2009.08.005.spa
dc.relation.referencesHenry, E. et al. (2015) ‘Beyond Glycolysis: GAPDHs Are Multi-functional Enzymes Involved in Regulation of ROS, Autophagy, and Plant Immune Responses’, PLoS Genetics, 11(4), pp. 1–27. doi: 10.1371/journal.pgen.1005199.spa
dc.relation.referencesHiguera, B. L. (2001) ‘Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L Fusarium oxysporum f. sp. dianthi.’, Tesis doctoral. Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá D.C., p. 2001.spa
dc.relation.referencesHorning, M. G., Moss, A. M. and Horning, E. C. (1968) ‘Formation and gas-liquid chromatographic behavior of isometric steroid ketone methoxime derivatives’, Analytical Biochemistry. Academic Press, 22(2), pp. 284–294. doi: 10.1016/0003-2697(68)90318-7.spa
dc.relation.referencesHwang, I. S., An, S. H. and Hwang, B. K. (2011) ‘Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens’, Plant Journal, 67(5), pp. 749–762. doi: 10.1111/j.1365-313X.2011.04622.xspa
dc.relation.referencesIturriaga, G., Suárez, R. and Nova-Franco, B. (2009) ‘Trehalose metabolism: From osmoprotection to signaling’, International Journal of Molecular Sciences, 10(9), pp. 3793–3810. doi: 10.3390/ijms10093793.spa
dc.relation.referencesIula, G. et al. (2022) ‘The Complex Metabolomics Crosstalk Triggered by Four Molecular Elicitors in Tomato’, Plants, 11(5). doi: 10.3390/plants11050678.spa
dc.relation.referencesJackson, T. J. et al. (2000) ‘Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi’, Plant Pathology, 49(1), pp. 147–154. doi: 10.1046/j.1365-3059.2000.00422.x.spa
dc.relation.referencesJaneczko, A. et al. (2013) ‘Progesterone moderates damage in Arabidopsis thaliana caused by infection with Pseudomonas syringae or P . fluorescens’, Biologia plantarum. Biologia plantarum, 57(1), pp. 169–173. doi: 10.1007/s10535-012-0142-y.spa
dc.relation.referencesJangir, P. et al. (2021) ‘Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum’, Frontiers in Plant Science, 12(April), pp. 1–17. doi: 10.3389/fpls.2021.628611.spa
dc.relation.referencesJones, J.D.G., D. J. L. (2006) ‘The plant immune system’, Nature, 444, pp. 323–329.spa
dc.relation.referencesJoshi, V. et al. (2010) ‘Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress’, Amino Acids, 39(4), pp. 933–947. doi: 10.1007/s00726-010-0505-7.spa
dc.relation.referencesJoshi, V. and Fernie, A. R. (2017) ‘Citrulline metabolism in plants’, Amino Acids. Springer Vienna, 49(9), pp. 1543–1559. doi: 10.1007/s00726-017-2468-4.spa
dc.relation.referencesKale, S. D. et al. (2010) ‘External Lipid PI3P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and Animal Host Cells’, Cell. Elsevier Inc., 142(2), pp. 284–295. doi: 10.1016/j.cell.2010.06.008.spa
dc.relation.referencesKruger, N. J. and Von Schaewen, A. (2003) ‘The oxidative pentose phosphate pathway: Structure and organisation’, Current Opinion in Plant Biology, 6(3), pp. 236–246. doi: 10.1016/S1369-5266(03)00039-6spa
dc.relation.referencesKumar, S. et al. (2022) ‘Structural basis of NPR1 in activating plant immunity’, Nature. Springer US, 605(7910), pp. 561–566. doi: 10.1038/s41586-022-04699-w.spa
dc.relation.referencesKumar, Y. et al. (2015) ‘Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways’, Phytochemistry. Elsevier Ltd, 116(1), pp. 120–129. doi: 10.1016/j.phytochem.2015.04.001spa
dc.relation.referencesLandscape Management (2016) Step by Step: Apply a soil drench to trees : Landscape Management. Available at: https://www.landscapemanagement.net/step-by-step-apply-a-soil-drench-to-trees/ (Accessed: 3 February 2023)spa
dc.relation.referencesLefevere, H., Bauters, L. and Gheysen, G. (2020) ‘Salicylic Acid Biosynthesis in Plants’, Frontiers in Plant Science, 11(April), pp. 1–7. doi: 10.3389/fpls.2020.00338spa
dc.relation.referencesLi, H. et al. (2022) ‘The Role of Plant Progesterone in Regulating Growth , Development , and Biotic / Abiotic Stress Responses’.spa
dc.relation.referencesLim, S. (2012) Analysis of Changes in the Potato Leaf Proteome Triggered by Phosphite Reveals Functions Associated with Induced Resistance Against Phytophthora infestans. Dalhousie University. Available at: https://dalspace.library.dal.ca//handle/10222/15859 (Accessed: 26 January 2023)spa
dc.relation.referencesLim, S. et al. (2013) Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans, Journal of Proteomics. Elsevier B.V. doi: 10.1016/j.jprot.2013.03.010.spa
dc.relation.referencesLindemann, P. and Luckner, M. (1997) ‘Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata’, Phytochemistry. Pergamon, 46(3), pp. 507–513. doi: 10.1016/S0031-9422(97)00315-4.spa
dc.relation.referencesLiu, Y. et al. (2020) ‘Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity’, The Plant Cell. Oxford Academic, 32(12), pp. 4002–4016. doi: 10.1105/TPC.20.00499.spa
dc.relation.referencesLivak, K. J. and Schmittgen, T. D. (2001) ‘Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method’, Methods, 25(4), pp. 402–408. doi: 10.1006/meth.2001.1262spa
dc.relation.referencesLobato, M. C. et al. (2008) ‘Phosphite compounds reduce disease severity in potato seed tubers and foliage’, European Journal of Plant Pathology, 122(3), pp. 349–358. doi: 10.1007/s10658-008-9299-9spa
dc.relation.referencesLópez-Gresa, M. P. et al. (2019) ‘Effect of Benzothiadiazole on the Metabolome of Tomato Plants Infected by Citrus Exocortis Viroid’, Viruses 2019, Vol. 11, Page 437. Multidisciplinary Digital Publishing Institute, 11(5), p. 437. doi: 10.3390/V11050437.spa
dc.relation.referencesLouis, J., Singh, V. and Shah, J. (2013) ‘Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids’, Frontiers in Plant Science, 4. doi: 10.1199/tab.0159spa
dc.relation.referencesLovatt, B. C. J. and Mikkelsen, R. L. (2006) ‘Phosphite Fertilizers: What Are They? Can You Use Them? What Can They Do?’, Better Crops, 90(4), pp. 11–13spa
dc.relation.referencesMachinandiarena, M. F. et al. (2012) ‘Potassium phosphite primes defense responses in potato against Phytophthora infestans’, Journal of Plant Physiology, 169(14), pp. 1417–1424. doi: 10.1016/j.jplph.2012.05.005spa
dc.relation.referencesMacIntyre, A. M. et al. (2022) Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease, PLoS ONE. doi: 10.1371/journal.pone.0266254.spa
dc.relation.referencesMartínez, A. (2019) ‘Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi’. Available at: https://repositorio.unal.edu.co/handle/unal/77033 (Accessed: 26 January 2023)spa
dc.relation.referencesMassoud, K. et al. (2012) ‘Dissecting Phosphite-induced priming in Arabidopsis infected with Hyaloperonospora Arabidopsidis’, Plant Physiology, 159(1), pp. 286–298. doi: 10.1104/pp.112.194647.spa
dc.relation.referencesMeng, J. et al. (2022) ‘Xylitol production from plant biomass by Aspergillus niger through metabolic engineering’, Bioresource Technology. Elsevier, 344, p. 126199. doi: 10.1016/J.BIORTECH.2021.126199.spa
dc.relation.referencesMohammadi, M. A. et al. (2019) ‘Effects of potassium phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans’, APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 17(2), pp. 4499–4514. Available at: http://dx.doi.org/10.15666/aeer/1702_44994514.spa
dc.relation.referencesMohammadi, M. A. et al. (2021) ‘ROS and Oxidative Response Systems in Plants Under Biotic and Abiotic Stresses: Revisiting the Crucial Role of Phosphite Triggered Plants Defense Response’, Frontiers in Microbiology, 12(July), pp. 1–21. doi: 10.3389/fmicb.2021.631318spa
dc.relation.referencesMonroy-Mena, S. (2019) EFECTO DE ELICITORES DE ORIGEN BIÓTICO EN LA TRANSCRIPCIÓN DE ALGUNOS GENES INVOLUCRADOS EN LOS MECANISMOS DE DEFENSA DEL CLAVEL Dianthus caryophyllus L. AL PATÓGENO Fusarium oxysporum f sp dianthi. Available at: https://repositorio.unal.edu.co/handle/unal/77930.spa
dc.relation.referencesMonroy-Mena, S. et al. (2019) ‘Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi’, Revista Colombiana de Química. Universidad Nacional de Colombia, 48(2), pp. 5–14. doi: 10.15446/rev.colomb.quim.v48n2.72771.spa
dc.relation.referencesMonteoliva, M. I. et al. (2014) ‘Context of action of Proline Dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis’, BMC Plant Biology. BioMed Central, 14(1), pp. 1–11. doi: 10.1186/1471-2229-14-21/FIGURES/4.spa
dc.relation.referencesNaik, P. M. and Al-Khayri, J. M. (2016) ‘Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through In Vitro Culture of Medicinal Plants’, Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. doi: 10.5772/61442.spa
dc.relation.referencesNávarová, H. et al. (2013) ‘Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity’, Plant Cell, 24(12), pp. 5123–5141. doi: 10.1105/tpc.112.103564.spa
dc.relation.referencesNguyen, T. D. and O’Connor, S. E. (2020) ‘The Progesterone 5β-Reductase/Iridoid Synthase Family: A Catalytic Reservoir for Specialized Metabolism across Land Plants’, ACS Chemical Biology. American Chemical Society, 15(7), pp. 1780–1787. doi: 10.1021/ACSCHEMBIO.0C00220/ASSET/IMAGES/LARGE/CB0C00220_0003.JPEGspa
dc.relation.referencesOlivieri, F. P. et al. (2012) ‘Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens’, Crop Protection. Elsevier Ltd, 32, pp. 1–6. doi: 10.1016/j.cropro.2011.08.025.spa
dc.relation.referencesOsei, R. et al. (2021) ‘Role of Salicylic Acid in Plants Defense Mechanisms Against Pathogens’, 4(6).spa
dc.relation.referencesOtero, D. M. et al. (2021) ‘Leaves of Olea europaea L. as a source of oleuropein: characteristics and biological aspects’, Research, Society and Development. Research, Society and Development, 10(13), pp. e185101321130–e185101321130. doi: 10.33448/RSD-V10I13.21130.spa
dc.relation.referencesPant, A. and Yang, Z. (2020) ‘Asparagine: An Achilles Heel of Virus Replication?’, ACS Infectious Diseases. American Chemical Society, 6(9), pp. 2301–2303. doi: 10.1021/ACSINFECDIS.0C00504/ASSET/IMAGES/LARGE/ID0C00504_0001.JPEG.spa
dc.relation.referencesParaschivu, M. et al. (2013) ‘The use of the area under the disease progress curve (AUDPC) to assess the epidemics of septoria tritici in winter wheat’, 45(1), pp. 193–201spa
dc.relation.referencesParisutham, V. et al. (2017) ‘Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries’, Bioresource Technology, 239, pp. 496–506. doi: 10.1016/j.biortech.2017.05.001.spa
dc.relation.referencesPaul, M. J. et al. (2008) ‘Trehalose metabolism and signaling’, Annual Review of Plant Biology, 59, pp. 417–441. doi: 10.1146/annurev.arplant.59.032607.092945.spa
dc.relation.referencesPaul, M., Pellny, T. and Goddijn, O. (2001) ‘Enhancing photosynthesis with sugar signals’, Trends in Plant Science. Elsevier, 6(5), pp. 197–200. doi: 10.1016/S1360-1385(01)01920-3.spa
dc.relation.referencesPérez Mora, W., Melgarejo, L. M. and Ardila, H. D. (2021) ‘Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi’, Archives of Phytopathology and Plant Protection. Taylor & Francis, 54(13–14), pp. 886–902. doi: 10.1080/03235408.2020.1868734spa
dc.relation.referencesPieterse, C. M. J. and Van Loon, L. C. (2004) ‘NPR1: the spider in the web of induced resistance signaling pathways’, Current Opinion in Plant Biology. Elsevier Current Trends, 7(4), pp. 456–464. doi: 10.1016/J.PBI.2004.05.006.spa
dc.relation.referencesPoli, A. et al. (2013) ‘Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi’, Journal of Plant Pathology, 95(2), pp. 255–263. doi: 10.4454/JPP.V95I2.024.spa
dc.relation.referencesQamar, A., Mysore, K. S. and Senthil-Kumar, M. (2015) ‘Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens’, Frontiers in Plant Science, 6(JULY), pp. 1–9. doi: 10.3389/fpls.2015.00503.spa
dc.relation.referencesQamar, A. and Senthil-Kumar, M. (2019) ‘Arabidopsis exhibits differential response in basal immunity and proline metabolism during defense against host and nonhost pathogen infection’, Plant Physiology Reports. Springer, 24(4), pp. 496–506. doi: 10.1007/S40502-019-00480-W/METRICS.spa
dc.relation.referencesQuevedo Guerrero, J., Infante Noblecilla, J. C., & García Batista, R. M. (2018) ‘Efecto del uso predominante de fungicidas sistémicos para el control de Sigatoka negra (Mycosphaerella Fijiensis Morelet) en el área foliar del banano.’, Revista Científica Agroecosistemas, 6(1), pp. 128–136.spa
dc.relation.referencesRamezani, M., Rahmani, F. and Dehestani, A. (2017) ‘The effect of potassium phosphite on PR genes expression and the phenylpropanoid pathway in cucumber (Cucumis sativus) plants inoculated with Pseudoperonospora cubensis’, Scientia Horticulturae, 225(July), pp. 366–372. doi: 10.1016/j.scienta.2017.07.022.spa
dc.relation.referencesRamirez, E. (2014) ‘Evaluacion de los niveles de actividad y transcripcionales in vivo de algunas enzimas hidrolíticas secretadas por Fusarium oxysporum f.sp. dianthi en su interaccion con el clavel Dianthus caryophyllus L’, p. 174. Available at: http://www.bdigital.unal.edu.co/46176/spa
dc.relation.referencesRanf, S. (2017) ‘Sensing of molecular patterns through cell surface immune receptors’, Current Opinion in Plant Biology. Elsevier Ltd, 38, pp. 68–77. doi: 10.1016/j.pbi.2017.04.011.spa
dc.relation.referencesRani, P. U. and Jyothsna, Y. (2010) ‘Biochemical and enzymatic changes in rice plants as a mechanism of defense’, Acta Physiologiae Plantarum, 32(4), pp. 695–701. doi: 10.1007/s11738-009-0449-2.spa
dc.relation.referencesRebollar-Alviter, A. and Ellis, M. A. (2005) ‘ Efficacy of Azoxystrobin, Pyraclostrobin, Potassium Phosphite, and Mefenoxam for Control of Strawberry Leather Rot Caused by Phytophthora cactorum ’, Plant Health Progress, 6(1). doi: 10.1094/php-2005-0107-01-rs.spa
dc.relation.referencesRecorbet, G. et al. (2003) ‘Wanted: Pathogenesis-related marker molecules for Fusarium oxysporum’, New Phytologist, 159(1), pp. 73–92. doi: 10.1046/j.1469-8137.2003.00795.x.spa
dc.relation.referencesRiganti, C. et al. (2012) ‘The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate’, Free Radical Biology and Medicine. Elsevier, 53(3), pp. 421–436. doi: 10.1016/j.freeradbiomed.2012.05.006.spa
dc.relation.referencesRincón, A. E. R. (2020) Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi Ana, Universidad Nacional de Colombia.spa
dc.relation.referencesRoberts, L. D. et al. (2012) ‘Targeted metabolomics’, Current Protocols in Molecular Biology, 1(SUPPL.98), pp. 1–24. doi: 10.1002/0471142727.mb3002s98.spa
dc.relation.referencesRomero-Rincón, A. et al. (2021) ‘Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi’, Phytochemistry. Pergamon, 192, p. 112933. doi: 10.1016/J.PHYTOCHEM.2021.112933.spa
dc.relation.referencesRoncero, M. I. et al. (2000) ‘Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum.’, Revista Iberoamericana de Micologia, 17(1), pp. S47-53. Available at: https://europepmc.org/article/med/15762782 (Accessed: 15 February 2023).spa
dc.relation.referencesRuszkowski, M. et al. (2015a) ‘The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants’, Frontiers in Plant Science, 6(October), pp. 1–17. doi: 10.3389/fpls.2015.00869.spa
dc.relation.referencesRuszkowski, M. et al. (2015b) ‘The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants’, Frontiers in Plant Science. Frontiers Research Foundation, 6(October), p. 869. doi: 10.3389/FPLS.2015.00869/BIBTEX.spa
dc.relation.referencesSami, F., Siddiqui, H. and Hayat, S. (2019) ‘Interaction of glucose and phytohormone signaling in plants’, Plant Physiology and Biochemistry. Elsevier Masson, 135, pp. 119–126. doi: 10.1016/J.PLAPHY.2018.11.005.spa
dc.relation.referencesSantos-Rodríguez, J., Coy-Barrera, E. and Ardila, H. D. (2021) ‘Mycelium dispersion from fusarium oxysporum f. Sp. dianthi elicits a reduction of wilt severity and influences phenolic profiles of carnation (dianthus caryophyllus l.) roots’, Plants. doi: 10.3390/plants10071447spa
dc.relation.referencesSantos, F. (2023) Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.). Universidad Nacional de Colombia.spa
dc.relation.referencesdos Santos, T. B. and Vieira, L. G. E. (2020) ‘Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge’, Plant Gene. Elsevier, 24, p. 100258. doi: 10.1016/J.PLGENE.2020.100258.spa
dc.relation.referencesSauter, J. J. and van Cleve, B. (1992) ‘Seasonal variation of amino acids in the xylem sap of “Populus x canadensis” and its relation to protein body mobilization’, Trees. Springer-Verlag, 7(1), pp. 26–32. doi: 10.1007/BF00225228/METRICS.spa
dc.relation.referencesSchultz, J. C. et al. (2013) ‘Flexible resource allocation during plant defense responses’, Frontiers in Plant Science, 4(AUG), pp. 1–11. doi: 10.3389/fpls.2013.00324.spa
dc.relation.referencesSchymanski, E. L. et al. (2014) ‘Identifying small molecules via high resolution mass spectrometry: Communicating confidence’, Environmental Science and Technology, 48(4), pp. 2097–2098. doi: 10.1021/es5002105spa
dc.relation.referencesSharpe, P. (2018) Nutritional value of pasture plants for horses, Horse Pasture Management. Elsevier Inc. doi: 10.1016/B978-0-12-812919-7.00003-2.spa
dc.relation.referencesShepherd, T. et al. (2007) ‘Potato metabolomics by GC-MS: What are the limiting factors?’, Metabolomics, 3(4), pp. 475–488. doi: 10.1007/s11306-007-0058-2.spa
dc.relation.referencesSiah, A. et al. (2018) Natural Agents Inducing Plant Resistance Against Pests and Diseases. doi: 10.1007/978-3-319-67045-4_6.spa
dc.relation.referencesSilva, O. C. et al. (2011) ‘Potassium phosphite for control of downy mildew of soybean’, Crop Protection. Elsevier Ltd, 30(6), pp. 598–604. doi: 10.1016/j.cropro.2011.02.015.spa
dc.relation.referencesSmillie, R. (1989) ‘The Mode of Action of Phosphite: Evidence for Both Direct and Indirect Modes of Action on Three Phytophthora spp. in Plants’, Phytopathology, 79(9), p. 921. doi: 10.1094/phyto-79-921spa
dc.relation.referencesSnoeren, T. A. L. et al. (2010) ‘The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum’, Journal of Chemical Ecology, 36(5), pp. 479–489. doi: 10.1007/s10886-010-9787-1.spa
dc.relation.referencesSrivastava, Suchi et al. (2016) ‘Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani’, Frontiers in Plant Science. Frontiers Media S.A., 7(MAY2016), p. 587. doi: 10.3389/FPLS.2016.00587/XML/NLM.spa
dc.relation.referencesSumner, L. W. et al. (2007) ‘Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)’, Metabolomics, 3(3), pp. 211–221. doi: 10.1007/s11306-007-0082-2.spa
dc.relation.referencesSun, L. X. et al. (2006) ‘Cytotoxic constituents from Solanum Lyratum’, Archives of Pharmacal Research, 29(2), pp. 135–139. doi: 10.1007/BF02974274.spa
dc.relation.referencesTavernier, V. et al. (2007) ‘The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity’, Journal of Experimental Botany, 58(12), pp. 3351–3360. doi: 10.1093/jxb/erm182.spa
dc.relation.referencesTaylor, A. et al. (2016) ‘Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae’, Molecular plant pathology, 17(7), pp. 1032–1047. doi: 10.1111/mpp.12346.spa
dc.relation.referencesTon, J. and Jakab, G. (2007) ‘Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis’, The Plant Cell, 17(March 2005), pp. 987–999. doi: 10.1105/tpc.104.029728.2.spa
dc.relation.referencesTrejo-Téllez, L. I. and Gómez-Merino, F. C. (2018) ‘Phosphite as an inductor of adaptive responses to stress and stimulator of better plant performance’, in Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer Singapore, pp. 203–238. doi: 10.1007/978-981-10-9029-5_8.spa
dc.relation.referencesVanegas, L. (2019) APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi.spa
dc.relation.referencesVásquez Ramírez, L. M. and Castaño Zapata, J. (2017) ‘Manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) W.C. Snyder & H.N. Hansen]: una revisión’, Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), pp. 363–374. doi: 10.31910/rudca.v20.n2.2017.394.spa
dc.relation.referencesVerpoorte R. (2000) ‘Secondary metabolism’, Metabolic engineering of plant secondary metabolism, pp. 1–29.spa
dc.relation.referencesVerslues, P. and Sharma, S. (2010) ‘Proline Metabolism and Its Implications for Plant-Environment Interaction’, The Arabidopsis Book, 27(4). doi: 10.1088/1674-1056/27/4/043101.spa
dc.relation.referencesVinas, M., Mendez, J. C. and Jiménez, V. M. (2020) ‘Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants’, Scientia Horticulturae, 265(November 2019). doi: 10.1016/j.scienta.2020.109200.spa
dc.relation.referencesVinod, K. and Sabah, A. (2018) ‘Plant defense against pathogens: The role of salicylic acid’, Research Journal of Biotechnology, 13(12), pp. 97–103.spa
dc.relation.referencesWalz, C. et al. (2004) ‘Proteomics of curcurbit phloem exudate reveals a network of defence proteins’, Phytochemistry, 65(12), pp. 1795–1804. doi: 10.1016/j.phytochem.2004.04.006.spa
dc.relation.referencesWingler, A. et al. (2000) ‘Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis’, Plant Physiology, 124(1), pp. 105–114. doi: 10.1104/pp.124.1.105.spa
dc.relation.referencesWinter, G. et al. (2015) ‘Physiological implications of arginine metabolism in plants’, Frontiers in Plant Science, 6(JULY), pp. 1–14. doi: 10.3389/fpls.2015.00534.spa
dc.relation.referencesWinter, H. and Huber, S. C. (2000) ‘Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes’, Critical reviews in biochemistry and molecular biology. Crit Rev Biochem Mol Biol, 35(4), pp. 253–289. doi: 10.1080/10409230008984165spa
dc.relation.referencesWu, L. et al. (2019) ‘Biostimulant and fungicidal effects of phosphite assessed by GC-TOF-MS analysis of potato leaf metabolome’, Physiological and Molecular Plant Pathology, 106(December 2018), pp. 49–56. doi: 10.1016/j.pmpp.2018.12.001.spa
dc.relation.referencesWu, Q. et al. (2015) ‘Metabolite profiles of Populus in response to pathogen stress’, Biochemical and Biophysical Research Communications. Elsevier Ltd, 465(3), pp. 421–426. doi: 10.1016/j.bbrc.2015.08.025.spa
dc.relation.referencesYagi, M. et al. (2014) ‘Sequence analysis of the genome of carnation (Dianthus caryophyllus L.)’, DNA Research, 21(3), pp. 231–241. doi: 10.1093/dnares/dst053.spa
dc.relation.referencesYamaguchi, Y. and Huffaker, A. (2011) ‘Endogenous peptide elicitors in higher plants’, Current Opinion in Plant Biology, 14(4), pp. 351–357. doi: 10.1016/j.pbi.2011.05.001.spa
dc.relation.referencesYamaguchi, Y., Pearce, G. and Ryan, C. A. (2006) ‘The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells’, Proceedings of the National Academy of Sciences of the United States of America, 103(26), pp. 10104–10109. doi: 10.1073/pnas.0603729103.spa
dc.relation.referencesYáñez-Juárez, M. et al. (2017) ‘Phosphites as alternative for the management of phytopathological problems’, Revista Mexicana de Fitopatología, 36(1), pp. 79–94. doi: 10.18781/R.MEX.FIT.1710-7.spa
dc.relation.referencesZaynab, M. et al. (2019) ‘Role of primary metabolites in plant defense against pathogens’, Microbial Pathogenesis. Elsevier Ltd, 137(September), p. 103728. doi: 10.1016/j.micpath.2019.103728.spa
dc.relation.referencesZhang, A. et al. (2012) ‘Modern analytical techniques in metabolomics analysis’, Analyst, 137(2), pp. 293–300. doi: 10.1039/c1an15605espa
dc.relation.referencesZubiri, A. (2018) ‘Análisis metabolómico no dirigido en dos líneas de conejos seleccionados de forma divergente para grasa intramuscular’, p. 74.spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembMetabolitos microbianosspa
dc.subject.lembMicrobial metaboliteseng
dc.subject.lembBiosíntesisspa
dc.subject.lembBiosynthesiseng
dc.subject.proposalDianthus caryophyllus L.other
dc.subject.proposalFusarium oxysporum f. sp. dianthiother
dc.subject.proposalFosfito de potasiospa
dc.subject.proposalMetabolómica no dirigidaspa
dc.subject.proposalPerfilado metabólicospa
dc.subject.proposalNPR1spa
dc.subject.proposalP5CRspa
dc.subject.proposalSARspa
dc.subject.proposalUntargeted metabolomicseng
dc.titleEfecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthispa
dc.title.translatedEffect of the application of potassium phosphite on the biosynthesis of metabolites during the carnation (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthieng
dc.title.translatedEfeito da aplicação de fosfito de potássio na biossíntese de metabólitos durante o cravo (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. diantipor
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEfecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthispa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020796853.2023.pdf
Tamaño:
2.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: