Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae)

dc.contributor.advisorMayorga Wandurraga, Humberto
dc.contributor.authorAponte Buitrago, Andrés Ricardo
dc.contributor.researchgroupProductos Naturales Vegetales Bioactivos y Quimica Ecoiogicaspa
dc.date.accessioned2022-08-23T20:52:53Z
dc.date.available2022-08-23T20:52:53Z
dc.date.issued2022-08-22
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa investigación fitoquímica del extracto etanólico de la parte aérea de Phlegmariurus cruentus, condujo al aislamiento y purificación por técnicas cromatográficas de cuatro nuevos triterpenos del tipo serrateno, identificados como 24-acetoxiserratenediol (S5), lycophlegmariol E (S7), lycophlegmariol F (S8) y 3-acetil-serratriol (S9), así como de cinco serratenos conocidos y nombrados como phlegmanol C (S1), acetato de 3-serratenediol (S2), 21-epi-serratenediol (S3), serratenediol (S4), y 21-episerratriol (S6). Sus estructuras químicas y configuraciones relativas fueron elucidadas mediante el análisis de datos obtenidos por HRESIMS, RMN en 1D (1H, APT 13C) y en 2D (COSY, HMQC, HMBC y NOESY) y rotación óptica especifica. Además, los datos obtenidos se compararon con los valores espectroscópicos previamente publicados para serratenos conocidos. El uso del ensayo de letalidad contra Artemia salina permitió el aislamiento bioguiado de los compuestos purificados. Las fracciones C-4, enriquecida en el compuesto S1, E-14, con el compuesto mayoritario S2, E-20, fuente principal de los compuestos S3 y S4 y A-4, conformada mayoritariamente por los serratenos S5, S6, S7, S8 y S9, mostraron valores de actividad biológica promisorios contra A. salina. Así mismo, los compuestos S1, S2, S3, S5 y S6 exhibieron resultados de actividad citotóxica contra la línea celular U87-MG, mientras los compuestos S2 y S5 presentaron actividad frente a la línea celular MCF7 de cáncer de mama. Además, el análisis por GC-MS de la fracción volátil A-1, mostró en su mayoría ésteres etílicos como el palmitato de etilo (25,42%), además del α-tocospiro A y α-tocospiro B, reportados por primera vez en este trabajo para la familia Lycopodiaceae.spa
dc.description.abstractThe phytochemical research of the ethanolic extract of the aerial part of Phlegmariurus cruentus led to the isolation and purification by chromatographic techniques of four new serratene-type triterpenes identified as 24-acetoxyserratenediol (S5), lycophlegmariol E (S7), lycophlegmariol F (S8) and 3-acetyl-serratriol (S9), as well as five serratenes known as phlegmanol C (S1), 3-serratenediol acetate (S2), 21-epi-serratenediol (S3), serratenediol (S4), and 21-episerratriol (S6). Their chemical structures and relative configurations were elucidated by analyzing data obtained by HRESIMS, 1D (1H, APT 13C) and 2D (COSY, HMQC, HMBC and NOESY) NMR and specific optical rotation. Moreover, the obtained data were compared to spectroscopic values for known serratenes previously published in the literature. The use of the lethality assay against Artemia salina allowed the bioguided isolation of the purified compounds. The fractions C-4, enriched in the compound S1, E-14, with most of the compound S2, E-20, main source of the compounds S3 and S4 and A-4, made up mainly of serratenes S5, S6, S7, S8 and S9 showed promising biological activity values against A. salina. In the same way, the compounds S1, S2, S3, S5 y S6 exhibited results of cytotoxic activity against the cell line U87-MG, while the compounds S2 and S5 showed activity against the cell line MCF7 of breast cancer. Furthermore, the GC-MS analysis of volatile fraction A-1 revealed that it contained mostly ethyl esters, such as ethyl palmitate (25.42%), as well as α-tocospiro A and α-tocospiro B, which were discovered for the first time in this work for the family Lycopodiaceae.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaProductos Naturalesspa
dc.description.sponsorshipCONVOCATORIA NACIONAL PARA EL FOMENTO DE ALIANZAS INTERDISCIPLINARIAS QUE ARTICULEN INVESTIGACIÓN, CREACIÓN, EXTENSIÓN Y FORMACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA 2019-2021spa
dc.format.extent247 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82042
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAraki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamasaki, M., Suzuki, H., Kushiro, T. (2016). Onocerine biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem, 17, 288-290.spa
dc.relation.referencesBigelow, N., Hardin, W., Barker, J., Ryken, S., MacRae, A., & Cattolico, R. (2011). A Comprehensive GC–MS Sub-Microscale Assay for Fatty Acids and its Applications. Journal of the American Oil Chemists' Society, 88, 1329-1338.spa
dc.relation.referencesBoonya-Udtayan, S., Thasana, N., Jarussophon, N., & Ruchirawat, S. (2019). Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia, 136, 104181.spa
dc.relation.referencesBreitmaier, E. (2002). Recognition of Structural Fragments by NMR. En E. Breitmaier, Structure Elucidation by NMR in Organic Chemistry: A Practical guide (págs. 11-68). West Sussex, England: John Wiley & Sons Ltd.spa
dc.relation.referencesChiang, Y., & Kuo, Y. (2003). Two novel α-tocopheroids from the aerial roots of Ficus microcarpa. Tetrahedron Letters, 44, 5125–5128.spa
dc.relation.referencesDewick, P. (2009). The mevalonate and methylerythritol phosphate pathways: Terpenoids and Steroids. En P. Dewick, Medicinal Natural Products: A Biosynthetic approach (Third Edition ed., págs. 187-310). Great Britain: John Wiley & Sons.spa
dc.relation.referencesDong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373-379.spa
dc.relation.referencesGemmrich, A. (1977). Fatty acid composition of fern spore lipids. Phytochemistry, 16, 1044-1046.spa
dc.relation.referencesInubushi, Y., Hibino, T., Harayama, T., Hasegawa, T., & Somanathan, R. (1971). Triterpenoid constituents of Lycopodium phlegmaria L. Journal of the Chemical Society C: Organic, 3109-3114.spa
dc.relation.referencesLiang, L., Chen, Q., Xu, J., Liu, T., Song, X., Chen, H., & H, C. (2019). Serratanes from whole plant of Palhinhaea cernua. Chemistry of Natural Compounds, 55(4), 759-761.spa
dc.relation.referencesLiu, Y, Li, J., Li, D., Li, X., Li, D., Zhou, G., Xu, K., Kang, F., Zou, Z., Xu, P., & Tan, G. (2019). Anti-cholinesterase activities of constituents isolated from Lycopodiastrum casuarinoides. Fitoterapia, 139(104366), 1-7.spa
dc.relation.referencesLiu, Y., Yao, X., Li, J., Zou, Z., Xi, C., Xu, K., Kang, F., Xu, P., & Tan, G. (2021). New unsaturated fatty acids from the aerial parts of Lycopodiastrum casuarinoides. Phytochemistry Letters, 41, 55-60.spa
dc.relation.referencesLytle, T., & Sever, J. (1973). Hydrocarbons and Fatty Acids of Lycopodium. Phytochemistry, 12, 623-629.spa
dc.relation.referencesMongalo, N., Soyingbe, O., & Makhafola. (2019). Antimicrobial, cytotoxicity, anticancer and antioxidant activities of Jatropha zeyheri Sond. roots (Euphorbiaceae). Asian Pacific Journal of Tropical Biomedicine, 9(7), 307-314.spa
dc.relation.referencesNguyen, V., To, D., Tran, M., Oh, S., Kim, J., Ali, M., Woo, M., Choi, J., & Min, B. (2015). Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorganic & Medicinal Chemistry, 23, 3126-3134spa
dc.relation.referencesSaga, Y., Araki, T., Araya, H., Saito, K., Yamazaki, M., Suzuki, H., & Kushiro, T. (2017). Identification of Serratene Synthase Gene from the Fern Lycopodium clavatum. Organic Letters, 19(3), 496-499.spa
dc.relation.referencesSeto, H., Furihata, K. G., Xiong, C., & Deji, P. (1988). Assignments of the 1H- and 13C-NMR Spectra of Four Lycopodium Triterpenoids by the Application of a New Two-dimensional Technique, Heteronuclear Multiple Bond Connectivity (HMBC). Agricultural and Biological Chemistry, 52(7), 1797-1801spa
dc.relation.referencesShi, H., Li, Z., & Guo, Y. (2005). A new serratene-type triterpene from Lycopodium phlegmaria. Natural Product Research, 19(8), 777-781.spa
dc.relation.referencesTonisi, S., Okaiyeto, K., Hoppe, H., Mabinya, L., Nwodo, U., & Okoh, A. (2020). Chemical constituents, antioxidant and cytotoxicity properties of Leonotis leonurus used in the folklore management of neurological disorders in the Eastern Cape, South Africa. 3 Biotech, 10(141), 1-14.spa
dc.relation.referencesTsuda, Y., & Hatanaka, M. (1969). Triterpenoids of Lycopodium clavatum: the structure of 21-Episerratriol. Journal of the Chemical Society D: Chemical Communications, 18, 1040-1042.spa
dc.relation.referencesTsuda, Y., Sano, T., Morimoto, A., Hatanaka, M., & Inubushi, Y. (1974). Triterpenoid Chemistry. VI. Lycopodium Triterpenoid. (5). The Structures and Stereochemistry of Serratriol, 21-episerratriol, and lycoclavanol. Chemical and Pharmaceutical Bulletin, 22(14), 2383-2395.spa
dc.relation.referencesTulloch, A. (1965). The oxygenated Fatty Acids from the oil of the spores of Lycopodium species. Canadian Journal of Chemistry, 43, 415-420.spa
dc.relation.referencesWei, J., Wang, W., Song, W., & Xuan, L. (2018). Serratene-type triterpenoids from Palhinhaea cernua. Fitoterapia, 127, 151-158.spa
dc.relation.referencesYan, J., Zhou, Y., Zhang, M., Wang, J., Dai, H., & Tan, J. (2012). New serratene triterpenoids from Palhinhaea cernua and their cytotoxic activity. Planta Medica, 78(12), 1387-1391spa
dc.relation.referencesYuan, Z., Duan, H., Xu, Y., Wang, A., Gan, L., Li, J., Liu, M., Shang, X. (2014). α-Tocospiro C, a novel cytotoxic α-tocopheroid from Cirsium setosum. Phytochemistry Letters, 8, 116-120.spa
dc.relation.referencesZhou, H., Li, Y., Tong, X., Liu, H., Jiang, S., & Zhu, D. (2004). Serratan-type triterpenoids from Huperzia serrata. Natural Product Research, 18(5), 453-459.spa
dc.relation.referencesZhou, H., Tan, C., Jiang, S., & Zhu, D. (2003). Serratene-Type Triterpenoids from Huperzia serrata. Journal of Natural Products, 66, 1328-1332.spa
dc.relation.referencesAyala-Muñoz, F. (2017) Búsqueda de posibles compuestos con actividad insecticida a partir de cianobacterias del Caribe colombiano [Tesis Magister en Ciencias-Química, Universidad Nacional de Colombia]. Repositorio Institucional Biblioteca Digital UN. https://repositorio.unal.edu.co/handle/unal/62020spa
dc.relation.referencesArcanjo, D., Albuquerque, A., Melo-Neto, B., Santana, L., Medeiros, M., & Citó, A. (2012). Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Brazilian Journal of Biology, 72(3), 505-509.spa
dc.relation.referencesBerridge, M., Herst, P., Tan, A. (2005) Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 11, 127-152.spa
dc.relation.referencesDoan, T., Ho, V., Le, T., Le, T., Pham, T., & Nguyen, T. (2019). Two new abietane diterpenes huperphlegmarins A and B from Huperzia phlegmaria. Natural Product Research, 33(14), 1-9.spa
dc.relation.referencesFarooq, S., Mazhar, A., Ghouri, A., Ul-Haq, I., Ullah, N. (2020) One-pot multicomponent synthesis and bioevaluation of tetrahydroquinoline derivatives as potential antioxidants, α-amylase enzyme inhibitors, anti-cancerous and anti-inflammatory agents. Molecules, 25(2710), 1-28.spa
dc.relation.referencesGhasemi, M., Turnbull, T., Sebastian, S., Kempson, I. (2021) The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22(12827), 1-30.spa
dc.relation.referencesMcLaughlin, J., Rogers, L., & Anderson, J. (1998). The use of biological assays to evaluate botanicals. Drug Information Journal, 32, 513-524.spa
dc.relation.referencesMeyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta médica, 45, 31-34.spa
dc.relation.referencesMosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: aplication to proliferation and cytotoxic assays. Journal of Immunological Methods 65, 55-63.spa
dc.relation.referencesOberlies, N., Rogers, L., Martin, J., & McLaughlin, J. (1998). Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. Journal of Natural Products, 61, 781-785.spa
dc.relation.referencesPino-Pérez, O., & Lazo, J. (2010). Ensayo de Artemia: Útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. Revista de Protección Vegetal, 22(1), 34-43.spa
dc.relation.referencesMurillo, M., & Murillo, J. (1999). Pteridófitos de Colombia I. Composición y distribución de las Lycopodiaceae. Revista de la Academia Colombiana de Ciencias Exactas y Naturales, 23(86), 19-38.spa
dc.relation.referencesMurillo, J., & Murillo, M. (2017). Diversidad de los helechos y licófitos de Colombia. Acta Botánica Malacitana, 42(1), 23-32.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.decsLicopodiospa
dc.subject.decsTriterpenosspa
dc.subject.decsFitoquímicosspa
dc.subject.decsPhytochemicalseng
dc.subject.proposalFamilia Lycopodiaceaespa
dc.subject.proposalPhlegmariurus cruentusspa
dc.subject.proposalSerratenosspa
dc.subject.proposalAislamiento bioguiadospa
dc.subject.proposalArtemia salinaspa
dc.subject.proposalLycopodiaceaeeng
dc.subject.proposalSerrateneseng
dc.subject.proposalBioguided isolationeng
dc.subject.proposalArtemia salinaeng
dc.titleEstudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae)spa
dc.title.translatedChemical study and citotoxic activity of Phlegmariurus cruentus (Lycopodiaceae)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio sobre la composición química y actividad biológica de algunas plantas de la familia Lycopodiaceae de Colombia.spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10238817.2022.pdf
Tamaño:
16.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: