Implementación y evaluación de algoritmos de cifrado post cuánticos en dispositivos de Edge Computing desplegados en una red de cómputo que emplea el protocolo TCP para fortalecer la seguridad en la capa de transporte
dc.contributor.advisor | Camargo Mendoza, Jorge Eliécer | spa |
dc.contributor.author | Escobar Archila, Leonardo | spa |
dc.contributor.orcid | Escobar Archila, Leonardo [0009-0005-0402-2607] | spa |
dc.contributor.referee | Tovar Rache, Jesús Guillermo | spa |
dc.contributor.researchgroup | Unsecurelab Cybersecurity Research Group | eng |
dc.date.accessioned | 2025-07-22T00:24:42Z | |
dc.date.available | 2025-07-22T00:24:42Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Los avances de la computación cuántica, como los mostrados por Google con los chips cuánticos Willow e IBM con la arquitectura Heron allanan el camino a la ejecución óptima de los algoritmos capaces de comprometer los principios matemáticos de los algoritmos de cifrado asimétrico más empleados en el día de hoy; es por ello que el Instituto de normas y tecnologías – NIST en inglés, en el 2016 lanzó un concurso para la selección de nuevos algoritmos de cifrado asimétricos resistentes al incremento de las capacidades de cómputo de dicho paradigma de computación. Así mismo el incremento del uso de dispositivos físicos conectados en red con limitados recursos energéticos y de cómputo los cuales intercambian constantemente información sobre si mismos y sobre su entorno, podrían recopilar información sensible que comprometen la privacidad y confidencialidad de su organización o usuario. Esta información recopilada se preprocesa luego en otro tipo de dispositivos con mayores capacidades de cómputo los denominados dispositivos de borde o Edge Computing. En el presente trabajo se presenta la implementación y evaluación del uso de algoritmos de cifrado post cuánticos en dispositivos de borde o Edge Computing desplegados en una red de cómputo que emplea el protocolo de control de transmisión – TCP, llegando a determinar que a pesar del incremento en los tiempos de aseguramiento de la conexión los algoritmos Kyber y Dilithium refuerzan la seguridad de la misma y se muestran como una solución segura y resistente a la computación cuántica. (Texto tomado de la fuente). | spa |
dc.description.abstract | Advances in quantum computing, such as those demonstrated by Google with the Willow quantum chips and IBM with the Heron architecture, pave the way for the optimal execution of algorithms capable of compromising the mathematical principles of the asymmetric encryption algorithms most commonly used today. This is why the Institute of Standards and Technologies (NIST) launched a competition in 2016 for the selection of new asymmetric encryption algorithms resistant to the increase in the computing capacities of this computing paradigm. Likewise, the increased use of networked physical devices with limited energy and computing resources, which constantly exchange information about themselves and their environment, could collect sensitive information that compromises the privacy and confidentiality of their organization or user. This collected information is then preprocessed in other types of devices with greater computing capacities, the socalled edge devices or Edge Computing. This work presents the implementation and evaluation of the use of post-quantum encryption algorithms in edge devices or Edge Computing deployed in a computing network that uses the transmission control protocol - TCP, determining that despite the increase in connection assurance times, the Kyber and Dilithium algorithms reinforce the security of the connection and are shown to be a secure and resistant solution to quantum computing. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Telecomunicaciones | spa |
dc.description.researcharea | Redes y sistemas de comunicaciones | spa |
dc.format.extent | xiv, 89 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88372 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería de Sistemas e Industrial | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones | spa |
dc.relation.references | Akleylek, S., Soysaldi, M., Lee, W. K., Hwang, S. O., & Wong, D. C. K. (2021). Novel Postquantum MQ-Based Signature Scheme for Internet of Things with Parallel Implementation. IEEE Internet of Things Journal, 8(8), 6983–6994. https://doi.org/10.1109/JIOT.2020.3038388 | spa |
dc.relation.references | Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key exchange: a new hope. Proceedings of the 25th USENIX Conference on Security Symposium, 327–343. | spa |
dc.relation.references | Ananthanarayanan, G., Bahl, P., Bodik, P., Chintalapudi, K., Philipose, M., Ravindranath, L., & Sinha, S. (2017). Real-Time Video Analytics: The Killer App for Edge Computing. Computer, 50(10), 58–67. https://doi.org/10.1109/MC.2017.3641638 | spa |
dc.relation.references | Awadelkarim Mohamed, A. M., & Abdallah M. Hamad, Y. (2020, septiembre 9). IoT Security: Review and Future Directions for Protection Models. 2020 International Conference on Computing and Information Technology, ICCIT 2020. https://doi.org/10.1109/ICCIT-144147971.2020.9213715 | spa |
dc.relation.references | Bae, S., Chang, Y., Park, H., Kim, M., & Shin, Y. (2023). A Performance Evaluation of IPsec with Post-Quantum Cryptography (pp. 249–266). https://doi.org/10.1007/978-3-031-29371-9_13 | spa |
dc.relation.references | Bernstein, D. J., & Lange, T. (2017). Post-quantum cryptography. En Nature (Vol. 549, Número 7671, pp. 188–194). Nature Publishing Group. https://doi.org/10.1038/nature23461 | spa |
dc.relation.references | Bindel, N., Braun, J., Gladiator, L., Stöckert, T., & Wirth, J. (2019). X.509-Compliant Hybrid Certificates for the Post-Quantum Transition. Journal of Open Source Software, 4(40), 1606. https://doi.org/10.21105/joss.01606 | spa |
dc.relation.references | Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe, P., Seiler, G., & Stehle, D. (2018). CRYSTALS - Kyber: A CCA-Secure Module-Lattice- Based KEM. Proceedings - 3rd IEEE European Symposium on Security and Privacy, EURO S and P 2018, 353–367. https://doi.org/10.1109/EuroSP.2018.00032 | spa |
dc.relation.references | Bour, G., Bosco, C., Ugarelli, R., & Jaatun, M. G. (2023). Water-Tight IoT–Just Add Security. Journal of Cybersecurity and Privacy, 3(1), 76–94. https://doi.org/10.3390/jcp3010006 | spa |
dc.relation.references | Building Cryptographic Agility in the Financial Sector. (2024). | spa |
dc.relation.references | Cheng, C., Lu, R., Petzoldt, A., & Takagi, T. (2017). Securing the Internet of Things in a Quantum World. IEEE Communications Magazine, 55(2), 116–120. https://doi.org/10.1109/MCOM.2017.1600522CM | spa |
dc.relation.references | Chowdhury, S., Covic, A., Acharya, R. Y., Dupee, S., Ganji, F., & Forte, D. (2022). Physical security in the post-quantum era: A survey on side-channel analysis, random number generators, and physically unclonable functions. Journal of Cryptographic Engineering, 12(3), 267–303. https://doi.org/10.1007/s13389-021- 00255-w | spa |
dc.relation.references | Cohen, A., D’Oliveira, R. G. L., Salamatian, S., & Medard, M. (2021). Network Coding- Based Post-Quantum Cryptography. IEEE Journal on Selected Areas in Information Theory, 2(1), 49–64. https://doi.org/10.1109/jsait.2021.3054598 | spa |
dc.relation.references | Dharminder, D., Kumar, U., Das, A. K., Bera, B., Giri, D., Jamal, S. S., & Rodrigues, J. J. P. C. (2022). Secure cloud-based data storage scheme using postquantum integer lattices-based signcryption for IoT applications. Transactions on Emerging Telecommunications Technologies, 33(9). https://doi.org/10.1002/ett.4540 | spa |
dc.relation.references | Ebrahimi, S., Bayat-Sarmadi, S., & Mosanaei-Boorani, H. (2019). Post-quantum cryptoprocessors optimized for edge and resource-constrained devices in IoT. IEEE Internet of Things Journal, 6(3), 5500–5507. https://doi.org/10.1109/JIOT.2019.2903082 | spa |
dc.relation.references | Fernandez-Carames, T. M. (2020). From Pre-Quantum to Post-Quantum IoT Security: A Survey on Quantum-Resistant Cryptosystems for the Internet of Things. En IEEE Internet of Things Journal (Vol. 7, Número 7, pp. 6457–6480). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/JIOT.2019.2958788 | spa |
dc.relation.references | Ferrari, D., Cacciapuoti, A. S., Amoretti, M., & Caleffi, M. (2021). Compiler Design for Distributed Quantum Computing. IEEE Transactions on Quantum Engineering, 2. https://doi.org/10.1109/TQE.2021.3053921 | spa |
dc.relation.references | Fritzmann, T., Van Beirendonck, M., Basu Roy, D., Karl, P., Schamberger, T., Verbauwhede, I., & Sigl, G. (2021). Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems, 414–460. https://doi.org/10.46586/tches.v2022.i1.414-460 | spa |
dc.relation.references | Gazdag, S.-L., Grundner-Culemann, S., Heider, T., Herzinger, D., Schärtl, F., Cho, J. Y., Guggemos, T., & Loebenberger, D. (2023). Quantum-Resistant MACsec and IPsec for Virtual Private Networks (pp. 1–21). https://doi.org/10.1007/978-3-031-30731-7_1 | spa |
dc.relation.references | Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T., Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R., Dustdar, S., … Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. En Internet of Things (Netherlands) (Vol. 19). Elsevier B.V. https://doi.org/10.1016/j.iot.2022.100514 | spa |
dc.relation.references | Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. | spa |
dc.relation.references | Guillen, O. M., Poppelmann, T., Bermudo Mera, J. M., Bongenaar, E. F., Sigl, G., & Sepulveda, J. (2017). Towards post-quantum security for IoT endpoints with NTRU. Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017, 698– 703. https://doi.org/10.23919/DATE.2017.7927079 | spa |
dc.relation.references | Hadayeghparast, S., Bayat-Sarmadi, S., & Ebrahimi, S. (2022). High-Speed Post- Quantum Cryptoprocessor Based on RISC-V Architecture for IoT. IEEE Internet of Things Journal, 9(17), 15839–15846. https://doi.org/10.1109/JIOT.2022.3152850 | spa |
dc.relation.references | Huang, Z., Wang, H., Cao, B., He, D., & Wang, J. (2024). A comprehensive side-channel leakage assessment of CRYSTALS-Kyber in IIoT. Internet of Things, 27, 101331. https://doi.org/10.1016/j.iot.2024.101331 | spa |
dc.relation.references | Jin, X., Katsis, C., Sang, F., Sun, J., Kundu, A., & Kompella, R. (2022). Edge Security: Challenges and Issues. https://doi.org/10.48550/arXiv.2206.07164 | spa |
dc.relation.references | Kampanakis, P., & Childs-Klein, W. (2024). The impact of data-heavy, post-quantum TLS 1.3 on the Time-To-Last-Byte of Web connections . Proceedings 2024 Workshop on Measurements, Attacks, and Defenses for the Web. https://doi.org/10.14722/madweb.2024.23010 | spa |
dc.relation.references | Kempf, M., Gauder, N., Jaeger, B., Zirngibl, J., & Carle, G. (2024). A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights. https://doi.org/https://doi.org/10.48550/arXiv.2405.09264 | spa |
dc.relation.references | Kim, Y., Song, J., & Seo, S. C. (2022). Accelerating Falcon on ARMv8. IEEE Access, 10, 44446–44460. https://doi.org/10.1109/ACCESS.2022.3169784 | spa |
dc.relation.references | Kuang, R., Perepechaenko, M., Toth, R., & Barbeau, M. (2022). Benchmark Performance of a New Quantum-Safe Multivariate Polynomial Digital Signature Algorithm. Proceedings - 2022 IEEE International Conference on Quantum Computing and Engineering, QCE 2022, 454–464. https://doi.org/10.1109/QCE53715.2022.00067 | spa |
dc.relation.references | Kumar, A., Ottaviani, C., Gill, S. S., & Buyya, R. (s/f). Securing the Future Internet of Things with Post-Quantum Cryptography. | spa |
dc.relation.references | Li, S., Chen, Y., Chen, L., Liao, J., Kuang, C., Li, K., Liang, W., & Xiong, N. (2023). Post- Quantum Security: Opportunities and Challenges. Sensors, 23(21), 8744. https://doi.org/10.3390/s23218744 | spa |
dc.relation.references | Liu, Z., Choo, K. K. R., & Grossschadl, J. (2018). Securing Edge Devices in the Post- Quantum Internet of Things Using Lattice-Based Cryptography. IEEE Communications Magazine, 56(2), 158–162. https://doi.org/10.1109/MCOM.2018.1700330 | spa |
dc.relation.references | Lohachab, A., Lohachab, A., & Jangra, A. (2020). A comprehensive survey of prominent cryptographic aspects for securing communication in post-quantum IoT networks. En Internet of Things (Netherlands) (Vol. 9). Elsevier B.V. https://doi.org/10.1016/j.iot.2020.100174 | spa |
dc.relation.references | Malina, L., Dzurenda, P., Ricci, S., Hajny, J., Srivastava, G., Matulevicius, R., Affia, A. A. O., Laurent, M., Sultan, N. H., & Tang, Q. (2021). Post-quantum era privacy protection for intelligent infrastructures. IEEE Access, 9, 36038–36077. https://doi.org/10.1109/ACCESS.2021.3062201 | spa |
dc.relation.references | McMahan, H., Moore, E., & Ramage, D. (2016). Federated Learning of Deep Networks using Model Averaging. https://doi.org/10.48550/arXiv.1602.05629 | spa |
dc.relation.references | Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. https://doi.org/DOI: 10.1017/CBO978051197666 | spa |
dc.relation.references | Paul, S., & Scheible, P. (2020). Towards post-quantum security for cyber-physical systems: Integrating pqc into industrial m2m communication. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12309 LNCS, 295–316. https://doi.org/10.1007/978-3-030-59013-0_15 | spa |
dc.relation.references | Rocha, B. S., Xexeo, J. A. M., & Torres, R. H. (2022). Post-quantum cryptographic algorithm identification using machine learning. Journal of Information Security and Cryptography (Enigma), 9(1), 1–8. https://doi.org/10.17648/jisc.v9i1.81 | spa |
dc.relation.references | Rubio García, C., Rommel, S., Takarabt, S., Vegas Olmos, J. J., Guilley, S., Nguyen, P., & Tafur Monroy, I. (2024). Quantum-resistant Transport Layer Security. Computer Communications, 213, 345–358. https://doi.org/10.1016/j.comcom.2023.11.010 | spa |
dc.relation.references | Sajimon, P. C., Jain, K., & Krishnan, P. (2022). Analysis of Post-Quantum Cryptography for Internet of Things. Proceedings - 2022 6th International Conference on Intelligent Computing and Control Systems, ICICCS 2022, 387–394. https://doi.org/10.1109/ICICCS53718.2022.9787987 | spa |
dc.relation.references | Sarwar Murshed, M. G., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., & Hussain, F. (2022). Machine Learning at the Network Edge: A Survey. ACM Computing Surveys, 54(8). https://doi.org/10.1145/3469029 | spa |
dc.relation.references | Schwabe, P., Stebila, D., & Wiggers, T. (2020). Post-Quantum TLS Without Handshake Signatures. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 1461–1480. https://doi.org/10.1145/3372297.3423350 | spa |
dc.relation.references | Senor, J., Portilla, J., & Mujica, G. (2022). Analysis of the NTRU Post-Quantum Cryptographic Scheme in Constrained IoT Edge Devices. IEEE Internet of Things Journal, 9(19), 18778–18790. https://doi.org/10.1109/JIOT.2022.3162254 | spa |
dc.relation.references | Sha, K., Yang, T. A., Wei, W., & Davari, S. (2020). A survey of edge computing-based designs for IoT security. Digital Communications and Networks, 6(2), 195–202. https://doi.org/10.1016/j.dcan.2019.08.006 | spa |
dc.relation.references | Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198 | spa |
dc.relation.references | Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, 124–134. https://doi.org/10.1109/SFCS.1994.365700 | spa |
dc.relation.references | Sikeridis, D., Kampanakis, P., & Devetsikiotis, M. (2020). Assessing the overhead of postquantum cryptography in TLS 1.3 and SSH. Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies, 149–156. https://doi.org/10.1145/3386367.3431305 | spa |
dc.relation.references | Sonmez Turan, M., McKay, K., Chang, D., Calik, C., Bassham, L., Kang, J., & Kelsey, J. (2021). Status Report on the Second Round of the NIST Lightweight Cryptography Standardization Process. https://doi.org/10.6028/NIST.IR.8369 | spa |
dc.relation.references | Zolfaghari, B., Bibak, K., & Koshiba, T. (2022). The Odyssey of Entropy: Cryptography. En Entropy (Vol. 24, Número 2). MDPI. https://doi.org/10.3390/e24020266 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.proposal | Ciberseguridad | spa |
dc.subject.proposal | Computación cuántica | spa |
dc.subject.proposal | Criptografía postcuántica | spa |
dc.subject.proposal | Dispositivos IoT | spa |
dc.subject.proposal | Edge computing | spa |
dc.subject.proposal | Protocolo TCP | spa |
dc.subject.proposal | Seguridad en la capa de transporte | spa |
dc.subject.proposal | Cybersecurity | eng |
dc.subject.proposal | Quantum computing | eng |
dc.subject.proposal | Post-quantum cryptography | eng |
dc.subject.proposal | IoT devices | eng |
dc.subject.proposal | Edge computing | eng |
dc.subject.proposal | TCP protocol | eng |
dc.subject.proposal | Transport layer security | eng |
dc.subject.unesco | Tecnología de la información | spa |
dc.subject.unesco | Information technology | eng |
dc.subject.unesco | Protección de datos | spa |
dc.subject.unesco | Data protection | eng |
dc.subject.unesco | Administración de la comunicación | spa |
dc.subject.unesco | Communication administration | eng |
dc.title | Implementación y evaluación de algoritmos de cifrado post cuánticos en dispositivos de Edge Computing desplegados en una red de cómputo que emplea el protocolo TCP para fortalecer la seguridad en la capa de transporte | spa |
dc.title.translated | Implementation and evaluation of post-quantum encryption algorithms on edge computing devices deployed in a computing network using the TCP protocol to strengthen transport layer security | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 88239370.2025.pdf
- Tamaño:
- 2.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Telecomunicaciones
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: