Evaluación de inóculos microbianos en el proceso de fermentación de cacaos especiales para la mitigación del contenido de cadmio en grano

dc.contributor.advisorBedoya Pérez, Juan Carlos
dc.contributor.advisorRamírez Pisco, Ramiro
dc.contributor.authorHurtado Dávila, Johanna
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001546264spa
dc.contributor.orcidHurtado Dávila, Johanna [0009-0003-3620-0004]spa
dc.contributor.researchgroupUnidad de Fitosanidad y Control Biológicospa
dc.coverage.countryColombia
dc.date.accessioned2024-10-29T16:27:47Z
dc.date.available2024-10-29T16:27:47Z
dc.date.issued2024-10-29
dc.descriptionIlustraciones, fotografías, gráficosspa
dc.description.abstractEl cacao colombiano es reconocido por los mercados internacionales como fino y de aroma, característica que ha incrementado su valor comercial. Por tal razón, el cultivo de cacao se ha convertido en una opción cada vez más atractiva para los agricultores y de mayor importancia económica para el país. Sin embargo, en algunas zonas cacaoteras de Colombia se superan los límites de cadmio establecidos en el reglamento de la Unión Europea impactando de manera negativa las exportaciones. Aunque existen diferentes metodologías para la extracción de metales pesados, la mayoría no son compatibles con el sistema de producción de cacao o son altamente costosas. En respuesta a esta problemática, en esta investigación se evaluó la capacidad de inóculos microbianos para disminuir el contenido de cadmio en los granos de cacao durante el proceso de fermentación. Para tal fin, se aislaron microorganismos del proceso fermentativo y se seleccionaron dos cepas de bacterias y una de levadura con capacidad para disminuir el contenido de cadmio en medio acuoso (10 mg Cd+2/L) a diferentes valores de pH inicial (3,5; 4,5 y 5,5). Las cepas seleccionadas fueron evaluadas de manera individual y en combinación durante el proceso de fermentación de cacao bajo condiciones de campo. Además, se definieron condiciones apropiadas para el crecimiento de uno de los microorganismos seleccionados. Estas condiciones incluyeron el diseño de un medio de cultivo de bajo costo y la definición de parámetros de operación adecuados (pH y temperatura) para la producción de biomasa a través de diseños factoriales fraccionados. La cepa Bacillus subtilis M21HB (46,23 mg Cd+2/gBS), tanto de manera individual como en cultivo mixto con Bacillus megaterium M17HB (50,18 mg Cd+2/gBS) a pH 4,5, demostró la máxima capacidad para secuestrar cadmio. Además, se observó que a este pH se favorece la captura del metal tanto para las cepas individuales como para aquellas en cultivo mixto. Sin embargo, los microrganismos seleccionados en las pruebas a nivel in vitro, al ser inoculados en el grano durante el proceso de fermentación bajo condiciones de campo, no disminuyeron la concentración de cadmio en el grano. Aunque los microorganismos obtenidos e identificados en este trabajo demostraron ser potencialmente útiles para la biorremediación de metales pesados, es necesario realizar estudios posteriores que permitan definir condiciones adecuadas para su implementación durante el proceso de fermentación de cacao. (Tomado de la fuente)spa
dc.description.abstractColombian cocoa is recognized by international markets as fine-flavor-cocoa. This characteristic increases its commercial value and makes cocoa cultivation an important economic alternative for farmers and the country. However, in some cocoa-growing areas of Colombia, high levels of cadmium (Cd+2) exceed the limits established by European Union regulations, negatively impacting exports. Although there are different methodologies to extract heavy metals in foods, these are very expensive or incompatible with the cocoa production system. In response, this research evaluated the bioremediation capacity of microbial to mitigate cadmium content in cocoa beans during fermentation process. First, microorganisms involved in cocoa fermentation process were isolated. The capacity to reduce cadmium content in liquid medium (10 mg Cd+2/L) was evaluated and two bacterial and one yeast strains were selected. The selected strains were evaluated individually and in consortium under field conditions at a scale of 100 kg. In addition, the appropriate conditions for the in vitro production of biomass (culture medium, pH and T) of one of the selected microorganisms were defined by using fractional factorial designs. The strain Bacillus subtilis M21HB (46.23 mg Cd+2/gBS) inoculated individually, or in mixed culture with Bacillus megaterium M17HB (50.18 mg Cd+2/gBS), exhibited the maximum capacity to sequester cadmium in the liquid medium at pH 4.5. In addition, it was observed that at this pH the capture of the metal is favored both for individual strains and for those in mixed culture. However, these strains did not have the capacity to decrease cadmium levels in cocoa beans during the fermentation process. Although the microorganisms obtained and identified in this work proved to be potentially useful for the bioremediation of heavy metals, it is necessary to carry out subsequent studies to define suitable conditions for their implementation.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaBiotecnología Microbiana - Biorremediaciónspa
dc.description.sponsorshipCompañía Nacional de Chocolates - CNCHspa
dc.format.extent203 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87098
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbbott, P. C., Benjamin, T., Burniske, G., Croft, M., Fenton, M. C., Kelly, C., Lundy, M. M., Rodriguez-Camayo, F., Wilcox, M. (2019). Análisis de la cadena productiva del cacao en Colombia. Informe preparado para revisión por la Agencia de los Estados Unidos para el Desarrollo Internacional y el Departamento de Agricultura de los Estados Unidos. Universidad Purdue y Centro Internacioal de Agricultura Tropical. https://doi.org/10.13140/RG.2.2.10934.14400spa
dc.relation.referencesAbioye, O. P., Oyewole, O. A., Oyeleke, S. B., Adeyemi, M. O., Orukotan, A. A. (2018). Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Brazilian Journal of Biological Sciences, 5(9), 25–32.spa
dc.relation.referencesAbt, E., Fong Sam, J., Gray, P., Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Addit Contam B 11, 92-102. https://doi.org/10.1080/19393210.2017.1420700spa
dc.relation.referencesAcosta, I., Cárdenas-González, J.F., Martínez, V.M., Rodríguez, A., Moctezuma., M., Pacheco., N.C. (2018). “Biosorption of heavy metals by Candida albicans” In: Shiomi, N, (eds) Advances in biorremediation and phytorremediation (Rijeka. InTech), 43-60. https://doi.org/10.5772/intechopen.72454spa
dc.relation.referencesAfoakwa, E.O., Paterson, A., Fowler, M., Ryan, A. (2008). Flavour formation and character in cocoa and chocolate: a critical review. Crit. Rev. Food Sci. Nutr. 48, 840-857. https://doi.org/10.1080/10408390701719272spa
dc.relation.referencesAguirre-Forero, S.E., Piraneque-Gambasica, N.V., Vásquez-Polo, J.R. (2020). Heavy metals content in soils and cocoa tissues in Magdalena department Colombia: emphasis in cadmium. Entramado. Enero - Junio, 2020 vol. 16, no. 1, p.298-310 https://doi.org/10.18041/1900-3803/entramado.2.6753spa
dc.relation.referencesAhemad, M. (2012). Implications of bacterial resistance against heavy metals in bioremediation: a review. J. Inst. Integr. Omics Appl. Biotechnol. IIOAB 3, 39–46.spa
dc.relation.referencesAhmad, A.; Bhat, A.H.; Buang, A. (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. J. Clean. Prod, 171, 1361–1375. https://doi.org/10.1016/j.jclepro.2017.09.252spa
dc.relation.referencesAibeche, C., Selami, N., Zitouni‑Haouar, F., Oeunzar, K., · Addou, A., Kaid‑Harche, M., · Djabeur, Abderrezak. (2022). Bioremediation potential and lead removal capacity of heavy metal‑tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria). Int Microbiol;25(1):61-73. doi: https://doi.org/10.1007/s10123-021-00191-zspa
dc.relation.referencesAlbarrcín, H. S. R., Contreras, A. E. D., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 15, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214spa
dc.relation.referencesAli, G.A., Mohammad, R., Makhlouf, A.S. (2023). “Biodegradable Materials: Fundamentals, Importance, and Impacts”, In: Ali, G.A., Makhlouf, A.S (eds), Handbook of Biodegradable Materials. (Springer Nature Switzerland), 3-14. https://doi.org/10.1007/978-3-031-09710-2_74spa
dc.relation.referencesAlloway, B. J. (2013). Sources of Heavy Metals and Metalloids in Soils. In B. J. Alloway (Ed.), Heavy Metals in Soils (pp. 11-50). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4470-7spa
dc.relation.referencesAlmeida, S. D. F. O. De, Silva, L. R. C., Celso, G., Junior, A. C., Oliveira, G., Helena, S., Vasconcelos, S., Lopes, A. S. (2018). Diversity of yeasts during fermentation of cocoa from two sites in the Brazilian Amazon. Acta Amazonica, 49(1), 64–70.spa
dc.relation.referencesAl-Qahtani, K.M. (2016). Water purification using different waste fruit cortexes for the removal of heavy metals. J. Taibah Univ. Sci. 10 (5), 700–708. https://doi.org/10.1016/j.jtusci.2015.09.001spa
dc.relation.referencesAl-Qahtani, K.M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver noanoparticles with Benjamina leaves extract. Egypt. J. Aquat. Res. 43, 269–274. https://doi.org/10.1016/j.ejar.2017.10.003spa
dc.relation.referencesAlzahrani, O., Abo-Amer, A.E.,Mohamed, R.M. (2022). Improvement of Zn (II) and Cd (II) Biosorption by Priestia megaterium PRJNA526404 Isolated from Agricultural Waste Water. Microorganisms. 10 (12), 2510. https://doi.org/10.3390/microorganisms10122510spa
dc.relation.referencesAmezqueta, S. Gonzalez-Penas, E., Murillo, M., Lopez de Cerain, A. (2005). Occurrence of ochratoxin A in cocoa beans: effect of shelling. Food Addit. Contain. 22, 590-596. https://doi.org/10.1080/02652030500130160spa
dc.relation.referencesAmi, D., Posteri, R., Mereghetti, P., Porro, D., Doglia, S.M., Branduardi, P. (2014). Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts, Biotechnol. Biofuels. 7–12. https://doi.org/https://doi.org/10.1186/1754-6834-7-12.spa
dc.relation.referencesAndersson, M., Koch, G., Lieberei, R. (2006): Structure and function of the seed coat of Theobroma cacao L. and its possible impact on flavour precursor development during fermentation. J. Appl. Bot. Food Qual. 80, 48-62.spa
dc.relation.referencesArce-Inga, M., González-Pérez, A.Ri., Hernandez-Diaz, E., Chuquibala-Checan, B., Chávez-Jalk, A., Llanos-Gomez K.J., Leiva-Espinoza, S.T., Oliva-Cruz, S.M., Cumpa-Velasquez, L.M. (2022). Bioremediation Potential of Native Bacillus sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma cacao in Amazonas Region. Microorganisms, 10, 2108. https://doi.org/10.3390/microorganisms10112108spa
dc.relation.referencesArdhana, M., Fleet, G. (2003) The microbial ecology of cocoa bean fermentations in Indonesia. Int J Food Microbiol 86, 87–99. https://doi.org/10.1016/S0168-1605(03)00081-3spa
dc.relation.referencesArévalo-gardini, E., Arévalo-hernández, C. O., Baligar, V. C., He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L) in major cacao growing regions in Perú. Science of the Total Environment, 605–606, 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122spa
dc.relation.referencesArgüello, D., Chávez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., Montalvo, D. (2019). Properties and agronomic factors affecting cadmium concentrations in cacao beans : A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292spa
dc.relation.referencesArous, F., Azabou, S., Jaouani, A., Zouari-Mechichi, H., Nasri, M., Mechichi, T. (2016). Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts. Environmental Science and Pollution Research. 23:6783–6792. https://doi.org/10.1007/s11356-015-5924-2spa
dc.relation.referencesArvelo, M. A., Delgado, T., Maroto, S., Rivera, J., Higuera, I., Navarro, A. (2016). Estado actual sobre la producción y el comercio del cacao en América. San José, C.R.: IICA: CIATEJ.spa
dc.relation.referencesAsria, M., Ghachtoulia, N., Elabeda, S., Koraichia, S. I., Elabeda, A., Silvac, B., Tavaresc, T. (2018). Wicherhamomyces anomalus biofilm supported on wood husk for chromium wastewater treatment. Journal of Hazardous Materials 359, 554–562. https://doi.org/10.1016/j.jhazmat.2018.05.050spa
dc.relation.referencesAyubb, T.N., Cerra, G.A., Chamorro, A.L., Pérez, C.A. (2017). Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia. Rev Colombiana Cienc Anim; 9(Supl 2):281-293.spa
dc.relation.referencesBahafid, W., Joutey, N.T., Sayel, H., Iraqui-Houssaini, M., Ghachtouli, N. (2013). Chromium Adsorption by Three Yeast Strains Isolated from Sediments in Morocco. Geomicrobiology Journal, 30, 422–429. https://doi.org/10.1080/01490451.2012.705228spa
dc.relation.referencesBardhan, P., Baruah, J., Raj, G.V.S., Kalita, E., Mandal, M. (2021). Optimization of culture conditions for biomass and lipid production by oleaginous fungus Penicillium citrinum PKB20 using response surface methodology (RSM). Biocatalysis and Agricultural Biotechnology 37, 102169. https://doi.org/10.1016/j.bcab.2021.102169spa
dc.relation.referencesBarraza, F., Schreck, E., Lévêque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: a field study in areas impacted by oil activities in Ecuador. Environ. Pollut. 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080.spa
dc.relation.referencesBarraza, F., Schreck, E., Uzu, G., Lévêque, T., Zouiten, C., Boidot, M., Maurice, L. (2021). Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environmental Research 192, 10241. https://doi.org/10.1016/j.envres.2020.110241spa
dc.relation.referencesBatista, K.A., Bataus, L.A., Campos, I., Fernandes, K.F. (2013). Development of culture medium using extruded bean as a nitrogen source for yeast growth. Journal of Microbiological Methods. 92 (3): 310-315. https://doi.org/10.1016/j.mimet.2013.01.002spa
dc.relation.referencesBeg, M. S., Ahmad, S., Jan, K., Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science and Technology, 66, 108–116. https://doi.org/10.1016/j.tifs.2017.06.007spa
dc.relation.referencesBeni, A.A, Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environmental Technology & Innovation 17, 100503. https://doi.org/10.1016/j.eti.2019.100503spa
dc.relation.referencesBertoldi, D., Barbero, A., Camin, F., Caligiani, A., Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46–53. https://doi.org/10.1016/j.foodcont.2016.01.013spa
dc.relation.referencesBhumibhamon, O., Jinda, J., (1997). Effect of enzymes pectinases on natural cocoa fermentation. Kasetsart J. Nat. Sci. 31, 206e212.spa
dc.relation.referencesBillah, M., Agratiyan, T., Ayu, D., Erliyanti, N., Saputro, E., Yogaswara, R. (2020). Synthesis of Bioethanol from Cocoa Pod Husk Using Zymomonas Mobilis. IJEISE, 1:1spa
dc.relation.referencesBoeris, P.S., Liffourrena, A.S., Lucchesi, G.I (2018). Aluminum biosorption using nonviable biomass of Pseudomonas putida immobilized in agareagar: performance in batch and in fixed-bed column. Environ. Technol. Innov. 11 https://doi.org/ 10.1016/j.eti.2018.05.003.spa
dc.relation.referencesBonvehi, J.S. (2004). Occurrence of ochratoxin A in cocoa products and chocolate. J. Agric. Food Chem. 52, 6347-6352. https://doi.org/10.1021/jf040153wspa
dc.relation.referencesBoyanov, M.I, Kelly, S.D., Kemner, K.M., Bunker, B.A., Fein J.B., Fowle D.A. (2003). Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica et Cosmochimica Acta, Vol. 67, No. 18, pp. 3299–3311. https://doi.org/10.1016/S0016-7037(02)01343-1spa
dc.relation.referencesBravo, D, Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), 1–18. https://doi.org/10.3390/agronomy11040761spa
dc.relation.referencesBravo, D., Benavides-Erazo, J. (2020). The Use of a Two-Dimensional Electrical Resistivity Tomography (2D-ERT ) as a Technique for Cadmium Determination in Cacao Crop Soils. Applied Sciences, 10(June), 41–49. https://doi.org/10.3390/app10124149spa
dc.relation.referencesBravo, D., León-Moreno, C., Quiroga, R., Zamora, A., Gutiérrez, E., Moreno, E., Duarte, D., Aristizábal, A., Arroyave, C., Cardona, L., Olarte, H., Orozco, M.L., Guerra-Sierra, B. (2021a). ¿Qué es el cadmio y por qué es importante en el cultivo de cacao ? Colección de Cartillas Sobre Cadmio En Cacao. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 1.https://doi.org/10.21930/agrosavia.nbook.7404548spa
dc.relation.referencesBravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., Leon-Moreno, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698spa
dc.relation.referencesBravo, D., Santander, M., Rodríguez, J., Escobar, S. (2021b). Cadmium in Cacao: “From Soil to Bar” the Journey of Cadmium at a Farm Level. Research Square. https://doi.org/10.21203/rs.3.rs-199662/v1spa
dc.relation.referencesBravo, I.D.S, Arboleda, C. A., Martín, F. J. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agron. 63(2), 164–174. https://doi.org/10.15446/acag.v63n2.39569spa
dc.relation.referencesBroach, J.R. Nutritional control of growth and development in yeast (2012). Genetics 192(1):73–105. https://doi.org/10.1534/genetics.111.135731spa
dc.relation.referencesCáceres, J., Torres, E. (2017). Microorganismos cultivables asociados a cadmio (Cd) presentes en suelos cacaoteros de los municipios de Yacopí y Nilo, como estrategia de biorremediación. International Symposium on Cocoa Research (ISCR) Lima, Perú, 13-17 November.spa
dc.relation.referencesCai, M., Zhou, J., Hao, T., Du, K. (2022). Tolerance of phyllospheric Wickerhamomyces anomalus to BDE‑3 and heavy metals. Environmental Science and Pollution Research volume 29, pages56555–56561spa
dc.relation.referencesCaligiani, A., Marseglia, A., Prandi, B., Palla, G., Sforza, S. (2016). Influence of fermentation level and geographical origin on cocoa bean oligopeptide pattern. Food Chem. 211:431–439. https://doi.org/10.1016/j.foodchem.2016.05.072spa
dc.relation.referencesCamu, N.; De Winter, T.; Verbrugghe, K.; Cleenwerck, I.; Vandamme, P.; Takrama, J.S.; Vancanneyt, M.; De Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa seeds in Ghana. Applied of Environmental Microbiology, 73: 1809–1824. https://doi.org/10.1128/AEM.02189-06spa
dc.relation.referencesCamu, N.; Gonzalez, A.; De Winter, T.; Van Schoor, A.; De Bruyne, K.; Vandamme, P.; Takrama, J.S.; Addo, S.K.; De Vuyst, L. (2008). Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Applied of Environmental Microbiology, 74: 86–98. https://doi.org/10.1128/AEM.01512-07spa
dc.relation.referencesCanchignia, F., Auhing, J., Cedeño, Á., Carrillo, M., Bravo, D. (2021). Guía 12: Mitigación de cadmio por microorganismos. Caja de herramientas para la prevención y mitigación de la contaminación de cadmio en la cadena de cacao-Ecuador (1.ª ed., pp. 1-32). Quito, Ecuador. https://balcon.mag.gob.ec/mag01/magapaldia/Caja%20de%20Herramientas_Cadmio_Cacao/spa
dc.relation.referencesCasteblanco, J. A. (2018). Técnicas de remediación de metales pesados con potencial aplicación en el cultivo de cacao. La Granja: Revista de Ciencias de La Vida, 27(1), 21–35. https://doi.org/10.17163/lgr.n27.2018.02spa
dc.relation.referencesCedeño, W., Duicela, L. A., Altamirano, A. (2020). Remoción de Cadmio en almendras de cacao en proceso poscosecha con agentes quelantes, medios ácidos, lavado y presecado.[Tesis de Maestría] Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Ecuador. http://repositorio.espam.edu.ec/bitstream/42000/1344/1/TTMAI02D.pdfspa
dc.relation.referencesCempaka, L., Aliwarga, L., Purwo, S., Kresnowati, M.T.A.P. (2014). Dynamics of cocoa bean pulp degradation during cocoa bean fermentation: effects of yeast starter culture addition. J. Math. Fund. Sci. 46, 14e25.spa
dc.relation.referencesChandra, R., Kumar, V., & Chandra, R. (2016). Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science and Pollution Research, 24, 2605–2619. https://doi.org/10.1007/s11356-016-8022-1spa
dc.relation.referencesChávez, E., He, Z.L., Stoffella, P.J., Mylavarapu, R.S., Li, Y.C., Baligar, V.C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in ecuadorian soils under cacao production. Chemosphere 150, 57-62. https://doi.org/10.1016/j.chemosphere.2016.02.013spa
dc.relation.referencesChávez, E., He, Z.L., Stoffella, P.J., Mylavarapub, R.S., Li, Y.C., Moyanod, B., Baligar, V.C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment 533, 205–214. http://dx.doi.org/10.1016/j.scitotenv.2015.06.106spa
dc.relation.referencesCheesman, E.E. (1944) Notes on the Nomenclature, Classification and Possible Relationships of Cocoa Populations. Tropical Agriculture, 21, 144-159.spa
dc.relation.referencesChellaiah, E. R. (2018). Cadmium (heavy metals ) bioremediation by Pseudomona aeruginosa : a minireview. Applied Water Science, 8(154). https://doi.org/10.1007/s13201-018-0796-5spa
dc.relation.referencesChen, D., Wang, X.B., Wang, X.L., Feng, K., Su, J.C., Dong. J. (2020). The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci. Total Environ., 714, p. 8, https://doi.org/10.1016/j.scitotenv.2020.136550spa
dc.relation.referencesChen, Z.M., Li, Q., Liu, H.M (2010). Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Applied Microbiology and Biotechnology. 85:1353–1360spa
dc.relation.referencesCheng, J.; Yin,W.; Chang, Z.; Lundholm, N.; Jiang, Z. (2017). Biosorption capacity and kinetics of cadmium (II) on live and dead Chlorella vulgaris. J. Appl. Phycol. 29, 211–221.spa
dc.relation.referencesChi, Y., Huang, Y., Wang, J., Chenb, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhoub, P., Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. Science of the Total Environment 741, 140422.https://doi.org/10.1016/j.scitotenv.2020.140422spa
dc.relation.referencesChica, D., Lopez, J. (2020). Estrategias de remediación de cadmio aplicables a sistemas de producción de cacao en Colombia. [Monografía Especialización]. Universidad de Antioquia, Medellín.spa
dc.relation.referencesCNCH- Compañía Nacional de Chocolates. (2019). Cosecha, beneficio y calidad del grano de cacao (Theobroma cacao L.) [archivo PDF). Recuperado de https://chocolates.com.co/wp-content/uploads/2019/09/Cartilla-Cosecha-Benef-Calidad-SEP-2019.pdfspa
dc.relation.referencesCobaleda, L. (2022). Análisis Económico de las Exportaciones de Cacao en Colombia. Universidad Antonio Nariño [Tesis Pregrado]. Universidad Antonio Nariño, Neiva.spa
dc.relation.referencesComisión del Codex Alimentarius. (2018). Documento de debate sobre el desarrollo de un código de prácticas para prevenir y reducir la contaminación del cacao por el cadmio. 12a reunión Utrecht, Países Bajos. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FWD%252Fcf12_16s.pdfspa
dc.relation.referencesComitini F., Ingeniis, J., Pepe, L., Mannazzu, I., Ciani, Maurizio. (2004). Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiology Letters, 238 (1), 235–240. https://doi.org/10.1111/j.1574-6968.2004.tb09761.xspa
dc.relation.referencesContreras, C. A. (2017). Análisis de la cadena de valor del cacao en Colombia: generación de estrategias tecnológicas en operaciones de cosecha y poscosecha, organizativas, de capacidad instalada y de mercado [Tesis de Maestría]. Universidad Nacional de Colombia, Bogotá. http://www.bdigital.unal.edu.co/59141/1/1032373448-2017.pdfspa
dc.relation.referencesCopetti, M. V., Iamanaka, B. T., Frisvad, J. C., Pereira, J. L., and Taniwaki, M. H. (2011). Mycobiota of cocoa: From farm to chocolate. Food Microbiology, 28:1499–1504. https://doi.org/10.1016/j.fm.2011.08.005spa
dc.relation.referencesCopetti, M. V., Iamanaka, B. T., Mororó, R. C., Pereira, J. L., Frisvad, J. C., Taniwaki, M. H. (2012). The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species. Int J Food Microbiol, 155(3):158-64. 10.1016/j.ijfoodmicro.2012.01.026spa
dc.relation.referencesCopetti, M. V., Iamanaka, B.T., Pitt, J. I., Taniwaki, M. H. (2014). Fungi and mycotoxins in cocoa: From farm to chocolate. International Journal of Food Microbiology, 178:13–20. https://doi.org/10.1016/j.ijfoodmicro.2014.02.023spa
dc.relation.referencesCordoba-Novoa, H. A., Cáceres Zambrano, J., Torres Rojas, E. (2021). Assessment of native cadmium-resistant bacteria in cacao (Theobroma cacao L.) - cultivated soils. BioRxiv, 1–25. https://doi.org/10.1101/2021.08.06.455168spa
dc.relation.referencesCrafack, M., Keul, H., Eskildsen, C.E., Petersen, M.A., Saerens, S., Blennow, A., Skovmand-Larsen, M., Swiegers, J.H., Petersen, G.B., Heimdal, H., Nielsen, D.S. (2014). Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Res. Int. 63, 306e316.spa
dc.relation.referencesCravens A, Payne J, and Smolke CD (2019) Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications 10(1):1-12 https://doi.org/10.1038/s41467-019-09848-wspa
dc.relation.referencesCrowley, S., Mahony, J., Van Sinderen, D. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends. Food Sci Technol. 33(2):93–109. https://doi.org/10.1016/j.tifs.2013.07.004spa
dc.relation.referencesCruz-Prada, D., Guaitero-Patiño., Correa-Rueda, L. (2021). Contenido de cadmio en el grano de cacao Theobroma cacao L. seco, obtenido en la fermentación con pre y sin pre escurrido, en san vicente de chucurí. Citecsa. ISSN: 2027-6745spa
dc.relation.referencesCubillos, G., Merizalde, G.J., Correa, E. (2008). Manual de beneficio del cacao. [archivo PDF]. Recuperado de http://hdl.handle.net/20.500.12324/13260spa
dc.relation.referencesCui, J., Liu, T., Li, Y., & Li, F. (2018). Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes. Science of the Total Environment, 644, 602–610. https://doi.10.1016/j.scitotenv.2018.07.002spa
dc.relation.referencesD’Souza, L., Devi, P., Shridhar, D.M.P., Naik, C.G. (2008). Use of fourier transform infrared (FTIR) spectroscopy to study cadmium-induced changes in padina tetrastromatica (Hauck). Anal. Chem. Insights 3, 135–143. https://doi.org/10.4137/117739010800300001spa
dc.relation.referencesDa Cruz Pedrozo, M.G., De Castro Reis, L.V., Efraim, P., Santos, C., Lima, N., Freitas, R., 2017. Cocoa fermentation: Microbial identification by MALDI-TOF MS, and sensory evaluation of produced chocolate. Food Science and Technology 77, 362-369. https://doi.org/10.1016/j.lwt.2016.11.076spa
dc.relation.referencesDa Silva, E.G.; de Fátima Borges, M.; Medina, C.; Piccoli, R.H.; Schwan, R. F. (2005). Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res. 5(9): 859-865. https://doi.org/10.1016/j.femsyr.2005.02.006spa
dc.relation.referencesDaniel, H. M., Vrancken, G., Takrama, J. F., Camu, N., De Vos, P., & De Vuyst, L. (2009). Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Research, 9 (5), 774–783. https://doi.org/10.1111/j.1567-1364.2009.00520.xspa
dc.relation.referencesDas, S., Al-Naemi, H. (2019) Cadmium Toxicity: Oxidative Stress, Inflammation and Tissue Injury. Occupational Diseases and Environmental Medicine, 7, 144-163. https://doi.org/10.4236/odem.2019.74012spa
dc.relation.referencesDaymond, A., Bekele, F. (2022). Cacao. In: Priyadarshan, P., Jain, S.M. (eds) Cash Crops. Springer, Cham. https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-74926-2_2spa
dc.relation.referencesDe Araujo, Q.R., Baligar, V.C., de A. Loureiro, G.A.H., de Souza Júnior, J.O., Comerford, N.B. (2017). Impact of soils and cropping systems on mineral composition of dry cacao beans. J. Soil Sci. Plant Nutr. 17, 410–428. https://doi.org/10.4067/S0718-95162017005000030spa
dc.relation.referencesDe Araujo, Q.R., De A. Loureiro, G.A.H., Ahnert, D., Escalona-Valdez, R.A., Baligar, V.C., (2020). Interactions between soil, leaves and beans nutrient status and dry biomass of beans and pod husk of Forastero cacao: an exploratory study. Commun. Soil Sci. Plant Anal. 51 (5), 567–581. https://doi.org/10.1080/00103624.2020.1729369spa
dc.relation.referencesDe Vuyst, L., Lefeber, T., Papalexandratou, Z., Camu, N. (2010). The functional role of lactic acid bacteria in cocoa bean fermentation. In: Mozzi, F., Raya, R.R, Vignolo, G.M (eds), Biotechnology of Lactic Acid Bacteria: Novel Applications. pp. 301–326. Ames: Wiley-Blackwell.spa
dc.relation.referencesDe Vuyst, L., Leroy, F. (2020). Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews, 44(4), 432–453. https://doi.org/10.1093/femsre/fuaa014spa
dc.relation.referencesDe Vuyst, L., Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology 121, 5 -17. https://ami-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/jam.13045spa
dc.relation.referencesDelangiz, N., Varjovi, M. B., Lajayer, B. A., Ghorbanpour, M. (2020). Beneficial microorganisms in the remediation of heavy metals. In Molecular Aspects of Plant Beneficial Microbes in Agriculture. Edition: 1Chapter: 3 3417-423.spa
dc.relation.referencesDíaz, A., Flórez, J., Cotes, A.M. (2005). Optimización de un medio de cultivo para la producción de la levadura Pichia onychis (Lv027). Revista Colombiana de Biotecnología, 7:1, 51-58.spa
dc.relation.referencesDing, J., Chen, W., Zhang, Z., Qin, F., Jiang, J., He, A., Sheng, G.D. (2021). Enhanced removal of cadmium from wastewater with coupled biochar and Bacillus subtilis. Water Sci Technol .83(9):2075-2086. https://doi.org/10.2166/wst.2021.138spa
dc.relation.referencesDircks, H. D.(2009). Investigation into the fermentation of Australian cocoa beans and its effect on microbiology, chemistry and flavour [Tesis de Doctorado]. University of New South Wales. Sydney, Australia.https://doi.org/10.26190/unsworks/14910spa
dc.relation.referencesDjelal, H., Amrane, A., Lahrer, F., Martin, G. (2005). Effect of medium osmolarity on the bioproduction of glycerol and ethanol by Hansenula anomala growing on glucose and ammonium. Appl Microbiol Biotechnol, 69: 341–349. https://doi.org/10.1007/s00253-005-1987-1spa
dc.relation.referencesDu, H., Huang, Q., Peacock, C.L.,Tie B., Lei, M., Liu, X.,. Wei, X. (2018). Competitive binding of Cd, Ni and Cu on goethite organo–mineral composites made with soil bacteria. Environ. Pollut., 243, pp. 444-452, https://doi.org/10.1016/j.envpol.2018.08.087spa
dc.relation.referencesDzelagha, B.F., Ngwa N.M., Bup, D.N. (2020). A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters. International Journal of Food Science. 2020(6):1-11. https://doi.org/10.1155/2020/8830127spa
dc.relation.referencesEngbersen, N., Gramlich, A., López, M., Schwarz, G., Hattendorf, B., Gutiérrez, O., Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Sci Total Environ 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001spa
dc.relation.referencesEngeseth, N.J. y Ac Pangan, M.F. (2018). Current context on chocolate flavor development — a review. Curr. Opin. Food Sci. 21:84–91. https://doi.org/10.1016/j.cofs.2018.07.002spa
dc.relation.referencesEscalante, W.E.,4, Rychtera, M., Melzoch, K., Polo, E.Q., Sakoda, B.H. (2011). Estudio de la actividad fermentativa de Hansenula anomala y producción de compuestos químicos de importancia sensorial. Rev. peru. biol. 18(3): 325 – 33. ISSN 1727-9933spa
dc.relation.referencesEuropean Safety Authority -EFSA. (2009). Scientific opinion of the panel on contaminants in thefood chain on a request from the European Commission on cadmium in food. EFSA Journal, 7(3), 1831–4732.spa
dc.relation.referencesFahrurrozi, Rahayu, E.P., Nugroho, I.B., Lisdiyanti, P. (2019). Lactic acid bacteria (LAB) isolated from fermented cocoa beans prevent the growth of model food contaminating bacteria. AIP Conf. Proc. 020005:1-6. https://doi.org/10.1063/1.5098410spa
dc.relation.referencesFalcón, G. (2019). Cadmio y polifenoles totales en la fermentación de los granos de cacao (Theobroma cacao l.) clon ccn-51 .[Tesis de Maestría]. Universidad Nacional Agraria de la Selva, Perú.spa
dc.relation.referencesFarmanbordar, Z., Ghazban, F., Hosseini, H.M., Amani, M.Al., Imani, A.A. (2021). Evaluation the Biosorption Properties of Three Bacillus Strains for Cu2+ Ions Uptake from Wastewater. J Appl Biotechnol Rep ;8(3):320-325. https://doi.org/10.30491/JABR.2020.209419.1140spa
dc.relation.referencesFarooq, U.; Kozinski, J.A.; Khan, M.A.; Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2010.02.030spa
dc.relation.referencesFathima, S., Shanmugasundaram, R., Sifri, M., Selvaraj, R. (2023). Yeasts and yeast-based products in poultry nutrition. J. Appl. Poult. Res. 32:100345. https://www.sciencedirect.com/science/article/pii/S105661712300017Xspa
dc.relation.referencesFathollahi, A., Khasteganan, N., Coupe, S.J., Newman A.P (2021). A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere 268, 129290. https://doi.org/10.1016/j.chemosphere.2020.129290spa
dc.relation.referencesFears, K.P., Creager, S.E., Latour, R.A. (2008). Determination of the surface pK of carboxylic- and amine-terminated alkanethiols using surface plasmon resonance spectroscopy. Langmuir 24. https://doi.org/10.1021/la701760sspa
dc.relation.referencesFEDECACAO - Federación Nacional de Cacaoteros de Colombia. (2022). La producción cacaotera nacional sigue creciendo: en 2021 logra un nuevo récord histórico. Bogotá D.C., (Actualizado 17 de febrero de 2022).spa
dc.relation.referencesFeria-Cáceres, P. F., Penagos-Velez, L., Moreno-Herrera, C. X. (2022). Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Increased Metal Content. Microbiology Research, 13(3), 556–573. https://doi.org/10.3390/microbiolres13030039spa
dc.relation.referencesFernández -Lizarazo, J.C. (2018). Estudio del efecto de diferentes líneas monospóricas de Rhizophagus irregularis en la respuesta del cacao al cadmio bajo condiciones de déficit hídrico en vivero [Tesis de Doctorado]. Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesFernández, P.M., Cruz, E.L., Viñarta, S.C., Castellanos, L.I (2017). Optimization of Culture Conditions for Growth Associated with Cr (VI) Removal by Wickerhamomyces anomalus M10. Bull Environ Contam Toxicol. 98:400–406. https://doi.org/10.1007/s00128-016-1958-5spa
dc.relation.referencesFigueira, A. V. de O., Janick, J. [Ed]., BeMiller, J.N. (1993). New products from theobroma cacao: seed pulp and pod gum. In New crops (p. 710). New York: Wiley.spa
dc.relation.referencesFINAGRO-Fondo para el Financiamiento del Sector Agropecuario. (2020). Ficha de Inteligencia: Cacao. https://www.finagro.com.co/sites/default/files/ficha_de_inteligencia_-_cacao.pdfspa
dc.relation.referencesFleet, G.H. (2003). Yeast interactions and wine flavour. Int J Food Microbiol , 86:11-22. doi: 10.1016/s0168-1605(03)00245-9spa
dc.relation.referencesFlorida, R. (2021). Cadmium in soil and cacao beans of peruvian and south american origin. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9499–9515. https://doi.org/10.15446/rfnam.v74n2.91107spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (2023, agosto 20) FAOSTAT, Countries by commodity https://www.fao.org/faostat/en/?#rankings/countries_by_commodity, 2021spa
dc.relation.referencesFranco-Lara,E.,Link,H.,andWeuster-Botz,D.(2006).Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. ProcessBiochem. 41,2200–2206. https://doi.org/10.1016/j.procbio.2006.06.024spa
dc.relation.referencesGao, Y., Li, D., Liu, Y. (2012). Production of single cell protein from soy molasses using Candida tropicalis. Annals of Microbiology 62:1165–1172. https://doi.org/10.1007/s13213-011-0356-9spa
dc.relation.referencesGarcia-Alamill, P., Salgado-Cervantes, M.A., Barel, M., Berthomia, G., Rodriguez-Jimenes, G.C., Garcia-Alvarado, M.A. (2007) Moisture, acidity and temperature evolution during cacao drying. J. Food Fng. 79, 1159-1165. https://doi.org/10.1016/j.jfoodeng.2006.04.005spa
dc.relation.referencesGarcia-Armisen, T., Papalexandratou, Z., Hendryckx, H., Camu, N., Vrancken, G., De Vuyst, L., Cornelis, P. (2010). Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16 S rRNA gene clone library. Applied Microbiology and Biotechnology, 87:2281–2292. https://doi.org/10.1007/s00253-010-2698-9spa
dc.relation.referencesGautam, R.K., Soni, S., Chattopadhyaya, M.C. (2015). Functionalized magnetic nanoparticles for environmental remediation. Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. IGI Global, pp. 518 551. https://doi.org/10.4018/978-1-4666-6363-3.ch024spa
dc.relation.referencesGenchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. (2020).Nickel: Human health and environmental toxicology. Int. Environ. Res. Public Health, 17, 679. https://doi.org/10.3390/ijerph17030679spa
dc.relation.referencesGerbino, E., Carasi, P., Tymczyszyn, E., Gómez-Zavaglia, A. (2014). Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity. Journal of Dairy Research 81 280–287. https://doi.org/10.1017/S0022029914000314spa
dc.relation.referencesGhorbani, F., Younesi, H., Ghasempouri, S.M., Zinatizadeh, A.A., Amini, M., Daneshi, A. (2008). Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal 145, 267–275. https://doi.org/10.1016/j.cej.2008.04.028spa
dc.relation.referencesGil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-xspa
dc.relation.referencesGinatta, G., Vignati, F., Del Carmen Rodríguez, M. (2020). Observatorio del cacao fino y de aroma para américa latina. Iniciativa Latinoamericana del Cacao: Boletín No. 8. Caracas:CAF. https://scioteca.caf.com/handle/123456789/1530spa
dc.relation.referencesGong, Y., Zhao, D., & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, 440–460. https://doi.org/10.1016/j.watres.2018.10.024spa
dc.relation.referencesGramlich, A., Tandy, S., Andres, C., Paniagua, J. C., Armengot, L., Schneider, M., Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014spa
dc.relation.referencesGramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of the Total Environment, 612, 370–378. https://doi.org/10.1016/j.scitotenv.2017.08.145spa
dc.relation.referencesGuerra, B. E., Ximena, A., Meza, S., Sebastián, L., González, M., Patricia, S., & Rangel, B. (2014). Ensayos preliminares in vitro de biosorción de cadmio cepas fúngicas nativas de suelos contaminados. Innovaciencia, 2(1), 53–58. https://doi.org/10.15649/2346075X.256spa
dc.relation.referencesGuo, B., Liang, Y. C., Zhu, Y. G., & Zhao, F. J. (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa ) subjected to cadmium stress. Environmental Pollution, 147, 743–749. https://doi.org/10.1016/j.envpol.2006.09.007spa
dc.relation.referencesGuo, J., Zhang, X. (2004). Metal–ion interactions with sugars. The crystal structure and FTIR study of an SrCl2–fructose complex. Carbohydr. Res. 339, 1421–1426. https://doi.org/10.1016/j.carres.2004.03.004spa
dc.relation.referencesGupta, S., Bhathena, Z. (2020). Optimization of Culture Media and Conditions Enhances Mannan Oligosaccharides Production of Wickerhamomyces anomalus SZ1 Strain. Int. J. Curr.Microbiol.App.Sci. 9(5): 3104-3117. https://doi.org/10.1007/s12257-008-0248-4spa
dc.relation.referencesGupta, V.K., Nayak, A., Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res. 20 (1), 1 18. https://doi.org/10.4491/eer.2015.018spa
dc.relation.referencesGupte, M., Kulkarni, P.(2003). A study of antifungal antibiotic production by Streptomyces chattanoogensis MTCC 3423 using full factorial design. Lett Appl Microbiol; 35 (1) :22-6. https://doi: 10.1046/j.1472-765x.2002.01119.xspa
dc.relation.referencesHadiani, M.R., Darani, K.K., Rahimifard, N., Younesi, H. (2018). Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal. Agric. Biotechnol.15, 25-34. https://doi.org/10.1016/j.bcab.2018.05.001spa
dc.relation.referencesHaider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887spa
dc.relation.referencesHamid, Y., Tang, L., Irfan, M., Cao, X., Hussain, B., Zahir, M., Usman, M., He, Z., Yang, X. (2019). An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Science of the Total Environment, 660, 80–96. https://doi.org/10.1016/j.scitotenv.2018.12.419spa
dc.relation.referencesHasan, H.A., Sheikh, S.R., Tan, N., Yeoh, S.J. (2016). Interaction of environmental factors on simultaneous biosorption of lead and manganese ions by locally isolated Bacillus cereus. J. Ind. Eng. Chem. 37, 295-305. https://doi.org/10.1016/j.jiec.2016.03.038spa
dc.relation.referencesHawrylak-Nowak, B., Dresler, S., Matraszek, R. (2015). Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiology and Biochemistry, 94 (2015) 225e234. https://doi.org/10.1016/j.plaphy.2015.06.012spa
dc.relation.referencesHelmke, P.A. (1999). Chemistry of Cadmium in Soil Solution. In: McLaughlin, M.J., Singh, B.R. (eds) Cadmium in Soils and Plants. Developments in Plant and Soil Sciences, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4473-5_3spa
dc.relation.referencesHlihor, R.M., Figueiredo, H., Tavares, T., Gavrilescu, M. (2017). Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): batch and column studies. Process Saf. Environ. Prot. 108, 44–56. https://doi.org/10.1016/j.psep.2016.06.016spa
dc.relation.referencesHo, V. T. T., Zhao, J., Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology, 174, 72–87. https://doi.org/10.1016/j.ijfoodmicro.2013.12.014spa
dc.relation.referencesHolm, P. E., Christensen, T. H., Tjell, J. C., McGrath, S. P. (1995). Heavy metals in the environment: speciation of cadmium and zinc with application to soil solutions. Journal of Environmental Quality, 24, 183–190. https://www.researchgate.net/publication/250106584_Speciation_of_Cadmium_and_Zinc_with_Application_to_Soil_Solutionsspa
dc.relation.referencesHoseini, S. M., Zargari, F. (2013). Cadmium in plants: a review. International Journal of Farming and Allied Science, 2, 2002–2004. http://ijfas.com/wp-content/uploads/2013/09/579-581.pdfspa
dc.relation.referencesHuang, H., Jia, Q., Jing, W., Dahms H-U., Wang, L. (2020). Screening strains for microbial biosorption technology of cadmium. Chemosphere 251, 126428. https://doi.org/10.1016/j.chemosphere.2020.126428spa
dc.relation.referencesIbrahim, F., Halttunen, T., Tahvonen, R., & Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: Assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52(9), 877–885. https://doi.org/10.1139/w06-043spa
dc.relation.referencesIbrahim, W.M. (2011). Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater. 192, 1827–1835. https://doi.org/10.1016/j.jhazmat.2011.07.019spa
dc.relation.referencesIlleghems, K., Pelicaen, R., De Vuyst, L., Weckx, S. (2016). Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol. 58: 68–78spa
dc.relation.referencesInternational Cocoa Organization (ICCO) (2018). As a working definition under the International Cocoa Agreement, 2010. Berlin, Germany. https://www.icco.org/wp-content/uploads/FFP-5-2-Rev.1-A-Working-Definition-of-Fine-or-Flavour-Cocoa-English.pdfspa
dc.relation.referencesInternational Cocoa Organization (ICCO) (2022). Cocoa market report december 2022. https://www.icco.org/wp-content/uploads/ICCO-Monthly-Cocoa-Market-Report-December-2022.pdfspa
dc.relation.referencesInternational Cocoa Organization (ICCO) (2022). Quarterly Bulletin of Cocoa Statistics, Vol. XLVIII, No. 4, Cocoa year 2021/22. Published: 30-11-22. https://www.icco.org/wp-content/uploads/Production_QBCS-XLVIII-No.-4.pdfspa
dc.relation.referencesInternational Cocoa Organization (ICCO)(2020). Report of the meeting of the ad hoc panel on the review of annex c of the ica, 2010. Producing countries exporting either exclusively or partially fine or flavour cocoa. December 2020. https://www.icco.org/fine-or-flavor-cocoa/spa
dc.relation.referencesIshaq, S., Jafri, L. (2017). Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, 1(1), 1–5. https://doi.org/10.26480/msp.01.2017.01.05spa
dc.relation.referencesJacome, D., Fernandez, J., & Rrodriguez, A. (2016). Dinámica del cadmio en plantas de cacao micorrizadas en suelos del tropico. Memorias Del XXI Congreso Latinoamericano de La Ciencia Del Suelo. 24-28 de octubre 2016. Quito - Ecuador, 113–119.spa
dc.relation.referencesJalbani, N., Kazi, T.G., Afridi, H.I. and Arain, M.B. (2009) Determination of Toxic Metals in Different Brands of Chocolates and Candies, Marketed in Pakistan. Pakistan Journal of Analytical and Environmental Chemistry, 10, 48- 52.spa
dc.relation.referencesJi, Y., Zhou, Y., Ma, C., Feng, Y., Hao, Y., Rui, Y., Wu, W., Gui, X., Le, V. N., Han, Y., Wang, Y., Xing, B., & Liu, L. (2017). Jointed toxicity of TiO 2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry, 110, 82–93. https://doi.10.1016/j.plaphy.2016.05.010spa
dc.relation.referencesJiang, L.; Zhou, W.; Liu, D.; Liu, T.; Wang, Z. (2017). Biosorption isotherm study of Cd2+, Pb2+ and Zn2+ biosorption onto marine bacterium Pseudoalteromonas sp. SCSE709-6 in multiple systems. J. Mol. Liq, 247, 230–237. https://doi.org/10.1016/j.molliq.2017.09.117spa
dc.relation.referencesJiménez-Tobón, C. S. (2015). Estado legal mundial del cadmio en cacao (Theobroma cacao): fantasía o realidad. Producción + Limpia, 10(1), 89–104.spa
dc.relation.referencesJohn, W.A., Böttchera, N.L., Aßkampa, M., Bergounhou, A, Kumaria, N., Ho, P-W., D'Souzaa R.N., Nevoigt, Elke., Ullrich, M.S (2019). Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation . Food Chemistry 278, 786–794. https://doi.org/10.1016/j.foodchem.2018.11.108spa
dc.relation.referencesJoshi, J., Dhungana, P., Prajapati, B., Maharjan, R., Poudyal, P., Yadav, M., Mainali, M.,Yadav, A.P., Bhattarai, T., Sreerama, L. (2019). Enhancement of Ethanol Production in Electrochemical Cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7). Frontiers in Energy Research, 7, ISSN 2296-59. https://doi.org/10.3389/fenrg.2019.00070spa
dc.relation.referencesJürgen, H.A., Díaz, V. (2010). Growth and production of cacao. Soils, Plant Growth and Crop Production Encyclopedia of Life Support Systems (EOLSS), 3.spa
dc.relation.referencesKadaikunnan, S., Rejiniemon, T.S., Khaled, J.M., Alharbi, N.S., Mothana, R. (2015). In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Annals of Clinical Microbiology and Antimicrobials, 14:9. https://doi.org/10.1186/s12941-015-0069-1spa
dc.relation.referencesKadjo, A.C., Beugre, G.C., Sess-Tchotch, D-A., Kedjebo, K.B., Mounjouenpou, P., Durand, N., Fontana, A., Guehi, S.T. (2023). Screening of Anti-fungal Bacillus Strains and Influence of their Application on Cocoa Beans Fermentation and Final Bean Quality. J. Adv. Microbiol 23 (1), 8-17spa
dc.relation.referencesKaewsarn, P.; Yu, Q. (2001). Cadmium (II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Environ. Pollut. 112, 209–213. https://doi.org/10.1016/S0269-7491(00)00114-7spa
dc.relation.referencesKang, C.H., Kwon, Y.J., So, J.S. (2016).Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64-69. https://doi.org/10.1016/j.ecoleng.2016.01.023spa
dc.relation.referencesKapahi, M., Sachdeva, S. (2019). Bioremediation Options for Heavy Metal Pollution. Journal of Health & Pollution, 9(24). https://doi.org/10.5696/2156-9614-9.24.191203spa
dc.relation.referencesKarimpour, M., Ashraf, S. D., Taghavi, K., Mojtahedi, A., Roohbakhsh, E., & Naghipour, D. (2018). Adsorption of cadmium and lead onto live and dead cell mass of Pseudomona aeruginosa : A dataset. Data in Brief, 18, 1185–1192. https://doi.org/10.1016/j.dib.2018.04.014spa
dc.relation.referencesKarthik, C., Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., Arulselvi, P.I. (2017). Biosorption and biotransformation of Cr (VI) by novel Cellulosimicrobium funkei strain AR6. J. Taiwan Inst. Chem. Eng. 70, 282–290. https://doi.org/10.1016/j.jtice.2016.11.006spa
dc.relation.referencesKasiuliene, A., & Paulauskas, V. (2013). In-situ phytoremediation: a review of natural and chemically assisted phytoextraction. Research for Rural Development. Latvia University of Agriculture, 1, 107–113.spa
dc.relation.referencesKathal, R., Malhotra, P., & Chaudhary, V. (2016). Phytoremediation of Cadmium from Polluted Soil. Journal of Bioremediation & Biodegradation, 07(06), 6–8. doi: https://doi.org/10.4172/2155-6199.1000376spa
dc.relation.referencesKatz, D.L., Doughty, K., Ali, A. (2011). Cocoa and chocolate in human health and disease. Antioxid Redox Signal. 15;15(10):2779-811. https://doi.org/10.1089/ars.2010.3697spa
dc.relation.referencesKepenek, E.S., Gozen, A.G., Severcan, F. (2018). Molecular characterization of acutely and gradually heavy metal-acclimated aquatic bacteria by FTIR spectroscopy. J. Biophot. https://doi.org/10.1002/jbio.201800301spa
dc.relation.referencesKhanniri, E., Yousefi, M., Mortazavian, A.M., Khorshidian, N., Sohrabvandi, S., Koushki, M.R., Esmaeili, S. (2023). Biosorption of cadmium from aqueous solution by combination of microorganisms and chitosan: response surface methodology for optimization of removal conditions. Journal of Environmental Science and Health, Part A,58 (5) 433–446. https://doi.org/10.1080/10934529.2023.2188023spa
dc.relation.referencesKirillova, A.V., Danilushkina, A.A., Irisov, D.S., Bruslik, N.L., Fakhrullin, R.F., Zakharov, Y.A., Bukhmin, V.S., Yarullina, D.R., (2017). Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. Internet J. Microbiol. 1–7. https://doi.org/10.1155/2017/9869145spa
dc.relation.referencesKnezevic, G. (1979). Heavy-metals in foodstuffs 1. Content of cadmium in raw cocoa sedes and cocoa based semi-finished and finished products. Dtsch Leb. 75 (10), 305–309.spa
dc.relation.referencesKnop, M. (2011). Yeast cell morphology and sexual reproduction – A short overview and some considerations. C. R. Biologies 334, 599–606. https://www.sciencedirect.com/science/article/pii/S1631069111001405spa
dc.relation.referencesKoffi, O., Samagaci, L., Goualie, B., Niamke, S. (2017). Diversity of Yeasts Involved in Cocoa Fermentation of Six Major Cocoa-Producing Regions in Ivory Coast. European Scientific Journal 13(30). https://doi.org/10.19044/esj.2017.v13n30p496spa
dc.relation.referencesKoné, M.K., Guéhi, S.T., Durand, N., Ban-Koffi, L., Berthiot, L., Tachon, A.F., Brou, K., Boulanger, R., Montet, D. (2016). Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res. Int. 89, 910-917. https://doi.org/10.1016/j.foodres.2016.04.010spa
dc.relation.referencesKongor, J.E., Hinneh, M., De Walle, D. Van, Afoakwa, E.O., Boeckx, P., Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Res. Int. 82:44–52. https://doi.org/10.1016/j.foodres.2016.01.012spa
dc.relation.referencesKot, A.M., Błażejak, S., Kurcz, A., Bryś, J., Gientka, I., Bzducha-Wróbel, A., Maliszewska, M., Reczek, L. (2017).Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology. 27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.007spa
dc.relation.referencesKouame, L.M., Doue, G.G., Adom, N.J., Ouattara, H.G., Niamke, S.L. (2015b). Biochemical characterization of microbial populations involved in Loh-Djiboua cocoa’s fermentation in Cote d’Ivoire. Food and Environment Safety, 14, 196-205.spa
dc.relation.referencesKouame, L.M., Koua, G.A.Y., Adom, N.J., Goualié, B.G., Niamke, S.L. (2015a). Cocoa fermentation from Agnéby-Tiassa; Biochemical study of microflora. American Journal of BioScience, 3, 203-211. https://doi.org/10.11648/j.ajbio.20150306.12spa
dc.relation.referencesKruszewski, B., Obiedziński, M. W., Kowalska, J. (2018). Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. J Food Compos Anal 66, 127-135. https://doi.org/10.1016/j.jfca.2017.12.012spa
dc.relation.referencesKuiper, I., Lagendijk, E.L., Bloemberg, G.V., Lugtenberg, B.J.J. (2014). Rhizoremediation a beneficial plant-microbe interaction. Mol. Plant-Microbe Interact. 17, 6–15. https://doi.org/10.1094/MPMI.2004.17.1.6spa
dc.relation.referencesKure, J., Gana, M., Ukubuiwe, C. C. (2018). Bacteria associated with heavy metal: a review. IJABR, 9(1), 134–148.spa
dc.relation.referencesKurtzman, C. P., Robnett C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331-371. http://dx.doi.org/10.1023/a:1001761008817spa
dc.relation.referencesLajayer, B.A., Moghadam, N.K., Maghsoodi, M.R., Ghorbanpour, M., Kariman, K. (2019). Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Env. Sci. Pollut. Res. 26 (9), 8468 8484. https://doi.org/10.1007/s11356-019-04241-yspa
dc.relation.referencesLamb, D.T., Ming, H., Megharaj, M., Naidu, R. (2010). Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Arch. Environ. Contam. Toxicol. 59, 424–432. https://doi.org/10.1007/s00244-010-9481-xspa
dc.relation.referencesLane, D.J. (1991). 16S/23S rRNA sequencing. In: Stackebrandt, E.; Goodfellow, M., (Eds.). Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons, p. 115-175.spa
dc.relation.referencesLata, S., Kaur, H.P., Mishra, T (2019). Cadmium bioremediation: a review Int. J. Pharm. Sci. Res., 10, pp. 4120-4128. http://dx.doi.org/10.13040/IJPSR.0975-8232.10(9).4120-28spa
dc.relation.referencesLefeber, T., Gobert, W., Vrancken, G., Camu, N., De Vuyst, L. (2011). Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiol. 28(3):457–464. 10.1016/j.fm.2010.10.010spa
dc.relation.referencesLefeber, T., Janssens, M., Camu, N., De Vuyst, L. (2010). Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media to compose a starter culture for cocoa bean fermentation. Appl Environ Microbiol, 76(23): 7708–7716. doi: 10.1128/AEM.01206-10spa
dc.relation.referencesLewis, C., Lennon, A. M., Eudoxie, G., Umaharan, P.(2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Sci Total Environ 640-641, 696-703, https://doi.org/10.1016/j.scitotenv.2018.05.365spa
dc.relation.referencesLi, J., , Liu, Y.R., Zhanga, L.M., He, J.Z. (2019). Sorption mechanism and distribution of cadmium by different microbial species. Journal of Environmental Management 237, 552–559. https://doi.org/10.1016/j.jenvman.2019.02.057spa
dc.relation.referencesLi, L-Z., Tu, C., Peijnenburg, W.J.G.M., Luo, Y.-M. (2017). Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings. Environmental Pollution, 221, 351–358. https://doi.org/10.1016/j.envpol.2016.11.085spa
dc.relation.referencesLi, M., Cheng X, H. Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil, Int. Biodeterior. Biodegrad. 76, 81–85. https://doi.org/10.1016/j.ibiod.2012.06.016spa
dc.relation.referencesLi, W., Xu, B., Song, Q., Liu, X., Xu, J., Brookes, P.C. (2014). The identification of ́hotspots ́ of heavy metal pollution in soil-rice systems at regional scale in eastern China. Sci. Total Environ. 472, 407–420. https://doi.org/10.1016/j.scitotenv.2013.11.046spa
dc.relation.referencesLi, X., Li, D., Yan, Z., Ao, Y., (2018b). Adsorption of cadmium by live and dead biomass of plant growth-promoting rhizobacteria. RSC Adv. 8 https://doi.org/10.1039/ C8RA06758Aspa
dc.relation.referencesLi, X., Li, D., Yan, Z., Ao, Y., (2018c). Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv. 8, 30902–30911. https://doi.org/10.1039/C8RA06270Fspa
dc.relation.referencesLi, X., Zhang, X., Yang, Y., Li, B., Wu, Y., Sun, H., & Yang, Y. (2016). Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. Frontiers in Plant Science, 7, 1–10. https://doi.org/10.3389/fpls.2016.01862spa
dc.relation.referencesLi, Z., Wu, L., Luo, Y., & Christie, P. (2018a). Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium / zinc hyperaccumulator. Chemosphere, 194, 432–440. https://doi.org/10.1016/j.chemosphere.2017.12.005spa
dc.relation.referencesLima, L.J R., Velpen, V., Wolkers-Rooijackers, Judith., Kamphuis, H.J., Zwietering, M.H, Nout, M.J. (2012). Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder. Appl Environ Microbiol 78(8):2904-13 https://doi.org/10.1128/AEM.07691-11spa
dc.relation.referencesLiu, S. (2017). Chapter 1 - Introduction, Editor(s): Shijie Liu, Bioprocess Engineering (Second Edition), Elsevier, 1-20, ISBN 9780444637833spa
dc.relation.referencesLu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y.S., Niazi, N.K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu D., Song, Z., Liu, X., Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag., 186, pp. 285-292, https://doi.org/10.1016/j.jenvman.2016.05.068spa
dc.relation.referencesLu, Y., Li, T., Xie, W., Liu, Z., Cao, J., Wang, J. (2018). Removal of Zn(II) from aqueous solutions by Burkholderia sp. TZ-1 isolated from soil of oil shale exploration area. J. Environ. Chem. Eng. 6 https://doi.org/10.1016/j.jece.2018.10.049spa
dc.relation.referencesMachuca-Guevara, J.I., Suárez-Peña, E.A., Darricau, E.M, Mialhe-Matonnier., E.L. (2019). Caracterización molecular de los microorganismos presentes durante el proceso fermentativo de los granos de cacao (Theobroma cacao). Revista peruana de biología 26(4): 535 - 542. http://dx.doi.org/10.15381/rpb.v26i4.17220spa
dc.relation.referencesMaddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy : A critical view. 720, 137645. https://doi.org/10.1016/j.scitotenv.2020.137645spa
dc.relation.referencesMADR. Ministerio de Agricultura y Desarrollo Rural. República de Colombia. (2020). Informe de Gestión Institucional 2019.Bogotá. D.C.spa
dc.relation.referencesMADR. Ministerio de Agricultura y Desarrollo Rural. República de Colombia. (2023). Plan de ordenamiento productivo. Análisis situacional de la cadena productiva del cacao y su agroindustria en Colombia.spa
dc.relation.referencesMartin, M. Á., Ramos, S. (2021). Impact of cocoa flavanols on human health. Food and Chemical Toxicology, 151(112121). https://doi.org/10.1016/j.fct.2021.112121spa
dc.relation.referencesMartínez M, Gutierrez V, Novo R. (2010). Microbiología aplicada al manejo sustentable de suelos y cultivos p 182-235. Editorial USM. Serie: Gestión, Innovación y Tecnología. Universidad Técnica Federico Santa María. Santiago, Chile.spa
dc.relation.referencesMartínez, G., Palacio, C. (2010) Determinación de metales pesados cadmio y plomo en suelos y granos de cacao fresco y fermentado mediante espectroscopia de absorción atómica de llama [Tesis de Pregrado]. Universidad Industrial de Santander. Bucaramanga. http://noesis.uis.edu. co/bitstream/123456789/3703/1/136115.pdfspa
dc.relation.referencesMartins, S.C.S., Aragão, V.O., Martins, C.M. (2014). Pichia spp. yeasts from Brazilian industrial wastewaters: Physiological characterization and potential for petroleum hydrocarbon utilization and biosurfactant production. African Journal of Microbiology Research. 8(7): 664-672. https://doi.org/10.5897/AJMR2013.6037spa
dc.relation.referencesMartos, M.A., Butiuk, A.P., Rojas, N.L., Hours, R.A. (2014). Cultivo por lote de Wickerhamomyces anomalus en un biorreactor a escala laboratorio para la producción de una poligalacturonasa. Rev. Colomb. Biotecnol. Vol. XVI No. 2, 68-73.spa
dc.relation.referencesMeagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3(2), 153–162. https://doi.org/10.1016/S1369-5266(99)00054-0spa
dc.relation.referencesMeersman, E., Steensels, J., Struyf, N., Paulus, T., Saels, V., Mathawan, M., Allegaert, L., Vrancken, G. (2016) Tuning chocolate flavour through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl Environ Microbiol 20;82(2):732-46. https://doi.org/10.1128/AEM.02556-15spa
dc.relation.referencesMejía, D [Ed]. (2012). CACAO - Operaciones Poscosecha. México: GST/FAOspa
dc.relation.referencesMendoza, M.M., Lizarazo-Medina, P.X. (2021). Assessment of the fungal community associated with cocoa bean fermentation from two regions in Colombia. Food Research International 149, 110670. https://doi.org/10.1016/j.foodres.2021.110670spa
dc.relation.referencesMendoza, M.M., Martínez, O.L., Ardila, M.P., Lizarazo, P.X (2022). Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiology 101,103896. https://doi.org/10.1016/j.fm.2021.103896spa
dc.relation.referencesMeng, D., Li, J., Liu, T., Liu, Y., Yan, M., Hu, J., Li, X., Liu, X., Liang, Y., Liu, H., & Yin, H. (2019). Effects of redox potential on soil cadmium solubility: Insight into microbial community. Journal of Environmental Sciences (China), 75, 224–232. https://doi.org/10.1016/j.jes.2018.03.032spa
dc.relation.referencesMeter, A., Atkinson, R., Laliberte B. (2019). Cadmio en el cacao de América Latina y el Caribe - Análisis de La Investigación y Soluciones Potenciales Para La Mitigación. Roma. Bioversity International. https://scioteca.caf.com/handle/123456789/1505spa
dc.relation.referencesMeunier, N., Laroulandie, J., Blais J.F., Tyagi, R.D. (2003). Cocoa shells for heavy metal removal from acidic solutions. 90(3):255-263. https://doi.org/10.1016/s0960-8524(03)00129-9spa
dc.relation.referencesMewa-Ngongang, Maxwell., Du Plessis, Heinrich Wilbur., Boredi, Chidi Silas., Hutchinson, Ucrecia Faith., Obed Ntwampe, Karabo Seteno., Okudoh, Vincent Ifeanyi., Jolly, Neil Paul. (2021). Physiological and Antagonistic Properties of Pichia kluyveri for Curative and Preventive Treatments Against Post-Harvest Fruit Fungi. Pol. J. Food Nutr. Sci.71(3):245–253. https://doi.org/10.31883/pjfns/139278spa
dc.relation.referencesMIDAGRI. (2022). Observatorio de Commodities- Cacao. Boletín Trimestral No. 01-2022. Ministerio de Desarrollo Agrario y Riego Perú. https://cdn.www.gob.pe/uploads/document/file/3561419/Commodities Cacao%3A ene-mar 2022.pdfspa
dc.relation.referencesMieres, A.A. (2017). Optimización de las condiciones de cultivo para la producción de una poliglacturonasa microbiana y su aplicación en procesos de interés regional. .[Tesis de Maestría]. Universidad Nacional de Itapúa, Paraguay.spa
dc.relation.referencesMisnawi, Jinap, S., Jamilah, B., Nazamid, S. (2003). Effects of incubation and polyphenol oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. Int. J. Food Sci. Tech. 38, 285-295. https://doi.org/10.1046/j.1365-2621.2003.00674.xspa
dc.relation.referencesMoens, F., Lefeber, T., De Vuyst, L. (2014). Oxidation of Metabolites Highlights the Microbial Interactions and Role of Acetobacter pasteurianus during Cocoa Bean Fermentation. Appl Environ Microbiol. 80(6): 1848–1857. https://doi.org/10.1128/AEM.03344-13spa
dc.relation.referencesMonachese, M. A. (2012b). Sequesteration of lead, cadmium and arsenic by Lactobacillus species and detoxication potential. Electronic Thesis and Dissertation Repository. 729. https://ir.lib.uwo.ca/etd/729spa
dc.relation.referencesMonachese, M., Burton, J. P., Reid, G. (2012a). Bioremediation and Tolerance of Humans to Heavy Metals through Microbial Processes : a Potential Role for Probiotics ?. Applied and Environmental Microbiology, 78(18), 6397–6404. https://doi.org/10.1128/AEM.01665-12spa
dc.relation.referencesMonciardini, P., Sosio, M., Cavaletti, L., Chiocchini, C., Donadio, S. (2002). New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiology Ecology 42, 419-429. https://doi.org/10.1016/S0168-6496(02)00353-7spa
dc.relation.referencesMorales-Rodríguez, W. J., Carranza-Patiño, M. S., Morante-Carriel, J. A., Castro, A. B. (2022). Mitigation of Cadmium Concentration in Cocoa Kernels. Journal of Pharmaceutical Negative Results, 13(3), 734–740. https://doi.org/10.47750/pnr.2022.13.03.110spa
dc.relation.referencesMoreira, I.M., Vilela, L., Miguel, M.G., Santos, C., Lima, N., Schwan, R. (2017). Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor. Molecules 22, 766. https://doi.org/10.3390/molecules22050766spa
dc.relation.referencesMoreira, I.M.V.; Pedrozo, M.G.C.; Duarte, M.W.F.; Dias, D.R.; Schwan, R.F. (2013). Microbial succession and the dynamics of metabolites and sugars during the fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Research International, 54: 9–17. https://doi.org/10.1016/j.foodres.2013.06.001spa
dc.relation.referencesMounjouenpou, P., Gueule, D., Fontana-Tachon, A., Guyot, B., Tondje, P.R., Guiraud, J-P. (2008). Filamentous fungi producing ochratoxin A during cocoa processing in Cameroon. Int. J. Food Microbiol. 121, 234-241. https://doi.org/10.1016/j.ijfoodmicro.2007.11.017spa
dc.relation.referencesMrmošanin, J.M., Pavlović, A.N., Krstić, J.N., Mitić, S.S., Tošić, S.B., Stojković, M.B., Micić, R.J., Đorđević, M.S. (2018). Multielemental quantification in dark chocolate by ICP OES. J Food Compos Anal 67, 163-171. https://doi.org/10.1016/j.jfca.2018.01.008spa
dc.relation.referencesNagvenkar, G. S., and Ramaiah, N. (2010). Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology 19, 604–613. https://doi.org/10.1007/s10646-009-0429-8spa
dc.relation.referencesNaik, M.M., Pandey, A., Dubey, S.K. (2012). Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation 23, 775–783. https://doi.org/10.1007/s10532-012-9552-yspa
dc.relation.referencesNair, K.P.P (2010). Cocoa (Theobroma cacao L.), Editor(s): Nair, K.P. P. in The Agronomy and Economy of Important Tree Crops of the Developing World, Elsevier, 131-180, ISBN 9780123846778, https://doi.org/10.1016/B978-0-12-384677-8.00005-9spa
dc.relation.referencesNaja, G., Volesky, B. (2011). The Mechanism of Metal Cation and Anion Biosorption. In: Kotrba, P., Mackova, M., Macek, T. (eds) Microbial Biosorption of Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0443-5_3spa
dc.relation.referencesNally, M.C., Pesce, V.M., Maturano, Y.P., Rodriguez, L.A., Toro, M.E., Castellanos, L.I., Vázquez, F. (2015). Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. International Journal of Food Microbiology. 204 (2) 91-100. https://doi.org/10.1016/j.ijfoodmicro.2015.03.024spa
dc.relation.referencesNaskar, A., Majumder, R., and Goswami, M. (2020). Bioaccumulation of Ni (II) on growing cells of Bacillus sp.: response surface modeling and mechanistic insight. Environ. Technol. Innov. 20:101057. https://doi.org/10.1016/j.eti.2020.101057spa
dc.relation.referencesNava-Ruiz, C., Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Arch. Neurocienc. 16 (3), 140 147.spa
dc.relation.referencesNazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., Khan, N. A. (2012). Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. American Journal of Plant Sciences, 3, 1476-1489. https://doi.org/10.4236/ajps.2012.310178spa
dc.relation.referencesNicula, N.-O.; Lungulescu, E.-M.; Rîmbu, G.A.; Marinescu, V.; Corbu, V.M.; Csutak, O. (2023). Bioremediation of Wastewater Using Yeast Strains: An Assessment of Contaminant Removal Efficiency. Int. J. Environ. Res. Public Health, 20, 4795. https://doi.org/10.3390/ijerph20064795spa
dc.relation.referencesNielsen, D.S.; Teniola, O.D.; Ban-Koffi, L.; Owusu, M.; Andersson, T.S.; Holzapfel, W.H. (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture dependent and culture independent methods. Int. J. Food Microbiol. 2007, 114, 168–186. https://doi.org/10.1016/j.ijfoodmicro.2006.09.010spa
dc.relation.referencesNigam, P., Singh, A. (2014). Cocoa and Coffee Fermentations. pp. 485-492. En: Encyclopedia of Food Microbiology, 2nd ed., (Ed. Batt, C.A y Tortorello, M.L.). Academic Press. Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00074-4spa
dc.relation.referencesNighojkar, S.; Phanse, Y.; Sinha, D.; Nighojkar, A.; Kumar, A. (2006). Production of polygalacturonase by immobilized cells of Aspergillus niger using orange peel as inducer. Process Biochem. 41(5):1136-1140. https://doi.org/10.1016/j.procbio.2005.12.009spa
dc.relation.referencesNnuro,W.A., Amankwaah, D., Awudza, J.A.M., Afful, S. (2020). Assessment of heavy metals and proximate analysis of cocoa beans from selected cocoa growing areas in Ghana. Int Res J Pure Appl Chem. 21 (14), 36–46. https://doi.org/10.9734/irjpac/2020/v21i1430245spa
dc.relation.referencesNorvell, W. A., Hopkins, J. W., Welch, R. M. (2000). Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci. Soc. Am. J., 64, 162–2168. https://doi.org/10.2136/sssaj2000.6462162xspa
dc.relation.referencesOlaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of Heavy Metals in Soil : Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci, 14, 10197–10228. https://doi.org/10.3390/ijms140510197spa
dc.relation.referencesOrdoñez-Araque, R., Landines-Vera, E., Urresto-Villegas, J., Caicedo-Jaramillo, C. (2020). Microorganisms during cocoa fermentation: systematic review. Foods and Raw Materials, 8 (1). http://doi.org/10.21603/2308-4057-2020-1-155-162spa
dc.relation.referencesOstovar, K., Keeney, P. G. 1973. Isolation and characterization of microorganisms involved in the fermentation of Trinidad’s cacao beans. Journal of Food Science, 38:611–617. https://doi.org/10.1111/j.1365-2621.1973.tb02826.xspa
dc.relation.referencesOtárola, A. (2018). Efecto de la enzima pectinolítica y levadura (Saccharomyces cerevisiae) en la fermentación y calidad del cacao Var. criollo (Theobroma cacao) [Tesis de Doctorado]. Universidad Nacional Federico Villarreal. Lima, Perú. https://repositorio.unfv.edu.pe/handle/20.500.13084/2412spa
dc.relation.referencesOuattara, H.G., Elias, R.J., Dudley, E.G. (2020). Microbial synergy between Pichia kudriazevii YS201 and Bacillus subtilis BS38 improves pulp degradation and aroma production in cocoa pulp simulation medium. Heliyon 6e03269. https://doi.org/10.1016/j.heliyon.2020.e03269spa
dc.relation.referencesOuattara, H.G., Koffi, B.L., Karou, G.T., Sangare, A., Niamke, S.L., Diopoh, J.K. (2008). Implication of Bacillus sp. in the production of pectinolytic enzymes during cocoa fermentation. World J Microbiol Biotechnol, 24:1753–60. https://doi.org/10.1007/s11274-008-9683-9spa
dc.relation.referencesOuattara, H.G., Reverchon, S., Niamke, S.L., Nasser, W. (2011). Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation. Food Microbiol ;28:1–8. https://doi.org/10.1016/j.fm.2010.07.020spa
dc.relation.referencesPacheco-Montealegre, M. E., Davila-Mora, L. L., Botero-Rute, L. M., Reyes, A., Caro-Quintero, A. (2020). Fine Resolution Analysis of Microbial Communities Provides Insights Into the Variability of Cocoa Bean Fermentation. Frontiers in Microbiology, 1–15. https://doi.org/10.3389/fmicb.2020.00650spa
dc.relation.referencesPande, V., Pandey, S.C., Sati, D., Bhatt, P., Samant, M. (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem, 13. https://doi.org/10.3389/fmicb.2022.824084spa
dc.relation.referencesPapalexandratou Z, Kaasik K, Villagra LK, Skorstengaard A, Bouillon G, Espensen JL, Hansen LH, Jakobsen RR, Krych AB, Castro-Mejia JL, Nielsen DS (2019). Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa quality appreciation. Int J Food Microbiol. 304:106-118. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012spa
dc.relation.referencesPapalexandratou, Z., Lefeber, T., Bahrian, B., Lee, O. S., Daniel, H.-M., De Vuyst, L. (2013). Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa box bean fermentation, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiology, 35:73–85. https://doi.org/10.1016/j.fm.2013.02.015spa
dc.relation.referencesPapalexandratou, Z.; Falony, G.; Romanens, E.; Jimenez, J.C.; Amores, F.; Daniel, H. M.; De Vuyst, L. (2011). Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations. Applied and Environmental Microbiology, 77: 7698–7714. https://doi.org/10.1128/AEM.05523-11spa
dc.relation.referencesPark, J.H., Chon, H.T. (2016). Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environ. Sci. Pollut. Res. 23 https://doi.org/10.1007/s11356-016-6335-8spa
dc.relation.referencesPereira, G.V., Magalhães, K., De Almeida, E., Coelho, I., Schwan, R.F. (2013). Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: Influence on the dynamics of microbial populations and physical–chemical properties. Int J Food Microbiol. 1;161(2):121-33. https://doi.org/10.1016/j.ijfoodmicro.2012.11.018spa
dc.relation.referencesPereira, G.V., Miguel, M., Ramos, C.L., Schwan, R.F. (2012). Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl Environ Microbiol, 78(15): 5395–5405. doi: 10.1128/AEM.01144-12spa
dc.relation.referencesPérez-Moncada, U.A., Ramírez-Gómez, M., Serralde-Ordoñez, D.P., Peñaranda-Rolón, A.M., Wilches-Ortiz, W.A., Ramírez, L., Rengifo-Estrada, G.A. (2019) Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoam, 37, n.2, pp.121-130. ISSN 2395-8030.https://doi.org/10.28940/terra.v37i2.479spa
dc.relation.referencesPervaiz, I., Ahmad, S., Madni, M. A., Ahmad, H., and Khaliq, F. H. (2013). Microbial biotransformation: a tool for drug designing. Appl. Biochem. Microbiol. 49, 437–450. https://doi.org/10.7868/s0555109913050097spa
dc.relation.referencesPerry, S. F. (1998). Freeze-drying and cryopreservation of bacteria. Molecular Biotechnology, 9(1), 59-64. https://doi.org/10.1007/BF02752697spa
dc.relation.referencesPino, A.J., Ceballos, L., Quijano, C.E. (2011): Headspace volatiles of Theobroma cacao L. pulp from Colombia. J. Essent. Oil Res. 22, 113-115. https://doi.org/10.1080/10412905.2010.9700276spa
dc.relation.referencesPlackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325. https://doi.org/10.2307/2332195spa
dc.relation.referencesPodstawczyk, D., Witek-Krowiak, A., Dawiec, A., Bhatnagar, A. (2015). Biosorption of copper (II) ions by flax meal: empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation. Ecol. Eng. 83, 364–379. https://doi.org/10.1016/j.ecoleng.2015.07.004spa
dc.relation.referencesPrabhakaran N. (2010). Cocoa (Theobroma cacao L.). Prabhakaran N. (Eds). In The agronomy and economy of important tree crops of the developing world, pp. 131-180. Elsevier Inc. https://doi.org/10.1016/B978-0-12-384677-8.00005-9spa
dc.relation.referencesPredan, G.M.I., Lazăr, D.A., Lungu, I.I. (2019). Cocoa industry—from plant cultivation to cocoa drinks production. pp. 489-507. En: Caffeinated and Cocoa Based Beverages, Vol 8., (Ed. Grumezescu, A.M., Holban, A.M.) Woodhrad Publising, Elsevier Inc. https://doi.org/10.1016/B978-0-12-815864-7.00015-5spa
dc.relation.referencesQiao, J., Liu, T., Wang, X., Li, F., Lv, Y., Cui, J., Zeng, X., Yuan, Y., & Liu, C. (2018). Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 195(808), 260–271. https://doi.org/10.1016/j.chemosphere.2017.12.081spa
dc.relation.referencesQuiroga-Mateus, R., López-Zuleta, S., Chávez, E., Bravo, D. (2022). Cadmium-Tolerant Bacteria in Cacao Farms from Antioquia, Colombia: Isolation, Characterization and Potential Use to Mitigate Cadmium Contamination. Processes, 10, 1457, https://doi.org/10.3390/pr10081457spa
dc.relation.referencesRadhakrishnan, R., Hashem, A., & Allah, E. F. A. (2017). Bacillus : A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667spa
dc.relation.referencesRadziemska, M. (2017). Management Strategy for Stabilizing Trace Elements in Contaminated Soils. Int. J. Environ. Res. Public Health, 14(958). https://doi.org/10.3390/ijerph14090958spa
dc.relation.referencesRaimondi, S., Foca, G., Ulrici, A., Destro, L., Leonardi, A., Buzzi, R., Candeliere, F., Rossi, M., Amaretti, A. (2022). Improved fed‑batch processes with Wickerhamomyces anomalus WC 1501 for the production of d‑arabitol from pure glycerol. Microbial Cell Factories, 21:179. https://doi.org/10.1186/s12934-022-01898-yspa
dc.relation.referencesRamos, C., Dias, D., Da Cruz Pedrozo, M.G., Schwan, R.F. (2014). Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation. Food Research International 64, 908–918. https://doi.org/10.1016/j.foodres.2014.08.033spa
dc.relation.referencesRamrakhiani, L., Ghosh, S., Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a review. Appl. Biochem. Biotechnol. https://doi.org/10.1007/s12010-016-2083-yspa
dc.relation.referencesRamstedt, M., Leone, L., Persson, P., Shchukarev, A., 2014. Cell wall composition of Bacillus subtilis changes as a function of pH and Zn2þ exposure: insights from cryo-XPS measurements. Langmuir 30. https://doi.org/10.1021/la5002573spa
dc.relation.referencesRamtahal, G., Chang-yen, I., Bekele, I., Harrynanan, L. (2012). Investigation of the effects of mycorrhizal fungi on cadmium. Proceedings of the Caribbean Food Crops Society, 48, 147–152. . https://doi.org/10.22004/ag.econ.253720spa
dc.relation.referencesRamtahal, G., Umaharan, P., Hanuman, A., Davis, C., Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of the Total Environment, 693, 133563spa
dc.relation.referencesRamtahal, G., Yen, I. C., Bekele, I., Bekele, F., Wilson, L. (2016). Relationships between Cadmium in Tissues of Cacao Trees and Soils in Plantations of Trinidad and Tobago. Food and Nutrition Sciences, 7(January), 37–43. https://doi.org/10.4236/fns.2016.71005spa
dc.relation.referencesRani, A., and Goel, R. (2009). “Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants,” In: Khan, M., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement (Berlin: Springer), 85–104. doi: https://doi.org/10.1007/978-3-642-01979-1_5spa
dc.relation.referencesRaza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 9(7), 1–46. https://doi.org/10.3390/biology9070177spa
dc.relation.referencesRevoredo, A. G., Hurtado, J. (2017). Efecto del tratamiento con 3 cepas de Streptomicetos en la acumulación de cadmio en plantas de Theobroma Cacao L. 2017 International Symposium on Cocoa Research (ISCR), Lima, Peru, 13-17 November.spa
dc.relation.referencesRíos, F., Ruiz, A., Lecaro, J., Rehpani C. (2017). Estrategias país para la oferta de cacaos especiales -Políticas e iniciativas privadas exitosas en el Perú, Ecuador, Colombia y República Dominicana. Fundación Swisscontact Colombia. Bogotá D. C. 140 p.spa
dc.relation.referencesRoberts, T. L. (2014). Cadmium and phosphorous fertilizers: The issues and the science. Procedia Engineering, 83, 52–59. https://doi.org/10.1016/j.proeng.2014.09.012spa
dc.relation.referencesRodriguez, H. (2017). Dinámica del cadmio en suelos con niveles altos del elemento, en zonas productoras de cacao de Nilo y Yacopí, Cundinamarca. [Tesis de Maestría]. Universidad Nacional de Colombia, Bogotá https://repositorio.unal.edu.co/handle/unal/62944spa
dc.relation.referencesRodríguez-Albarracín, H. S. R., Contreras, A. E. D., Henao, M.C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 15, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214spa
dc.relation.referencesRodríguez-López, C., Guzmán-Beltrán, A., Lara-Morales,M., Castillo., E., Brandão, P. (2021). Aislamiento e identificación de lactobacillus spp. (lactobacillaceae) resistentes a cd(ii) y as(iii) recuperados de fermento de cacao. Acta Biol Colomb, 26(1):19-29. http://dx.doi.org/10.15446/abc.v26n1.83677spa
dc.relation.referencesRoşca, M., Hlihor, R.M., Cozma, P., Drăgoi, E.N., Diaconu, M., Silva, B., Tavares, T., Gavrilescu, M. (2018). Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents. Green Process Synth; 7: 74–88. https://doi.org/10.1515/gps-2016-0218spa
dc.relation.referencesSabae, S. Z., Hazaa, M., Hallim, S. A., Awny, N. M., & Daboor, S. M. (2006). Bioremediation of Zn+2, Cu+2 and Fe+2 using Bacillus subtilis D215 and Pseudomonas putida biovar A D225. Bioscience Research, 3(1), 189–204.spa
dc.relation.referencesSadiq, F.A. Yan, B., Tian, F., Zhao, J., Zhang, H., Chen, W. (2019). Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review. Emir. J Food Agric., 18(5):1403–1436. https://doi.org/10.1111/1541-4337.12481spa
dc.relation.referencesSalinas E, De Orellano ME, Rezza I, Martinez L, Marchesvky E, De Tosetti MS. (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour Technol 72:107–112. https:// doi. org/ 10. 1016/ S0960- 8524(99) 00111-Xspa
dc.relation.referencesSánchez, V., Zambrano, J., Iglesias, C. (2019). La cadena de valor del cacao en América Latina y el Caribe. https://repositorio.iniap.gob.ec/handle/41000/5382spa
dc.relation.referencesSarbu, I. y Csutak, O. (2019). The microbiology of cocoa fermentation. pp. 463-446. In: Caffeinated and Cocoa Based Beverages, Vol 8., (Ed. Grumezescu, A.M., Holban, A.M.) Woodhrad Publising, Elsevier Inc. https://doi.org/10.1016/B978-0-12-815864-7.00013-1spa
dc.relation.referencesSatarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium , Environmental Exposure , and Health Outcomes. Environmental Health Perspectives, 182(2), 182–190. https://doi.org/10.1289/ehp.0901234spa
dc.relation.referencesSchwan, R. F., Rose, A.H.,Board, R.G. (1995). Microbial fermentation of cocoa beans, with emphasis on enzymatic degradation of the pulp. J. Appl. Bacteriol. Symp. Suppl. 79, 96S-107S.spa
dc.relation.referencesSchwan, R. F., Pereira, G. V. D. M., Fleet, G. H. (2014). Microbial activities during cocoa fermentation. Cocoa and Coffee Fermentations, CRC Press Taylor and Francis, London, 125–135. https://www.researchgate.net/publication/285267847_Microbial_activities_during_cocoa_fermentation/link/5bab7e35299bf13e604cdd1c/downloadspa
dc.relation.referencesSchwan, R.F. (1998). Cocoa fermentations conducted with a defined microbial cocktail inoculum. Applied and Environmental Microbiology, 64:1477–1483. https://doi.org/ 10.1128/AEM.64.4.1477-1483.1998spa
dc.relation.referencesSchwan, R.F., Wheals, A.E. (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44, 205–221. https://pubmed.ncbi.nlm.nih.gov/15462126/spa
dc.relation.referencesSelvam, K., Arungandhi, B., Vishnupriya, B., Shanmugapriya, T., Yamuna, M. (2013). Biosorption of chromium (vi) from industrial effluent by wild and mutant type strain of saccharomy cescerevisiae and its immobilized form. Biosci. Discov. 4 (1), 72 77.spa
dc.relation.referencesShahpiri, A., Mohammadzadeh, A. (2018). Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann. Microbiol. 68, 145–152. https://doi.org/10.1007/s13213-018-1326-2spa
dc.relation.referencesSharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., Alagawany, M. (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture. 531. https://doi.org/10.1016/j.aquaculture.2020.735885spa
dc.relation.referencesShi, L., Guo, Z., Peng, C., Xiao, X., Feng, W., Huang, B., & Ran, H. (2019). Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Ecotoxicology and Environmental Safety, 171, 425–434. https://doi.org/10.1016/j.ecoenv.2019.01.006spa
dc.relation.referencesSiddique, S., Shakir, H. A., Qazi, J.I., Tabinda, A.B., Irfan, M. (2016). Screening of some agri-wastes for economical cultivation of Candida tropicalis SS1. Punjab University Journal of Zoology. 31:31–37. 53-PUJZ-61028140/16/0031-0037spa
dc.relation.referencesSingh, S., Gupta, V. K. (2016). Biodegradation and bioremediation of pollutants: perspectives strategies and applications. Int. J. Pharmacol. Bio. Sci, 10(1), 53–65.spa
dc.relation.referencesSmolders, E., Brans, K., Foldi, A., & Merckx, R. (1999). Cadmium fixation in soils measured by isotopic dilution. Soil Science Society of American Journal, 63(1), 78–85. https://doi.org/10.2136/sssaj1999.03615995006300010013xspa
dc.relation.referencesSong, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598spa
dc.relation.referencesSouza, J.V.B.; Silva, E.S.; Maia, M.L.S.; Teixeira, M.F. (2003). Screening of fungal strains for pectinolytic activity: endopolygalacturonase production by Paecilomyces clavisporus 2A.UMIDA.1. Process Biochem. 39:455-458. https://doi.org/10.1016/S0032-9592(03)00092-Xspa
dc.relation.referencesSouza, K.S.,. Gudiña, E.J.,. Schwan, R.F., Rodrigues, L.R., Dias, D.R.,. Teixeira, J.A. (2018). Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. Journal of Hazardous Materials 346: 152–158. https://doi.org/10.1016/j.jhazmat.2017.12.021spa
dc.relation.referencesSpalvins, K., Geiba, Z., Kusnere, Z., Blumberga, D. (2020). Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast Yarrowia lipolytica. Environmental and Climate Technologies. 24(3):457–469. https://doi.org/10.2478/rtuect-2020-0116spa
dc.relation.referencesSreekumar, G., Krishnan, S.(2010). Enhanced biomass production study on probiotic Bacillus subtilis SK09 by medium optimization using response surface methodology. African Journal of Biotechnology. 9:8078–8084. https://doi: 10.5897/AJB10.1283spa
dc.relation.referencesSrivastava, S., Agrawal, S., Mondal, M. (2015). Biosorption isotherms and kinetics on removal of Cr(VI) using native and chemically modified Lagerstroemia speciosa bark. Ecol. Eng. 85, 56–66. https://doi.org/10.1016/j.ecoleng.2015.10.011spa
dc.relation.referencesStafussa, A.P., Maciel, G.M., da Silva, A.G., Vieira, M., Ferreira, A.A., Isidoro, C.W. (2016). Biosorption of anthocyanins from grape pomace extracts by waste yeast: kinetic and isotherm studies. J. Food Eng. 169, 53–60. https://doi.org/10.1016/j.jfoodeng.2015.08.016spa
dc.relation.referencesTantalean, E.(2017). Distribución del contenido de cadmio en los diferentes órganos del cacao ccn-51 en suelo aluvial y residual [Tesis de Pregrado]. Universidad Nacional Agraria de la Selva.Tingo María, Perú. https://doi.org/10.25127/aps.20172.365spa
dc.relation.referencesTao, N., Gao, Y. and Liu, Y. (2011). Isolation and characterization of a Pichiaanomala strain: a promising candidate for bioethanol production. Braz. J. Microbiol. 42: 668–675. https://doi.org/10.1590/S1517-838220110002000031spa
dc.relation.referencesTarbaoui, M., Oumam, M.M., Benzina, M. (2016). Study of competitive biosorption of Cu (II), Cd (II) and Pb (II) in aqueous solution onto a new biosorbent prepared from the marine sponge Cinachyrella tarentina. Proceed. RSE 1, 32e38.spa
dc.relation.referencesTeneda, W. (2016). Mejoramiento del Proceso de Fermentación del Cacao (Theobroma cacao L.) Variedad Nacional y Variedad CCN51. Ecuador. Universidad Internacional de Andalucía. https://dialnet.unirioja.es/servlet/libro?codigo=664426spa
dc.relation.referencesThanh PB, Tru NV, Thi Thuy D, Thi Thoa N, Thao PV, Tham TT, Van Vo T (2017). Bacteria in Wooden Box Fermentation of Cocoa in Daklak. Vietnam. J. Microbiol Exp.; 5: 1-5. https://doi.org/10.15406/jmen.2017.05.00176spa
dc.relation.referencesThatoi, H., Das, S., Mishra, J., Rath, B. P., and Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J. Environ. Manag. 146, 383–399. https://doi.org/10.1016/j.jenvman.2014.07.014spa
dc.relation.referencesThompson, S.S., Miller, K.B., Lopez, A., Camu, N. (2013). Cocoa and coffee. In: Doyle, M. P., Buchanan, R. L. (eds.), Food Microbiology: Fundamentals and Frontiers, 4th edition. ASM Press, Washington, DC, 881–889. https://doi.org/10.1128/9781555818463.ch35spa
dc.relation.referencesThyssen, G.M., Keil, C., Wolff, M., Sperling, M., Kadow, D., Haase, H., Karst, U. (2018). Bioimaging of the elemental distribution in cocoa beans by means of LA-ICP-TQMS. J. Anal. At. Spectrom. 33 (2), 187–194. https://doi.org/10.1039/c7ja00354dspa
dc.relation.referencesUllah, I., Wang, Y., Eide, D. J., & Dunwell, J. M. (2018). Evolution , and functional analysis of Natural Resistance-Associated Macrophage Proteins ( NRAMPs ) from Theobroma cacao and their role in cadmium accumulation. Sci Rep, 8(1), 14412. https://doi.org/10.1038/s41598-018-32819-yspa
dc.relation.referencesUmesh, M., Priyanka, K., Thazeem, B., Preethi, K. (2017) Production of Single Cell Protein and Polyhydroxyalkanoate from Carica papaya Waste. Arabian Journal for Science and Engineering:42:2361–2369. https://doi.org/10.1007/s13369-017-2519-xspa
dc.relation.referencesUnión Europea. Diario Oficial de la UE (2014). Reglamento (UE) No 488/2014 de la comisión de 12 de mayo de 2014 que modifica el Reglamento (CE) no 1881/2006 por lo que respecta al contenido máximo de cadmio en los productos alimenticios. https://eur-lex.europa.eu/legal- content/ES/TXT/?uri=CELEX%3A32014R0488&qid=1675993822763spa
dc.relation.referencesVanderschueren, R., Doevenspeck, J., Helsen, F., Mounicou, S., Santner, J., Delcour, J. A., Chávez, E., Smolders, E. (2022). Cadmium migration from nib to testa during cacao fermentation is driven by nib acidification. LWT 157, 113077. https://doi.org/10.1016/j.lwt.2022.113077spa
dc.relation.referencesVanderschueren, R., Helsen, F., Doevenspeck, J., Delcour, J.A., Smolders, E. (2023). Incubation tests mimicking fermentation reveal that phytate breakdown is key to lower the cadmium concentrations in cacao nibs. Food Chemistry 398, 133899. https://doi.org/10.1016/j.foodchem.2022.133899spa
dc.relation.referencesVanderschueren, R., Montalvo, D., De Ketelaere, B., Delcour, J.A., Smolders, E. (2019). The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. J Food Compos Anal 83, 1-7. https://doi.org/10.1016/j.jfca.2019.103277spa
dc.relation.referencesVanderschueren, R., Pulleman, M. (2021). Cadmio en cacao: lo que sabemos sobre prácticas de mitigación. Resumen Informativo de Clima-LoCa No. 2. Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia. 10p. https://cgspace.cgiar.org/handle/10568/121926spa
dc.relation.referencesVanderschueren, Ruth, Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chávez, E., Sarret, G., Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of the Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779spa
dc.relation.referencesVásquez, Z.C., Neto, D.P., Pereira, G., Vandenberghe, L., De Oliveira, P., Tiburcio, P., Rogez, H., Goes, A., Soccol, C. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management. 90: 72-83. https://doi.org/10.1016/j.wasman.2019.04.030spa
dc.relation.referencesVedyaykina, A.D., Ponomareva, E.V., Khodorkovskii, M.A., Borchsenius, S.N Vishnyakov, I.E. (2019). Mechanisms of Bacterial Cell Division. Microbiology, 88, 3, pp. 245–260. https://link.springer.com/article/10.1134/S0026261719030159spa
dc.relation.referencesVehapi, M., İnan, B., Kayacan-Cakmakoglu, S., Sagdic, O., Özçimen, D. (2022). Optimization of Growth Conditions for the Production of Bacillus subtilis Using Central Composite Design and Its Antagonism Against Pathogenic Fungi. Probiotics Antimicrob Proteins. 15, 682–693. https://doi.org/10.1007/s12602-021-09904-2spa
dc.relation.referencesVera-Chan, J.F., Morejon, R., Salgado, I.P., Flores, C.I., Morejón, M.R. (2022). Use of enzymes and leavening agents as a strategy to Treduce the presence of cadmium in the fermentation process of heobroma cacao L. almonds. Journal of Pharmaceutical Negative Results, 13 (3). https://doi.org/10.47750/pnr.2022.13.03.089spa
dc.relation.referencesVera-Chang, J.F., Benavides-Vera, J.I., Vásquez-Cortez, L.H., Alvarado-Vásquez, K.E., Reyes-Pérez, J.J., Intriago-Flor, F.G., Naga-Raju, M., Castro-Triana, V.L. (2023). Efectos de dos métodos fermentativos en cacao (Theobroma cacao L.) trinitario, inducido con Rhizobium japonicum para disminuir cadmio. Revista Colombiana de Investigaciones Agroindustriales, 10 (1). 95-106. https://doi.org/10.23850/24220582.5460spa
dc.relation.referencesVijayalakshmi, V., Senthilkumar, P., Mophin-kani, K., Sivamani, S., & Sivarajasekar, N. (2018). Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from ef fl uent of thermal paper industry : Kinetic modeling and process optimization. Journal of Radiation Research and Applied Sciences, 11(1), 56–65. https://doi.org/10.1016/j.jrras.2017.08.003spa
dc.relation.referencesVijayaraghavan, K.; Balasubramanian, R. (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag, 160, 283–296. https://doi.org/10.1016/j.jenvman.2015.06.030spa
dc.relation.referencesVillanueva, P. (2019). Relación entre las características del suelo y la concentración de cadmio en los tejidos de la planta de cacao (Theobroma cacao L.) en Pumahuasi, Huánuco [Tesis de Pregrado]. Universidad Nacional Hermilio Valdizán, Perú.spa
dc.relation.referencesVishan, I., Saha, B., Sivaprakasam, S., Kalamdhad, A., 2019. Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: biosorption kinetics, thermodynamics and mechanism. Environ. Technol. Innov. 14, 100323. https://doi.org/10.1016/j.eti.2019.100323spa
dc.relation.referencesVisintin, S., Alessandria, V., Valente, A., Dolci, P., & Cocolin, L. (2016). Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. International Journal of Food Microbiology, 216, 69–78. https://doi.org/ 10.1016/j.ijfoodmicro.2015.09.004spa
dc.relation.referencesVisintin, S., Ramos, L., Batista, N., Dolci, P., Schwan, F., Cocolin, L. (2017). Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. International Journal of Food Microbiology 257, 31–40. http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.004spa
dc.relation.referencesVītola, V., Ciproviča, I. (2016). The effect of cocoa beans heavy and trace elements on safety and stability of confectionery products. Rural Sustain Res. 35 (330), 19–23. https://doi.org/10.1515/plua-2016-0003spa
dc.relation.referencesWang, J., Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002spa
dc.relation.referencesWang, J., Wang, P.M., Gu, Y., Kopittke, P., Zhao, F., Wang, P. (2019). Iron−Manganese (Oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environ. Sci. Technol., 53 (2019), pp. 2500-2508, https://doi.org/10.1021/acs.est.8b06863spa
dc.relation.referencesWang, T., Lu, Y., Yan, H., Li, X., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., Lü, X. (2020). Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioprocess Biosyst Eng 43(3):515-528. https://doi.org/10.1007/s00449-019-02246-yspa
dc.relation.referencesWang, Y.,Fang, X., An, F., Wang, G., Zhang, X. (2011).Improvement of antibiotic activity of Xenorhabdus Bovienii by medium optimization using response surface methodology. Microb.Cell Fact. 10,1–15. https://doi: 10.1186/1475-2859-10-98spa
dc.relation.referencesWang, Y.X., Lu Z.X. (2004).Statistical optimization of media for extracellular polysaccharide by Pholiotasquarrosa (Pers. ex Fr.) Quel. AS 5.245 under submerged cultivation. Biochemical Engineering Journal. 20: 39-47. https://doi.org/10.1016/j.bej.2004.04.004spa
dc.relation.referencesWang, Y., Yu, K.F., Poysa, V., Shi, C., Zhou, Y.H. (2012). A single point mutation in GmHMA3 affects cadmium (Cd) translocation and accumulation in soybean seeds. Mol. Plant 5 (5), 1154–1156. https://doi.org/10.1093/mp/sss069spa
dc.relation.referencesWei, X., Fang, L., Cai, P., Huang, Q., Chen, H., Liang, W., Rong, X. (2011). Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ. Pollut. 159, 1369–1374. https://doi.org/10.1016/j.envpol.2011.01.006spa
dc.relation.referencesWorld Health Organization-WHO. (2011). Cadmium. Safety evaluation of certain contaminants in food. WHO Food Additives Series, No. 64/FAO JECFA Monographs 8. WHO: Geneva, Switzerland.spa
dc.relation.referencesWu, Y., Bin, H., Zhou, J., Ji, L., Dong, Y., Sun, S., Wei, L. (2011). Atmospheric deposition of Cd accumulated in the montane soil, Gongga Mt., China. J. Soils Sediments 11, 940–946. https://doi.org/10.1007/s11368-011-0387-7spa
dc.relation.referencesXiao, R., Huang, Z., Li, X., Chen, W., Deng, Y., & Han, C. (2017). Lime and phosphate amendment can significantly reduce uptake of Cd and Pb by field-grown rice. Sustainability MDPI, 9, 1–10. https://doi.org/10.3390/su9030430spa
dc.relation.referencesXie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., Fu, J. (2016). Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 7, 755. https://doi.org/10.3389/fpls.2016.00755spa
dc.relation.referencesXie, Y., He, N., Wei, M., Wen, T., Wang, X., Liu, H., Zhong, S., Xu, H. (2021). Cadmium biosorption and mechanism investigation using a novel Bacillus subtilis KC6 isolated from pyrite mine. Journal of Cleaner Production 312, 127749 https://doi.org/10.1016/j.jclepro.2021.127749spa
dc.relation.referencesYanus, R.L., Sela, H., Borojovich, E.J.C., Zakon, Y., Saphier, M., Nikolski, A., Gutflais, E., Lorber, A., Karpas, Z. (2014). Trace elements in cocoa solids and chocolate: an ICPMS study. Talanta 119, 1–4. https://doi.org/10.1016/j.talanta.2013.10.048spa
dc.relation.referencesYao, W., Doue, G., Ouattara, H., Goualie, B.,Koua, G., Niamke, S. (2017). Selection of potential bacillus starters for cocoa beans fermentation improvement. AUDJG – Food Technology 41(1), 131-146spa
dc.relation.referencesYao, W., Goualié, B., Ouattara, H., Niamké, S. (2017). Growth capacity of bacillus potential starter strains isolated from cocoa beans fermentation under culture stress conditions. Scientific Study & Research. 18 (2), pp. 201 – 211.spa
dc.relation.referencesYapo, K.D., Ouffoue, S.K., N’guessan, B.R., Okpekon, T.A., Dade, J., Say, M., Kouakou, T.H. (2014). Quality control by the determination of heavy metals in new variety of cocoa (cocoa mercedes) in Côte d’ Ivoire. J la Société Ouest-Africaine Chim. 37, 56–64.spa
dc.relation.referencesYee, N., Benning, L.G., Phoenix, V.R., Ferris, F.G. (2004). Characterization of Metal−Cyanobacteria Sorption Reactions:  A Combined Macroscopic and Infrared Spectroscopic Investigation. Environ. Sci. Technol. 38, 775–782. https://doi.org/10.1021/es0346680spa
dc.relation.referencesZamudio-Palacios B. B., Ayora-Talavera T. del R., Cervantes-Lugo E. del C., Taillandier, P., Gastélum-Martínez, E. (2021). Estudio de un consorcio de levaduras durante la fermentación de cacao y su efecto en la 1 generación de compuestos aromáticos. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, Vol. 6, 62-74spa
dc.relation.referencesZhai, Qixiao., Guo, Y., Tang, X., Tian, F., Zhao, J., Zhang, H., Chen, W. (2019). Removal of cadmium from rice by Lactobacillus plantarum fermentation Food Control, 96 (1): 357-364. https://doi.org/10.1016/j.foodcont.2018.09.029spa
dc.relation.referencesZhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657spa
dc.relation.referencesZhang, L.,Wu, J., Tang, Z., Huang, X.,Wang, X., Salt, D.E., Zhao, F.J. (2019). Variation in the BrHMA3 Coding Region Controls Natural Variation in Cadmium Accumulation in Brassica rapa Vegetables. 70(20), pp. 5865–5878. https://doi.org/10.1093/jxb/erz310spa
dc.relation.referencesZhang, Y., Liu, W., Xu, M., Zheng, F., Zhao, M. (2010). Study of the mechanisms of Cu2 + biosorption by ethanol / caustic-pretreated baker’s yeast biomass. J. Hazard. Mater. 178, 1085–1093. https://doi.org/10.1016/j.jhazmat.2010.02.051spa
dc.relation.referencesZheng, S., Yang, M., Yang, Z. (2005) Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresource Technology. 96(10):1183–1187. https://doi.org/10.1016/j.biortech.2004.09.022spa
dc.relation.referencesZhong, J., Zhang, X., Ren, Y., Yang, J., Tan, H., Zhou, J.(2014) Optimization of Bacillus subtilis cell growth effecting jiean-peptide production in fed batch fermentation using central composite design. Electronic Journal of Biotechnology. 17:132-136. https://doi.org/10.1016/j.ejbt.2014.04.010spa
dc.relation.referencesZhu, H., Chen, C., Xu, C., Zhu, Q., & Huang, D. (2016). Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 219, 99–106. https://doi.org/10.1016/j.envpol.2016.10.043spa
dc.relation.referencesZhu, J.; Chen, Y.; Lv, C.; Wu, W.; Qin, S. (2019). Study on optimization of removing cadmium by lactobacillus fermentation and its effect on physicochemical and quality properties of rice noodles. Food Control, 106, 106740. https://doi.org/10.1016/j.foodcont.2019.106740spa
dc.relation.referencesZug, K.L., Humaní, H.A., Meyberg, F., Cierjacks, J. S., Cierjacks, A. (2019). Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut, 230, 72. https://doi.org/10.1007/s11270-019-4109-xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocTheobroma cacao - Investigaciones
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.lembCacao - Investigaciones
dc.subject.lembCacao - Cultivo
dc.subject.lembPlantas - Efecto del cadmio
dc.subject.lembDesarrollo de microorganismos
dc.subject.proposalTheobroma cacaospa
dc.subject.proposalMicroorganismosspa
dc.subject.proposalCadmiospa
dc.subject.proposalCacaos especialesspa
dc.subject.proposalFermentación de cacaospa
dc.subject.proposalTheobroma cacaoeng
dc.subject.proposalMicroorganismseng
dc.subject.proposalCadmiumeng
dc.subject.proposalSpecial cocoaeng
dc.subject.proposalCocoa fermentationeng
dc.titleEvaluación de inóculos microbianos en el proceso de fermentación de cacaos especiales para la mitigación del contenido de cadmio en granospa
dc.title.translatedEvaluation of microbial inoculms in the fermentation process of special cocoas to mitigate the cadmium content in the beanseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020421832.2024.pdf
Tamaño:
4.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: