Efectos del aislamiento social sobre la conducta exploratoria en ratas adolescentes expuestas a un ambiente novedoso

dc.contributor.advisorLamprea Rodríguez, Marisol
dc.contributor.authorPérez contreras, David Rikardo
dc.contributor.researchgroupNeurociencia Básica y Cognoscitivaspa
dc.date.accessioned2024-08-08T18:16:18Z
dc.date.available2024-08-08T18:16:18Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl estrés y la ansiedad forman son factores de riesgo bastante comunes actualmente. Una población que es particularmente susceptible a los efectos del estrés sobre la respuesta emocional es la adolescencia. Dentro de esta etapa del desarrollo se ha encontrado que el tipo de estrés que tiene mayores afecciones es el aislamiento social. Algunas de las conductas que se ven principalmente afectadas por el estrés durante esta etapa del desarrollo es la respuesta emocional ante la novedad. La gran mayoría de esta literatura se ha enfocado principalmente en los indicadores de la ansiedad relacionada a un ambiente novedoso, sin vincularla directamente con los efectos sobre la exploración del espacio, como puede la conducta natural de los animales de formar un refugio (home base). Los resultados mostraron un aumento de los empinamientos y de la respuesta tigmotáxica de los animales Aislados. Además, se mostró que el desarrollo de la Home Base requiere de un componente emocional y exploratorio. Se describe la importancia de utilizar indicadores más detallados para la medición del comportamiento exploratorio y la respuesta emocional con el objetivo de generar un marco más extenso sobre la complejidad de la respuesta ante la novedad. (Texto tomado de la fuente)spa
dc.description.abstractStress and anxiety form are fairly common risk factors today. One population that is particularly susceptible to the effects of stress on emotional response is adolescence. Within this stage of development, it has been found that the type of stress that has the greatest affect is social isolation. Some of the behaviors that are primarily affected by stress during this stage of development is the emotional response to novelty. The vast majority of this literature has focused mainly on indicators of anxiety related to a novel environment, without linking it directly to the effects on space exploration, such as the natural behavior of animals to form a home base. The results showed an increase in the steepness and tigmotaxic response of the Isolated animals. In addition, it was shown that the development of the home base requires an emotional and exploratory component. The importance of using more detailed indicators for the measurement of exploratory behavior and emotional response is described in order to generate a more extensive framework on the complexity of the response to noveltyeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Psicologíaspa
dc.format.extent69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86705
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Humanasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Humanas - Maestría en Psicologíaspa
dc.relation.referencesAhumada, L. H., Morato, S., & Lamprea, M. R. (2022). Acute stress increases behaviors that optimize safety and decreases the exploration of aversive areas. Learning and Motivation, 80, 101855spa
dc.relation.referencesAlstott, J., & Timberlake, W. (2009). Effects of rat sex differences and lighting on locomotor exploration of a circular open field with free-standing central corners and without peripheral walls. Behavioural brain research, 196(2), 214-219spa
dc.relation.referencesArakawa, H. (2005). Interaction between isolation rearing and social development on . exploratory behavior in male rats. Behavioural processes, 70(3), 223-234spa
dc.relation.referencesAvital, A., & Richter-Levin, G. (2005). Exposure to juvenile stress exacerbates the behavioural consequences of exposure to stress in the adult rat. International Journal of Neuropsychopharmacology, 8(2), 163-173spa
dc.relation.referencesAvital, I., Inderbitzin, D., Aoki, T., Tyan, D. B., Cohen, A. H., Ferraresso, C., ... & Demetriou, A. A. (2001). Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochemical and biophysical research communications, 288(1), 156-164spa
dc.relation.referencesBekris, S., Antoniou, K., Daskas, S., & Papadopoulou-Daifoti, Z. (2005). Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behavioural brain research, 161(1), 45-59.spa
dc.relation.referencesBishnoi, I. R., Ossenkopp, K. P., & Kavaliers, M. (2021). Sex and age differences in locomotor and anxiety‐like behaviors in rats: From adolescence to adulthood. Developmental psychobiology, 63(3), 496-511.spa
dc.relation.referencesBondar, N. P., Lepeshko, A. A., & Reshetnikov, V. V. (2018). Effects of early-life stress on social and anxiety-like behaviors in adult mice: sex-specific effects. Behavioural neurology, 2018.spa
dc.relation.referencesBystritsky, A., & Kronemyer, D. (2014). Stress and anxiety: counterpart elements of the stress/anxiety complex. Psychiatric Clinics, 37(4), 489-518.spa
dc.relation.referencesCarola, V., D'Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural brain research, 134(1-2), 49-57.spa
dc.relation.referencesCasarrubea, M., Di Giovanni, G., Aiello, S., & Crescimanno, G. (2023). The Hole-Board apparatus in the study of anxiety. Physiology & Behavior, 114346.spa
dc.relation.referencesCasarrubea, M., Jonsson, G. K., Faulisi, F., Sorbera, F., Di Giovanni, G., Benigno, A., ... & Magnusson, M. S. (2015). T-pattern analysis for the study of temporal structure of animal and human behavior: a comprehensive review. Journal of neuroscience methods, 239, 34-46spa
dc.relation.referencesChmelova, M., Balagova, L., Marko, M., Vrankova, S., Cebova, M., Jezova, D., ... & Hlavacova, N. (2019). Behavioral alterations induced by post-weaning isolation rearing of rats are accompanied by reduced VGF/BDNF/TrkB signaling in the hippocampus. Neurochemistry International, 129, 104473spa
dc.relation.referencesDe Kloet, E. R., Oitzl, M. S., & Joëls, M. (1999). Stress and cognition: are corticosteroids good or bad guys?. Trends in neurosciences, 22(10), 422-426spa
dc.relation.referencesDey, T. K., Shi, D., & Wang, Y. (2019). Simba: An efficient tool for approximating rips-filtration persistence via sim plicial ba tch collapse. Journal of Experimental Algorithmics (JEA), 24, 1-16spa
dc.relation.referencesDoremus, T. L., Varlinskaya, E. I., & Spear, L. P. (2004). Age‐related differences in elevated plus maze behavior between adolescent and adult rats. Annals of the New York Academy of Sciences, 1021(1), 427-430spa
dc.relation.referencesDrai, D., & Golani, I. (2001). SEE: a tool for the visualization and analysis of rodent exploratory behavior. Neuroscience & Biobehavioral Reviews, 25(5), 409-426.spa
dc.relation.referencesEilam, D., & Golani, I. (1989). Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behavioural brain research, 34(3), 199-211spa
dc.relation.referencesEilam, D., & Golani, I. (1990). Home base behavior in amphetamine-treated tame wild rats (Rattus norvegicus). Behavioural Brain Research, 36(1-2), 161-170spa
dc.relation.referencesFile, S. E. (1978). Exploration, distraction, and habituation in rats reared in isolation. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 11(1), 73-81spa
dc.relation.referencesGalef Jr. BG (1981). The ecology of weaning: Parasitism and the achievement of independence by altricial mammals. In: Gubernick DJ, Klopfer PH, editors. Parental care in mammals, New York, NY:Plenum Press, 1981. p. 211–41spa
dc.relation.referencesGould, T.D., Dao, D.T., Kovacsics, C.E. (2009). The Open Field Test. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_1spa
dc.relation.referencesHaj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M., Afshari, K., Haddadi, N.-S., & Dehpour, A. R. (2019). Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & Pharmacotherapy, 109, 938–944. https://doi.org/10.1016/j.biopha.2018.10.144spa
dc.relation.referencesHall, F. S., Humby, T., Wilkinson, L. S., & Robbins, T. W. (1997). The effects of isolation-rearing of rats on behavioural responses to food and environmental novelty. Physiology & Behavior, 62(2), 281-290.spa
dc.relation.referencesHogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacology Biochemistry and Behavior, 54(1), 21-30spa
dc.relation.referencesHoops, D., & Flores, C. (2017). Making Dopamine Connections in Adolescence. Trends in Neurosciences, 40(12), 709–719. https://doi.org/10.1016/j.tins.2017.09.004spa
dc.relation.referencesHughes, R. N., & Syme, L. A. (1972). The role of social isolation and sex in determining effects of chlordiazepoxide and methylphenidate on exploratory behaviour. Psychopharmacologia, 27(4), 359-366spa
dc.relation.referencesJoëls, M., Pu, Z., Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: how does it work?. Trends in cognitive sciences, 10(4), 152-158spa
dc.relation.referencesKaneda, Y., Kawata, A., Suzuki, K., Matsunaga, D., Yasumatsu, M., & Ishiwata, T. (2021). Comparison of neurotransmitter levels, physiological conditions, and emotional behavior between isolation‐housed rats with group‐housed rats. Developmental Psychobiology, 63(3), 452-460spa
dc.relation.referencesKoolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., ... & Fuchs, E. (2011). Stress revisited: a critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews, 35(5), 1291-1301.spa
dc.relation.referencesLamprea, M. R., Cardenas, F. P., Setem, J., & Morato, S. (2008). Thigmotactic responses in an open-field. Brazilian Journal of Medical and Biological Research, 41, 135-140spa
dc.relation.referencesLauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., ... & Mathis, A. (2022). Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods, 19(4), 496-504spa
dc.relation.referencesLaviola, G., Macri, S., Morley-Fletcher, S., & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 27(1-2), 19–31. https://doi.org/10.1016/s0149-7634(03)00006-xspa
dc.relation.referencesLever, C., Burton, S., & Ο'Keefe, J. (2006). Rearing on hind legs, environmental novelty, and the hippocampal formation. Reviews in the Neurosciences, 17(1-2), 111-134.spa
dc.relation.referencesLipkind, D., Sakov, A., Kafkafi, N., Elmer, G. I., Benjamini, Y., & Golani, I. (2004). New replicable anxiety-related measures of wall vs. center behavior of mice in the open field. Journal of applied physiology, 97(1), 347-359spa
dc.relation.referencesLukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormones and behavior, 55(1), 248-256spa
dc.relation.referencesLynn, D. A., & Brown, G. R. (2010). The ontogeny of anxiety‐like behavior in rats from adolescence to adulthood. Developmental psychobiology, 52(8), 731-739spa
dc.relation.referencesMacrı̀, S., Adriani, W., Chiarotti, F., & Laviola, G. (2002). Risk taking during exploration of a plus-maze is greater in adolescent than in juvenile or adult mice. Animal Behaviour, 64(4), 541-546.spa
dc.relation.referencesMaier, S. E., Vandenhoff, P., & Crowne, D. P. (1988). Multivariate analysis of putative measures of activity, exploration, emotionality, and spatial behavior in the hooded rat (Rattus norvegicus). Journal of Comparative Psychology, 102(4), 378spa
dc.relation.referencesMaisonnette, S., Morato, S., & Brandao, M. L. (1993). Role of resocialization and of 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test. Physiology & behavior, 54(4), 753-758spa
dc.relation.referencesMartinez, R., & Morato, S. (2004). Thigmotaxis and exploration in adult and pup rats. Revista de Etologia, 6(1), 49-54.spa
dc.relation.referencesMcCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997–1014spa
dc.relation.referencesMcLaughlin, K. A., Garrad, M. C., & Somerville, L. H. (2015). What develops during emotional development? A component process approach to identifying sources of psychopathology risk in adolescence. Dialogues in clinical neuroscience, 17(4), 403-410.spa
dc.relation.referencesMoser, M. B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor perspectives in biology, 7(2), a021808.spa
dc.relation.referencesMumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomedicine & Pharmacotherapy, 105, 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086spa
dc.relation.referencesOrganización Mundial de la Salud (17 de noviembre de 2021). Salud mental del adolescente. Organización Mundial de la Salud. https://www.who.int/es/news-room/fact-sheets/detail/adolescent-mental-healthspa
dc.relation.referencesPaulus, M. P., & Geyer, M. A. (1993). Three independent factors characterize spontaneous rat motor activity. Behavioural Brain Research, 53(1-2), 11-20spa
dc.relation.referencesPennington, Z. T., Dong, Z., Feng, Y., Vetere, L. M., Page-Harley, L., Shuman, T., & Cai, D. J. (2019). ezTrack: An open-source video analysis pipeline for the investigation of animal behavior. Scientific reports, 9(1), 19979.spa
dc.relation.referencesQuan, M. N., Tian, Y. T., Xu, K. H., Zhang, T., & Yang, Z. (2010). Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience, 169(1), 214-222spa
dc.relation.referencesRodgers, R. J., & Dalvi, A. (1997). Anxiety, defence and the elevated plus-maze. Neuroscience & Biobehavioral Reviews, 21(6), 801-810spa
dc.relation.referencesRojas-Carvajal, M., Fornaguera, J., Mora-Gallegos, A., & Brenes, J. C. (2018). Testing experience and environmental enrichment potentiated open-field habituation and grooming behaviour in rats. Animal Behaviour, 137, 225-23spa
dc.relation.referencesRomeo, R. D. (2017). The impact of stress on the structure of the adolescent brain: Implications for adolescent mental health. Brain research, 1654, 185-191.spa
dc.relation.referencesRomeo, R. D., & McEwen, B. S. (2006). Stress and the adolescent brain. Annals of the New York Academy of Sciences, 1094(1), 202-214spa
dc.relation.referencesRomeo, R.D., 2010b. Adolescence: a central event in shaping stress reactivity. Dev.Psychobiol. 52, 244-253.spa
dc.relation.referencesSahakian, B.J., Robbins, T.W. & Iversen, S.D. (1997). The effects of isolation rearing on exploration in the rat. Animal Learning & Behavior 5, 193–198 https://doi.org/10.3758/BF03214077spa
dc.relation.referencesShanazz, K., Dixon-Melvin, R., Bunting, K. M., Nalloor, R., & Vazdarjanova, A. I. (2021). Light-Dark Open Field (LDOF): A novel task for sensitive assessment of anxiety. Journal of neuroscience methods, 363, 109325.spa
dc.relation.referencesSpear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2spa
dc.relation.referencesStansfield, K. H., & Kirstein, C. L. (2006). Effects of novelty on behavior in the adolescent and adult rat. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 48(1), 10-15spa
dc.relation.referencesStrekalova, T., & Steinbusch, H. W. (2010). Measuring behavior in mice with chronic stress depression paradigm. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(2), 348-361.spa
dc.relation.referencesSturman, O., Germain, P. L., & Bohacek, J. (2018). Exploratory rearing: a context-and stress-sensitive behavior recorded in the open-field test. Stress, 21(5), 443-452spa
dc.relation.referencesTanaka, S., Young, J. W., Halberstadt, A. L., Masten, V. L., & Geyer, M. A. (2012). Four factors underlying mouse behavior in an open field. Behavioural brain research, 233(1), 55-61spa
dc.relation.referencesTasker, J. G., & Joëls, M. (2015). The synaptic physiology of the central nervous system response to stress. Neuroendocrinology of stress, 43-70spa
dc.relation.referencesThiel, C. M., Müller, C. P., Huston, J. P., & Schwarting, R. K. W. (1999). High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience, 93(1), 243-251spa
dc.relation.referencesThompson, S. M., Berkowitz, L. E., & Clark, B. J. (2018). Behavioral and neural subsystems of rodent exploration. Learning and motivation, 61, 3-15spa
dc.relation.referencesTrauth, J. A., Seidler, F. J., McCook, E. C., & Slotkin, T. A. (1999). Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain research, 851(1-2), 9-19spa
dc.relation.referencesTreit, D., & Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacology Biochemistry and Behavior, 31(4), 959-962spa
dc.relation.referencesValle, F. P. (1972). Free and forced exploration in rats as a function of between-vs within-Ss design. Psychonomic science, 29(1), 11-13.spa
dc.relation.referencesVarlinskaya, E. I., Spear, L. P., & Spear, N. E. (1999). Social behavior and social motivation in adolescent rats: role of housing conditions and partner's activity. Physiology & behavior, 67(4), 475-482.spa
dc.relation.referencesVarty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biological psychiatry, 47(10), 864-873spa
dc.relation.referencesWahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007spa
dc.relation.referencesWalf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature protocols, 2(2), 322-328spa
dc.relation.referencesWalsh, R. N., & Cummins, R. A. (1976). The open-field test: a critical review. Psychological bulletin, 83(3), 482spa
dc.relation.referencesWang, Y.-C., Ho, U.-C., Ko, M.-C., Liao, C.-C., & Lee, L.-J. (2012). Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Structure & Function, 217(2), 337–351. https://doi.org/10.1007/s00429-011-0355-4spa
dc.relation.referencesWhishaw, I. Q., Gharbawie, O. A., Clark, B. J., & Lehmann, H. (2006). The exploratory behavior of rats in an open environment optimizes security. Behavioural brain research, 171(2), 230-239spa
dc.relation.referencesYe, S., Lauer, J., Zhou, M., Mathis, A., & Mathis, M. (2024). AmadeusGPT: a natural language interface for interactive animal behavioral analysis. Advances in Neural Information Processing Systems, 36spa
dc.relation.referencesZadicario, P., Avni, R., Zadicario, E., & Eilam, D. (2005). ‘Looping’—an exploration mechanism in a dark open field. Behavioural Brain Research, 159(1), 27-36.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.decsAislamiento Socialspa
dc.subject.decsSocial Isolationeng
dc.subject.decsConductaspa
dc.subject.decsBehavioreng
dc.subject.decsConducta del Adolescentespa
dc.subject.decsComportamento do Adolescenteeng
dc.subject.proposalAdolescenciaspa
dc.subject.proposalExploraciónspa
dc.subject.proposalHome basespa
dc.subject.proposalAdolescenceeng
dc.subject.proposalExplorationeng
dc.titleEfectos del aislamiento social sobre la conducta exploratoria en ratas adolescentes expuestas a un ambiente novedosospa
dc.title.translatedEffects of social isolation on exploratory behavior in adolescent rats exposed to a novel environmenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010112416.2024.pdf
Tamaño:
2.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Psicología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: