Un nuevo modelo para la estimación de la biomasa viva y el carbono almacenado en los bosques de manglar usando sensoramiento remoto y aprendizaje de máquina: caso de estudio Tumaco-Nariño

dc.contributor.advisorSelvaraj, John Josephraj
dc.contributor.advisorGallego Pérez, Bryan Ernesto
dc.contributor.authorLozano Arias, Laura
dc.contributor.cvlacLozano Arias, Laura [1144200812]spa
dc.contributor.orcidLozano Arias, Laura [0009-0008-7538-0067]spa
dc.contributor.researchgateLozano Arias, Laura [https://www.researchgate.net/profile/Laura-Lozano-23]spa
dc.contributor.researchgroupRecursos Hidrobiológicosspa
dc.coverage.regionTumaco, Nariño, Colombia
dc.coverage.temporalhttp://vocab.getty.edu/page/tgn/1024046
dc.date.accessioned2024-05-22T18:29:24Z
dc.date.available2024-05-22T18:29:24Z
dc.date.issued2023-12-01
dc.descriptionilustraciones, mapas, tablasspa
dc.description.abstractLos manglares desempeñan un papel crucial en la mitigación del cambio climático al absorber y retener hasta cinco veces más carbono que otros bosques. Es importante determinar la biomasa viva y el carbono almacenado en estos ecosistemas para proporcionar una base sólida en la planificación y gestión gubernamental. Este estudio presenta un enfoque innovador ya que utiliza herramientas de teledetección junto con datos recolectados en campo, imágenes Worldview 2 y evalúa dos algoritmos de aprendizaje automático, Random Forest y Support Vector Regression. El caso de estudio en el manglar de Tumaco, Nariño, incluyó el cálculo de la superficie del bosque por medio de una clasificación supervisada, la estimación de la biomasa viva (aboveground y belowground) y el carbono almacenado, y la evaluación de los modelos. Los resultados revelaron una precisión global del 87% en la clasificación de coberturas, con valores promedio de 192.50 ± 102.78 para la biomasa aérea, 79.95 ± 56.85 para la biomasa subterránea y 127.43 ± 73.49 para el carbono almacenado. El modelo basado en Random Forest destacó con un rendimiento sobresaliente, mostrando un RMSE de 140.68 ± 98.76 y un R2 de 0.78 ± 0.28, superando a modelos globales. Adicionalmente, se evidenció que los índices espectrales fortalecen la capacidad del modelo para explicar y predecir la biomasa aérea. Se sugiere explorar el uso de imágenes Lidar y datos SAR para mejorar la precisión en estudios locales con mayor resolución espacial. (Texto tomado de la fuente)spa
dc.description.abstractMangroves play a crucial role in climate change mitigation by absorbing and sequestering up to five times more carbon than other forests. It is important to determine the living biomass and carbon stored in these ecosystems to provide a sound basis for government planning and management. This study presents an innovative approach using remote sensing tools together with field collected data, using Worldview 2 imagery and evaluating two machine learning algorithms, Random Forest and Support Vector Regression. The case study in the mangrove forest of Tumaco, Nariño, included the calculation of forest area by supervised classification, estimation of live biomass (aboveground and belowground) and carbon stock, and evaluation of the models. The results revealed an overall accuracy of 87% in cover classification, with average values of 192.50 ± 102.78 for aboveground biomass, 79.95 ± 56.85 for belowground biomass and 127.43 ± 73.49 for carbon stock. The Random Forest based model stood out with an outstanding performance, showing an RMSE of 140.68 ± 98.76 and an R2 of 0.78 ± 0.28, outperforming global models. Additionally, it was evidenced that the spectral indices strengthen the model's ability to explain and predict aerial biomass. It is suggested to explore the use of Lidar images and SAR data to improve accuracy in local studies with higher spatial resolution.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.methodsEs importante determinar la biomasa viva y el carbono almacenado en estos ecosistemas para proporcionar una base sólida en la planificación y gestión gubernamental. Este estudio presenta un enfoque innovador ya que utiliza herramientas de teledetección junto con datos recolectados en campo, imágenes Worldview 2 y evalúa dos algoritmos de aprendizaje automático, Random Forest y Support Vector Regression. El caso de estudio en el manglar de Tumaco, Nariño, incluyó el cálculo de la superficie del bosque por medio de una clasificación supervisada, la estimación de la biomasa viva (aboveground y belowground) y el carbono almacenado, y la evaluación de los modelos.spa
dc.description.researchareaMonitoreo, modelación y gestión de recursos naturalesspa
dc.format.extentxiv, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86135
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAhmad, A., Gilani, H., & Ahmad, S. R. (2021). Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery—a literature review. Forests, 12(7), 914. https://doi.org/10.3390/F12070914/S1spa
dc.relation.referencesAlboukadel, K. (2023). RDocumentation. Factoextra. fviz_contrib (1.0.7). https://www.rdocumentation.org/packages/factoextra/versions/1.0.7/topics/fviz_contribspa
dc.relation.referencesAldrich, R. C., Bailey, W. F., & Heller, R. C. (1959). Large Scale 70 mm. Color Photography Techniques and Equipment and Their Application to a Forest Sampling Problem. Photogrammetric Engineering, 25, 747–754.spa
dc.relation.referencesFAO. (2007). The world’s mangroves 1980-2005. In FAO Forestry Paper (Vol. 153).spa
dc.relation.referencesFAO, Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. R. (2018). Soil Organic Carbon Mapping Cookbook. 2nd Edition, Rome. https://fao-gsp.github.io/SOC-Mapping-Cookbook/mappingMethods.html#rfspa
dc.relation.referencesCongalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices, second edition. In Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition.spa
dc.relation.referencesAnand, A., Pandey, P. C., Petropoulos, G. P., Pavlides, A., Srivastava, P. K., Sharma, J. K., & Malhi, R. K. M. (2020). Use of hyperion for mangrove forest carbon stock assessment in bhitarkanika forest reserve: A contribution towards blue carbon initiative. Remote Sensing, 12(4). https://doi.org/10.3390/rs12040597spa
dc.relation.referencesEscobar, H. A. T. (2010). Documento síntesis: Caracterización, Diagnóstico y Zonificación de los Manglares en el Departamento de Nariño.spa
dc.relation.referencesForkuor, G., Benewinde Zoungrana, J. B., Dimobe, K., Ouattara, B., Vadrevu, K. P., & Tondoh, J. E. (2020). Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets - A case study. Remote Sensing of Environment, 236(November 2019), 111496. https://doi.org/10.1016/j.rse.2019.111496spa
dc.relation.referencesGao, B.-C. (1996). NDWI - A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. REMOTE SENS. ENVIRON, 7212, 257–266.spa
dc.relation.referencesGAFMEX. (2023). Clinómetro Electrónico Ecii D Haglöf. https://gafmex.com/clinometro-electronico-ecii-d-haglof/spa
dc.relation.referencesGao, Y., Yu, G., Yang, T., Jia, Y., He, N., & Zhuang, J. (2016). New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China. Earth-Science Reviews, 159, 36–46. https://doi.org/10.1016/J.EARSCIREV.2016.05.003spa
dc.relation.referencesDonato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123spa
dc.relation.referencesDimar. (2020). Compilación Oceanográfica de la Cuenca Pacífica Colombiana II (Vol. 9). Editorial Dimar.spa
dc.relation.referencesDigital Globe. (2010). DigitalGlobe Core Imagery Products Guide. 8–11. https://www.satimagingcorp.com/satellite-sensors/worldview-3spa
dc.relation.referencesDarmawan, S., Takeuchi, W., Vetrita, Y., Wikantika, K., & Sari, D. K. (2015). Impact of topography and tidal height on ALOS palsar polarimetric measurements to estimate aboveground biomass of mangrove forest in Indonesia. Journal of Sensors, 2015. https://doi.org/10.1155/2015/641798spa
dc.relation.referencesArlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-SS054spa
dc.relation.referencesAwad, M., & Khanna, R. (2015). Efficient Learning Machines. Theories, Concepts, and Applications for Engineers and System Designers. Apress, Berkeley, CA.spa
dc.relation.referencesCutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random Forest for classification in ecology. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1spa
dc.relation.referencesBasith, A., & Prastyani, R. (2020). Evaluating ACOMP , FLAASH AND QUAC on WORLDVIEW-3 for Satellite Derived Bathymetry (SDB) in shallow water. 46(3), 151–158.spa
dc.relation.referencesCantera, J. R., Thomassin, B. A., & Arnaud, P. M. (1999). Faunal zonation and assemblages in the Pacific Colombian mangroves. In Hydrobiologia (Vol. 413).spa
dc.relation.referencesCastellanos-Galindo, G. A., Kluger, L. C., Camargo, M. A., Cantera, J., Mancera Pineda, J. E., Blanco-Libreros, J. F., & Wolff, M. (2021). Mangrove research in Colombia: Temporal trends, geographical coverage and research gaps. Estuarine, Coastal and Shelf Science, 248(October 2019). https://doi.org/10.1016/j.ecss.2020.106799spa
dc.relation.referencesChave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/S00442-005-0100-Xspa
dc.relation.referencesBunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L. M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153657spa
dc.relation.referencesBunting, P. (2020). Class Accuracy (V1.0.0). https://github.com/remotesensinginfo/classaccuracy/releases/tag/qgis3_v1.0.0spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324/METRICSspa
dc.relation.referencesBolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/10.1016/j.rsma.2017.12.011spa
dc.relation.referencesBolar, K. (2019). STAT V.0.1.0 (0.1.0). https://cran.r-project.org/web/packages/STAT/index.htmlspa
dc.relation.referencesBishop, C. (2008). Pattern Recognition and Machine Learning. Springer Verlag. http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop - Pattern Recognition And Machine Learning - Springer 2006.pdfspa
dc.relation.referencesBindu, G., Rajan, P., Jishnu, E. S., & Ajith Joseph, K. (2020). Carbon stock assessment of mangroves using remote sensing and geographic information system. Egyptian Journal of Remote Sensing and Space Science, 23(1), 1–9. https://doi.org/10.1016/j.ejrs.2018.04.006spa
dc.relation.referencesBeeston, M., Cuyvers, L., & Vermilye, J. (2020). Blue Carbon: Mind the Gap. October, 16. https://gallifrey.foundation/wp-content/uploads/2020/10/Blue-Carbon-Mind-the-Gap-V2.2.pdfspa
dc.relation.referencesZhu, Y., Liu, K., Liu, L., Wang, S., & Liu, H. (2015). Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sensing 2015, Vol. 7, Pages 12192-12214, 7(9), 12192–12214. https://doi.org/10.3390/RS70912192spa
dc.relation.referencesZhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Liu, H., & He, Z. (2017). Exploring the potential of world view-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sensing, 9(10). https://doi.org/10.3390/rs9101060spa
dc.relation.referencesZhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Cao, J., & Wu, Z. (2020). Estimating and Mapping Mangrove Biomass Dynamic Change Using WorldView-2 Images and Digital Surface Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2123–2134. https://doi.org/10.1109/JSTARS.2020.2989500spa
dc.relation.referencesZhang, M., Lin, H., Zeng, S., Li, J., Shi, J., & Wang, G. (2013). Impacts of plot location errors on accuracy of mapping and scaling up aboveground forest carbon using sample plot and landsat tm data. IEEE Geoscience and Remote Sensing Letters, 10(6), 1483–1487. https://doi.org/10.1109/LGRS.2013.2260719spa
dc.relation.referencesZhu, J. J., & Yan, B. (2022). Blue carbon sink function and carbon neutrality potential of mangroves. Science of the Total Environment, 822, 153438. https://doi.org/10.1016/j.scitotenv.2022.153438spa
dc.relation.referencesWicaksono, P., Danoedoro, P., Hartono, H., Nehren, U., & Ribbe, L. (2011). Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 8174, 81741B. https://doi.org/10.1117/12.897926spa
dc.relation.referencesToosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662. https://doi.org/10.1016/J.GECCO.2019.E00662spa
dc.relation.referencesWicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2016). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. International Journal of Remote Sensing, 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679spa
dc.relation.referencesYepes, A., Duque, Á., Navarrete, D., & Philips, J. (2011). Protocolo para la estimación nacional y subnacional de biomasa de biomasa-carbono en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625spa
dc.relation.referencesYepes, A., Zapata, M., Bolivar, J., Monsalve, A., Espinosa, S. M., Sierra-Correa, P. C., & Sierra, A. (2016). Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. In Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 64, Issue 2).spa
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. Dryad. http://hdl.handle.net/10255/dryad.235spa
dc.relation.referencesWang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231(May). https://doi.org/10.1016/j.rse.2019.111223spa
dc.relation.referencesNellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon: A Rapid Response Assessment. In Environment. http://www.grida.no/files/publications/blue-carbon/BlueCarbon_screen.pdfspa
dc.relation.referencesNaciones Unidas, & Asamblea General. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible.spa
dc.relation.referencesNguyen, H. H., Nghia, N. H., Nguyen, H. T. T., Le, A. T., Tran, L. T. N., Duong, L. V. K., Bohm, S., & Furniss, M. J. (2020). Classification Methods for Mapping Mangrove Extents and Drivers of Change in Thanh Hoa Province, Vietnam during 2005-2018. Forest and Society, 4(1), 225–242. https://doi.org/10.24259/FS.V4I1.9295spa
dc.relation.referencesPham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3), 1–24. https://doi.org/10.3390/rs11030230spa
dc.relation.referencesNesha, M. K., Hussin, Y. A., van Leeuwen, L. M., & Sulistioadi, Y. B. (2020). Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia. International Journal of Applied Earth Observation and Geoinformation, 91, 102158. https://doi.org/10.1016/J.JAG.2020.102158spa
dc.relation.referencesMutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. https://doi.org/10.1016/j.jag.2012.03.012spa
dc.relation.referencesNavarrete-Ramírez, S. M., & Rodríguez-Rincón, A. M. (2014). Protocolo IndicadorCondición Tendencia Bosques de Manglar. Indicadores de monitoreo biológico del Subsistema de Áreas Marinas Protegidas (SAMP): Vol. No. 67 (Invemar, GEF, & PNUD (eds.)). Serie de Publicaciones Generales del Invemar.spa
dc.relation.referencesINVEMAR, UNIVALLE, & INCIVA. (2006). Valoración de la biodiversidad marina y costera de Bahía Málaga (Valle del Cauca), como uno de los instrumentos necesarios para que sea considerada un área protegida. http://www.invemar.org.co/redcostera1/invemar/docs/9860IF_BIOMALAGA2007.pdfspa
dc.relation.referencesGross, J., Flores, E. E., & Schwendenmann, L. (2014). Stand structure and aboveground biomass of a Pelliciera rhizophorae mangrove forest, gulf of Monitjo Ramsar Site, Pacific Coast, Panama. Wetlands, 34(1), 55–65. https://doi.org/10.1007/s13157-013-0482-1spa
dc.relation.referencesGupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., Mitra, D., Samal, R. N., Pattnaik, A. K., & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129–1139. https://doi.org/10.1016/j.mex.2018.09.011spa
dc.relation.referencesGoogle, & Maxar Technologies. (2021). Maps Data. https://earth.google.com/web/spa
dc.relation.referencesGiri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.xspa
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. https://doi.org/10.1007/978-0-387-84858-7spa
dc.relation.referencesGonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing Third Edition Library of Congress Cataloging-in-Publication Data on File.spa
dc.relation.referencesHickey, S. M., Callow, N. J., Phinn, S., Lovelock, C. E., & Duarte, C. M. (2018). Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science, 200, 194–201. https://doi.org/10.1016/j.ecss.2017.11.004spa
dc.relation.referencesHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA., 1–180. www.ioc.unesco.orgspa
dc.relation.referencesHu, T., Zhang, Y. Y., Su, Y., Zheng, Y., Lin, G., & Guo, Q. (2020). Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing 2020, Vol. 12, Page 1690, 12(10), 1690. https://doi.org/10.3390/RS12101690spa
dc.relation.referencesHuete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-Xspa
dc.relation.referencesHutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting global patterns in mangrove forest biomass. Conservation Letters, 7(3), 233–240. https://doi.org/10.1111/conl.12060spa
dc.relation.referencesIdeam. (2010). Leyenda nacional de coberturas de la tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100.000. In Area: Vol. TH-62-04-1 (Issue 257).spa
dc.relation.referencesThuy, H. L. T., Tan, M. T., Van, T. T. T., Bien, L. B., Ha, N. M., & Nhung, N. T. (2020). Using sentinel image data and plot survey for the assessment of biomass and carbon stock in coastal forests of Thai Binh Province, Vietnam. Applied Ecology and Environmental Research, 18(6), 7499–7514. https://doi.org/10.15666/aeer/1806_74997514spa
dc.relation.referencesTwilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangroves and their aplications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 64:, 64, 265–288. https://doi.org/10.1021/es983796zspa
dc.relation.referencesVu, T. D., Takeuchi, W., & Van, N. A. (2014). Carbon Stock Calculating and Forest Change Assessment Toward REDD+ Activities for The Mangrove Forest in Vietnam. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 12(ists29), Pn_23-Pn_31. https://doi.org/10.2322/tastj.12.pn_23spa
dc.relation.referencesWang, G., Zhang, M., Gertner, G. Z., Oyana, T., McRoberts, R. E., & Ge, H. (2011). Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scandinavian Journal of Forest Research, 26(4), 360–373. https://doi.org/10.1080/02827581.2011.564204spa
dc.relation.referencesTakeuchi, W., Darmawan, S., Nakazono, E., Vetrita, Y., Winarso, G., Dien, V. T., Oo, K. S., Wikantika, K., Sari, D. K., Darmawan, S., Nakazono, E., Vetrita, Y., Winarso, G., Dien, V. T., Oo, K. S., Wikantika, K., & Sari, D. K. (2016). Carbon stock calculation and forest change assessment toward REDD+ activities for the mangrove forests in Southeast Asia. Institue of Industrial Science The University of Tokyo, Japan, 2. http://www.asienreisender.de/mangroveforest.htmlspa
dc.relation.referencesKogut, P. (2021). Teledetección: Tipos Y Aplicaciones De Los Sensores Remotos. https://eos.com/es/blog/teledeteccion/spa
dc.relation.referencesKuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2023). Caret V.6.0-94 (6.0-94). https://cran.r-project.org/web/packages/caret/index.htmlspa
dc.relation.referencesLu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328. https://doi.org/10.1080/01431160500486732spa
dc.relation.referencesKhorram, S., Nelson, S. A. C., Koch, F. H., & van der Wiele, C. F. (2012). Remote Sensing. https://doi.org/10.1007/978-1-4614-3103-9spa
dc.relation.referencesKershaw, J. A., Ducey, M. J., Beers, T. W., & Husch, B. (2016). Sampling Designs in Forest Inventories. In Forest Mensuration (pp. 305–360). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118902028.ch10spa
dc.relation.referencesKauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. CIFOR, Bogor, Indonesia. Working Paper 86, CIFOR, January, 50.spa
dc.relation.referencesKauffman, J. B., & Cole, T. G. (2010). Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands, 30(6), 1077–1084. https://doi.org/10.1007/S13157-010-0114-Y/METRICSspa
dc.relation.referencesJiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/J.RSE.2008.06.006spa
dc.relation.referencesJiang, Y., Zhang, L., Yan, M., Qi, J., Fu, T., Fan, S., & Chen, B. (2021). High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sensing 2021, Vol. 13, Page 1529, 13(8), 1529. https://doi.org/10.3390/RS13081529spa
dc.relation.referencesJachowski, N. R. A., Quak, M. S. Y., Friess, D. A., Duangnamon, D., Webb, E. L., & Ziegler, A. D. (2013). Mangrove biomass estimation in Southwest Thailand using machine learning. Applied Geography, 45, 311–321. https://doi.org/10.1016/J.APGEOG.2013.09.024spa
dc.relation.referencesLu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. In International Journal of Digital Earth (Vol. 9, Issue 1, pp. 63–105). https://doi.org/10.1080/17538947.2014.990526spa
dc.relation.referencesLuo, Y. M., Huang, D. T., Liu, P. Z., & Feng, H. M. (2016). An novel random forests and its application to the classification of mangroves remote sensing image. Multimedia Tools and Applications, 75(16), 9707–9722. https://doi.org/10.1007/s11042-015-2906-9spa
dc.relation.referencesMAXAR Technologies. (2020, July). Multispectral reference guide. https://resources.maxar.com/white-papers/multispectral-reference-guidespa
dc.relation.referencesMcCarthy, M. J., & Halls, J. N. (2014). Habitat mapping and change assessment of coastal environments: An examination of worldview-2, quickbird, and ikonos satellite imagery and airborne lidar for mapping barrier island habitats. ISPRS International Journal of Geo-Information, 3(1), 297–325. https://doi.org/10.3390/ijgi3010297spa
dc.relation.referencesMcLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004spa
dc.relation.referencesMejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212(July), 233–240. https://doi.org/10.1016/j.ecss.2018.07.020spa
dc.relation.referencesMicrosoft Bing, & Maxar Technologies. (2022). Bing Maps. https://www.bing.com/maps?cc=es Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being : Current State and Trends, Volume 1 (R. Hassan, R. Scholes, & N. Ash (eds.)). Island Press. http://www.millenniumassessment.org//en/products.global.condition.aspxspa
dc.relation.referencesMonsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca (Vol. 57, Issue 4).spa
dc.relation.referencesMukhtar, E., Raynaldo, A., & Novarino, W. (2021). Carbon stock mapping using mangrove discrimination indices in mandeh bay, west sumatra. AACL Bioflux, 14(1), 430–440.spa
dc.relation.referencesOlofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42–57). Elsevier Inc. https://doi.org/10.1016/j.rse.2014.02.015spa
dc.relation.referencesPalacios- penaranda, M. L. (2017). Evaluación del almacenamiento de carbono como servicio ecosistémico en bosques de manglar de la costa pacífica colombiana. [UNIVERSIDAD DEL VALLE]. https://bibliotecadigital.univalle.edu.co/handle/10893/14485spa
dc.relation.referencesRahman, M. M., Lagomasino, D., Lee, S. K., Fatoyinbo, T., Ahmed, I., & Kanzaki, M. (2019). Improved assessment of mangrove forests in Sundarbans East Wildlife Sanctuary using WorldView 2 and TanDEM-X high resolution imagery. Remote Sensing in Ecology and Conservation, 5(2), 136–149. https://doi.org/10.1002/rse2.105spa
dc.relation.referencesRondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7spa
dc.relation.referencesRovai, A. S., Twilley, R. R., Castañeda-Moya, E., Midway, S. R., Friess, D. A., Trettin, C. C., Bukoski, J. J., Stovall, A. E. L., Pagliosa, P. R., Fonseca, A. L., Mackenzie, R. A., Aslan, A., Sasmito, S. D., Sillanpää, M., Cole, T. G., Purbopuspito, J., Warren, M. W., Murdiyarso, D., Mofu, W., … Riul, P. (2021). Macroecological patterns of forest structure and allometric scaling in mangrove forests. Global Ecology and Biogeography, 30(5), 1000–1013. https://doi.org/10.1111/GEB.13268spa
dc.relation.referencesRwanga, S. S., Ndambuki, J. M., Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences, 8(4), 611–622. https://doi.org/10.4236/IJG.2017.84033spa
dc.relation.referencesSaeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics (Oxford, England), 23(19), 2507–2517. https://doi.org/10.1093/BIOINFORMATICS/BTM344spa
dc.relation.referencesQuang, N. H., Quinn, C. H., Carrie, R., Stringer, L. C., Hue, L. T. Van, Hackney, C. R., & Tan, D. Van. (2022). Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam. Remote Sensing Applications: Society and Environment, 26(November 2021), 100725. https://doi.org/10.1016/j.rsase.2022.100725spa
dc.relation.referencesQiu, P., Wang, D., Zou, X., Yang, X., Xie, G., Xu, S., & Zhong, Z. (2019). Finer Resolution Estimation and Mapping of Mangrove Biomass Using UAV LiDAR and WorldView-2 Data. Forest, 10(817). https://doi.org/10.3390/f10100871spa
dc.relation.referencesQGIS. (2023, February 25). QGIS 3.28. https://www.qgis.org/en/site/spa
dc.relation.referencesPham, T. D., Xia, J., Thang Ha, N., Tien Bui, D., Nhu Le, N., & Tekeuchi, W. (2019). A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, sea grasses and salt marshes during 2010–2018. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081933spa
dc.relation.referencesPham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., To, T. T., Trinh, H. X., Kieu, L. Q., & Takeuchi, W. (2020). Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in can Gio biosphere reserve, Vietnam. In Remote Sensing (Vol. 12, Issue 5). https://doi.org/10.3390/rs12050777spa
dc.relation.referencesPerumal, K., & Bhaskaran, R. (2010). Supervised Classification Performance of Multispectral Images. Journal of Computing, 2(2), 124–129. http://arxiv.org/abs/1002.4046spa
dc.relation.referencesPerea Ardila, M. A., & Murillo Sandoval, P. J. (2022). La ganancia de manglar y sus implicaciones en el reservorio de Carbono del Parque Nacional Natural Sanquianga en Colombia. Ecosistemas, 31(3), 2386. https://doi.org/10.7818/ecos.2386spa
dc.relation.referencesPerea Ardila, M. A., Leal Villamil, J., & Oviedo Barrero, F. (2021). Caracterización espectral y monitoreo de bosque de manglar con teledetección en el litoral Pacífico Colombiano: Bajo Baudó, Chocó. LA GRANJA: REVISTA DE CIENCIAS DE LA VIDA, 34(C), 27–44. https://doi.org/http://doi.org/10.17163/lgr.n34.2021.02 Ediciónspa
dc.relation.referencesPerea-Ardila, M. A., Oviedo-Barrero, F., & Leal-Villamil, J. (2019). Cartografía de bosques de manglar mediante imágenes de sensores remotos: estudio de caso Buenaventura, Colombia. Revista de Teledetección, 53, 73.spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., & Thirion, B. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. http://scikit-learn.sourceforge.net.spa
dc.relation.referencesPalacios-Peñaranda, M. L., Cantera-Kintz, J. R., & Peña-Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227(April 2018), 106299. https://doi.org/10.1016/j.ecss.2019.106299spa
dc.relation.referencesSaldarriaga, J. G., Duque, A. J., & Álvarez, E. (2011). Modelos para la estimación de la biomasa y el carbono en diferentes tipos de bosque del choco biogeográfico, Colombia: manglar, guandal y bosques de colina localizados en los Consejos Comunitarios de Bajo Mira y Concosta a partir de los datos colectados e. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial (MAVDT), Fundación Natura, Fundación Gordon y Betty Moore – USAID.spa
dc.relation.referencesSantos, T., & Freire, S. (2015). Testing the Contribution of WorldView-2 Improved Spectral Resolution for Extracting Vegetation Cover in Urban Environments. Canadian Journal of Remote Sensing, 41(6), 505–514. https://doi.org/10.1080/07038992.2015.1110011spa
dc.relation.referencesSciPy Community. (2024). SciPy documentation. SciPy v1.12.0 Manual. https://docs.scipy.org/doc/scipy/index.htmlspa
dc.relation.referencesSelvaraj, J. J., & Gallego-Pérez, B. E. (2023). Estimating mangrove aboveground biomass in the Colombian Pacific coast: A multisensor and machine learning approach. Heliyon, 9, 2405–8440. https://doi.org/10.1016/j.heliyon.2023.e20745spa
dc.relation.referencesSimard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1spa
dc.relation.referencesSinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology 2015 12:5, 12(5), 1779–1792. https://doi.org/10.1007/S13762-015-0750-0spa
dc.relation.referencesSimard, M., Rivera-Monroy, V. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Twilley, R. R. (2008). A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment, 112(5), 2131–2144. https://doi.org/10.1016/j.rse.2007.10.012spa
dc.relation.referencesSpalding, M. D., & Leal, M. (2021). The State of the World’s Mangroves 2021. Global Mangrove Alliance.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocSecuestro de carbono
dc.subject.agrovocCarbon sequestration
dc.subject.agrovocEstimación de las existencias de carbono
dc.subject.agrovocCarbon stock assessments
dc.subject.agrovocMangles
dc.subject.agrovocControl remoto
dc.subject.agrovocRemote control
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalBiomasaspa
dc.subject.proposalBiomasseng
dc.subject.proposalCarbon stockseng
dc.subject.proposalMachine learningeng
dc.subject.proposalMangroveeng
dc.subject.proposalRemote sensingeng
dc.subject.proposalManglarspa
dc.subject.proposalTeledetecciónspa
dc.subject.proposalWorldview-2eng
dc.subject.proposalReservas de carbonospa
dc.subject.proposalAprendizaje automáticospa
dc.subject.unescoTumaco
dc.subject.unescoNariño
dc.titleUn nuevo modelo para la estimación de la biomasa viva y el carbono almacenado en los bosques de manglar usando sensoramiento remoto y aprendizaje de máquina: caso de estudio Tumaco-Nariñospa
dc.title.translatedA new approach for estimating living biomass and stored carbon in mangrove forests using remote sensing and machine learning: Tumaco-Nariño case study.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleInvestigación de servicios ecosistémicos derivados de bosques de manglar en el Pacífico Colombiano: Valle del Cauca, Cauca, Nariño, Chocóspa
oaire.fundernameSistema General de Regalíasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144200812.2024.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: