Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia

authorProfile.contributor.pruebaaaaaaa Contenido de prueba
dc.contributor.advisorVargas J., Carlos A.spa
dc.contributor.advisorBayona, Germánspa
dc.contributor.authorAlva Carmona, Maria Rosaspa
dc.date.accessioned2021-03-10T14:39:26Zspa
dc.date.available2021-03-10T14:39:26Zspa
dc.date.issued2020spa
dc.description.abstractLos Llanos Orientales de Colombia corresponden a un sistema de cuenca antepaís que registró el inicio del pulso tectónico más reciente a partir del Mioceno (Campos, 2011) influenciado en gran medida por la colisión y acreción del bloque Chocó en el Noroeste de Suramérica en el Mioceno medio (Vargas & Mann, 2013). La deformación litosférica resultante fue representada mediante el primer modelo Flexural 3D de la cuenca de antepaís Llanos Orientales de Colombia, discretizado en 5 intervalos de tiempo desde el Mioceno medio al Presente. Con este trabajo se pretende ampliar el conocimiento en cuanto a la evolución tectonoestratigráfica de la cuenca de antepaís, mediante la identificación de las variaciones de espesor elástico (Te), modelamiento de la ubicación de las depozonas y predicciones de la configuración y movimiento del orógeno (Cordillera Oriental). Se empleó el código FLEX3DV, desarrollado en MatLab por Cardozo (2009). Este código se basa en una solución por diferencias finitas centradas a la ecuación de deflexión de una placa de espesor variable (Ventsel & Krauthammer, 2001). En el modelado Flexural 3D se integraron datos de estudios previos (e.g. mapas de espesores, secciones estructurales evolutivas). Los resultados consisten en mapas que muestran áreas de levantamiento y subsidencia del sistema Cordillera Oriental- Llanos Orientales. Estos mapas fueron comparados con modelos flexurales 2D previos realizados en el área de Los Llanos y en cuencas de antepaís adyacentes. Los modelados flexurales 3D para cada intervalo de tiempo permitieron ver una una estrecha relación entre la dirección de desplazamiento de la onda flexural modelada y los diferentes procesos del bloque que subduce desde el Mioceno medio al Presente.spa
dc.description.abstractThe Eastern Llanos of Colombia foreland basin system recorded the beginning of the most recent tectonic pulse from the Miocene (Campos, 2011). This tectonic pulse was mainly triggered by the Panama Arc accretion in Northwestern South America in the Middle Miocene (Vargas & Mann, 2013). The resulting lithospheric deformation was represented by the first 3D Flexural modeling of the Llanos Orientales basin, discretized in 5 time intervals from the Middle Miocene to the Present. This work aims to expand knowledge regarding the tectonostratigraphic evolution of the foreland basin, by identifying the variations in elastic thickness (Te), modeling the location of the depozones and making predictions about how the orogen (Eastern Cordillera) developed in the last 16 Ma. 3D flexural models were generated by using the code FLEX3DV, developed in MatLab by Cardozo (2009). This code solves the flexural equation by a centered finite differences solution for a variable thickness plate (Ventsel & Krauthammer, 2001). Data from previous studies were integrated into 3D flexural modeling (e.g. thickness maps, balanced cross-sections). The results consist of maps showing uplift and subsidence areas in the Eastern Cordillera-Eastern Llanos region. These maps were compared with previous 2D flexural model results in the study area and in adjacent foreland basins. The 3D flexural models for each time step showed a correlation between the flexural wavelength displacement direction and the slab processes from the middle Miocene until the Present.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaProcesos Geodinámicos y Cuencas Sedimentariasspa
dc.format.extent1 recurso en línea (133 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79347
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAlberty, M. W. (1994). Standard interpretation; part 4—wireline methods. (pp. 180–185; D. Morton-Thompson & A. M. Woods, Eds.). pp. 180–185. Retrieved from https://wiki.aapg.org/Density-neutron_log_porosityspa
dc.relation.referencesAli, M. Y., & Watts, A. B. (2009). Subsidence history, gravity anomalies and flexure of the United Arab Emirates (UAE) foreland basin. GeoArabia, 14(2), 17–44.spa
dc.relation.referencesAllen, P. A., & Allen, J. R. (2013). Basin Analysis. Principles and application to petroleum play assessment. In Appl. Phys. A (Third Edit, Vol. 73). Blackwell Publishing, Ltd.spa
dc.relation.referencesAmante, C., & Eakins, B. W. (2009). ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. https://doi.org/10.7289/V5C8276Mspa
dc.relation.referencesAmorocho, P. R., & Badillo, J. (2012). Influencia De La Composición Mineral. Boletín de Geología, 34(enero-junio), 81–88.spa
dc.relation.referencesANH. (2010). Información General de cuencas sedimentarias de Colombia. Retrieved from http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Cuencas Sedimentarias de Colombia (PDF).pdfspa
dc.relation.referencesANH. (2019). Datos y estadísticas de producción de hidrocarburos. Retrieved from https://webalternoanh.wpcomstaging.com/content/datos-y-estadisticas-2/#produccionspa
dc.relation.referencesArnaiz-Rodríguez, M. S., & Audemard, F. (2014). Variations in elastic thickness and flexure of the Maracaibo block. Journal of South American Earth Sciences, 56, 251–264. https://doi.org/10.1016/j.jsames.2014.09.014spa
dc.relation.referencesArnaiz-Rodríguez, M. S., Rodríguez-Millán, I., & Audemard, F. (2011). Análisis gravimétrico y flexural del occidente de Venezuela. Revista Mexicana de Ciencias Geologicas, 28(3), 420–438.spa
dc.relation.referencesArres, N. F. (2013). Flexural Modeling of the Himalayan Forebulge Basin: implications for the presence of a forebulge and formation of basement ridges.spa
dc.relation.referencesAthy, L. F. (1930). Vacation motives and personal value systems. Bulletin of American Association of Petroleum Geologists, 14(1), 1–24. https://doi.org/10.1177/135676679700300305spa
dc.relation.referencesBayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(165), 364. https://doi.org/10.18257/raccefyn.632spa
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Montes, C., Caballero, V., Mahecha, H., … Jimenez, G. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin ; response to Caribbean − South American convergence in early Palaeogene time. Geological Society, London, Special Publications, (October), 284–314. https://doi.org/10.1144/SP377.5spa
dc.relation.referencesBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., & Reyes-Harker, A. (2008a). An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bulletin of the Geological Society of America, 120(9–10), 1171–1197. https://doi.org/10.1130/B26187.1spa
dc.relation.referencesBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., & Reyes-Harker, A. (2008b). An integrated analysis of an orogen – sedimentary basin pair: Latest Cretaceous – Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bulletin, 120(September/October), 1171–1197. https://doi.org/10.1130/B26187.1spa
dc.relation.referencesBayona, G., Jaramillo, C., Rueda, M., Reyes-Harker, A., & Torres, V. (2007). of the nonmarine Llanos foreland basin of Colombia. 3, 141–160.spa
dc.relation.referencesBayona, G., Reyes-Harker, A., Jaramillo, C., Rueda, M., Aristizabal, J., Cortes, M., & Gamba, N. (2006). Distinguishing tectonic versus eustatic flooding surfaces in the Llanos Basin of Colombia, and implications for stratigraphic correlations. ResearchGate, (January 2006), 13. Retrieved from http://www.earthdoc.org/publication/publicationdetails/?publication=17612spa
dc.relation.referencesBayona, G., Valencia, A., Mora, A., Rueda, M., Ortiz, J., & Montenegro, O. (2008c). Estratigrafía y procedencia de las rocas del Mioceno en la parte distal de la cuenca de los Llanos.spa
dc.relation.referencesBayona, G., Villamarín, P., Mora, A., Ojeda, G., Cortés, M., Valencia, A., … Torres, V. (2009). Exploratory Implications of Forebulge Geometry and Migration in the Llanos Basin. X Simposio Bolivariano Exploración Petrolera En Cuencas Subandinas.spa
dc.relation.referencesBechtel, T. D., Forsyth, D. W., Sharpton, V. L., & Grieve, R. A. F. (1990). Variations in effective elastic thickness of the North American lithosphere. Nature, 343(6259), 636–638. https://doi.org/10.1038/343636a0spa
dc.relation.referencesBermudez, M. A. (2010). Cenozoic exhumation patterns across the Venezuelan Andes : insights from fission-track thermochronology. Université Joseph Fourier-Grenoble.spa
dc.relation.referencesBlair, T., & McPherson, J. (1994). Historical adjustment by Walker River to lake-level fill over a tectonically tilted half-graben floor, Walker lake Basin, Nevada. Sedimentary Geology, 92, 7–16.spa
dc.relation.referencesBuiter, S. (2000). Surface deformation resulting from subduction and slab detachment. In Geologica Ultraiectina (Vol. 191).spa
dc.relation.referencesBurov, E. B., & Diament, M. (1995). The effective elastic thickness (Te) of continental lithosphere: what does it really mean? Journal of Geophysical Research, 100(B3), 3905–3927. https://doi.org/10.1029/94JB02770spa
dc.relation.referencesCaballero, V., Parra, M., Mora, A., Lopez, C., Rojas, L. E., & Quintero, I. (2013). Factors controlling selective abandonment and reactivation in thick-skin orogens: A case study in the Magdalena Valley, Colombia. Geological Society Special Publication, 377(1), 343–367. https://doi.org/10.1144/SP377.4spa
dc.relation.referencesCampbell, J. C., & Bürgl, H. (1965). Section through the Eastern Cordillera of Colombia, South America. Geological Society of America Bulletin, (76), 567–590.spa
dc.relation.referencesCampbell, K. E., Frailey, C. D., & Romero-Pittman, L. (2006). The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(1–2), 166–219. https://doi.org/10.1016/j.palaeo.2006.01.020spa
dc.relation.referencesCampos, H. (2011). Tectonostratigraphic and subsidence history of the northern Llanos foreland basin of Colombia. University of Texas at Austin.spa
dc.relation.referencesCardozo, N. (2009). Flex3DV. Retrieved from http://www.ux.uis.no/~nestor/Public/flex3dv.zipspa
dc.relation.referencesCardozo, N., & Jordan, T. (2001). Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Research, 13(3), 335–357. https://doi.org/10.1046/j.0950-091X.2001.00154.xspa
dc.relation.referencesCatuneanu, O. (2018). First-order foreland cycles: Interplay of flexural tectonics, dynamic loading, and sedimentation. Journal of Geodynamics, 129(March), 290–298. https://doi.org/10.1016/j.jog.2018.03.001spa
dc.relation.referencesCediel, F., & Shaw, P. (2019). Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction (F. Cediel & P. Shaw, Eds.). Springer.spa
dc.relation.referencesChen, B., Liu, J., Chen, C., Du, J., & Sun, Y. (2015). Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth and Planetary Science Letters, 409(February 2019), 1–14. https://doi.org/10.1016/j.epsl.2014.10.039spa
dc.relation.referencesChen, J. (2015). The Influence of Lithospheric Flexure Induced by Volcano Loading on Neogene Basin Evolution in McMurdo Sound ,. 154.spa
dc.relation.referencesColletta, B., Hébrard, F., Letouzey, J., Werner, P., & Rudkiewikz, J. L. (1990). Petroleum and tectonics in mobile belts. Tectonic style and crustal structure of the Eastern Cordillera (Colombia), from a balanced cross section. (Technip; J. Letouzey, Ed.).spa
dc.relation.referencesCooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., … Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421–1443. Retrieved from http://archives.datapages.com/data/bulletns/1994-96/data/pg/0079/0010/1400/1421.htmspa
dc.relation.referencesCortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1–4), 29–58. https://doi.org/10.1016/j.tecto.2005.03.020spa
dc.relation.referencesCortes, M., Bayona, G., Aristizabal, J., Ojeda, G., Reyes-Harker, A., & Gamba, N. (2006). Structure and kinematics of the Eastern Foothills of the Eastern Cordillera of Colombia from balanced cross-sections and forward modeling. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas, (4). Retrieved from http://archives.datapages.com/data/colombia_acggp/simp9/83.pdfspa
dc.relation.referencesCrain, R. (2019). Crain´s Petrophysical Handbook. Retrieved from https://www.spec2000.net/12-phicmplx.htmspa
dc.relation.referencesCurry, M. E., van der Beek, P., Huismans, R. S., Wolf, S. G., & Muñoz, J. A. (2019). Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters, 515(December 2017), 26–37. https://doi.org/10.1016/j.epsl.2019.03.009spa
dc.relation.referencesDelgado, A., Mora, A., & Reyes-Harker, A. (2012). Deformation partitioning in the Llanos foreland basin during the Cenozoic and its correlation with mountain building in the hinterland. Journal of South American Earth Sciences, 39, 228–244. https://doi.org/10.1016/j.jsames.2012.04.011spa
dc.relation.referencesDuarte, E., Bayona, G., Jaramillo, C., Parra, M., Romero, I., & Mora, J. A. (2017). Identificación de los máximos eventos de inundación marina Miocenos y su uso en la correlación y análisis de la cuenca de antepaís de los Llanos Orientales de Colombia. 39.spa
dc.relation.referencesDuque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-Wspa
dc.relation.referencesDuque-Caro, H. (1997). The Llanos Basin (Colombia): In search of greater stratigraphic resolution. Journal of Petroleum Geology, 20(1), 96–99. https://doi.org/10.1111/j.1747-5457.1997.tb00758.xspa
dc.relation.referencesECOPETROL & BEICIP. (1995). Cuenca de los Llanos Orientales: estudio geológico regional. Ecopetrol.spa
dc.relation.referencesEgbue, O., Kellogg, J., Aguirre, H., & Torres, C. (2014). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 58, 8–21. https://doi.org/10.1016/j.jsg.2013.10.004spa
dc.relation.referencesForero Suarez, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in north western South America. Journal of South American Earth Sciences, 3(2), 141–151.spa
dc.relation.referencesFrailey, C. D., Luiz Lavina, E., Rancy, A., & Pereira de Souza Filho, J. (1988). A proposed Pleistocene/Holocene lake in the Amazon basin and its significance to Amazonian geology and biogeography. 8.spa
dc.relation.referencesGarcia-Castellanos, D. (2002). Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14(2), 89–104. https://doi.org/10.1046/j.1365-2117.2002.00174.xspa
dc.relation.referencesGómez, E., Jordan, T. E., Allmendinger, R. W., & Cardozo, N. (2005). Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes. Bulletin of the Geological Society of America, 117(9–10), 1272–1292. https://doi.org/10.1130/B25456.1spa
dc.relation.referencesGómez, J., Montes, N. E., Nivia, Á., Diederix, H., & Compiladores. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000. Bogotá.: Servicio Geológico Colombiano.spa
dc.relation.referencesGonzalez-Peñagos, F., Moretti, I., France-Lanord, C., & Guichet, X. (2014). Origins of formation waters in the Llanos foreland basin of Colombia: Geochemical variation and fluid flow history. Geofluids, 14(4), 443–458. https://doi.org/10.1111/gfl.12086spa
dc.relation.referencesHackley, P. C., Urbani, F., Karlsen, A. W., & Garrity, C. P. (2006). Mapa Geológico de Venezuela a Escala 1: 750 000 (p. 2). p. 2. https://doi.org/10.3133/ofr20061109spa
dc.relation.referencesHaq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156spa
dc.relation.referencesHelmens, K. F., & Van der Hammen, T. (1994). The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basin development and climatic change. Quaternary International, 21, 41–61. https://doi.org/10.1016/1040-6182(94)90020-5spa
dc.relation.referencesHermeston, S., & Nemčok, M. (2013). Thick-skin orogen-foreland interactions and their controlling factors, Northern Andes of Colombia. Geological Society Special Publication, 377(1), 443–471. https://doi.org/10.1144/SP377.16spa
dc.relation.referencesHodgetts, D., Egan, S. S., & Williams, G. D. (1998). Flexural modelling of continental lithosphere deformation: A comparison of 2D and 3D techniques. Tectonophysics, 294(1–2), 1–20. https://doi.org/10.1016/S0040-1951(98)00084-5spa
dc.relation.referencesHoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4spa
dc.relation.referencesHoorn, C. (2006). Mangrove Forests and Marine Incursions in Neogene Amazonia (Lower Apaporis River, Colombia). Palaios, 21(2), 197–209. https://doi.org/10.2110/palo.2005.p05-131spa
dc.relation.referencesHovikoski, J., Gingras, M., Räsänen, M., Rebata, L. A., Guerrero, J., Ranzi, A., … Lopez, S. (2007). The nature of Miocene Amazonian epicontinental embayment: High-frequency shifts of the low-gradient coastline. Bulletin of the Geological Society of America, 119(11–12), 1506–1520. https://doi.org/10.1130/0016-7606(2007)119[1506:TNOMAE]2.0.CO;2spa
dc.relation.referencesIrving, E. M. (1975). Structural Evolution of the Northernmost Andes, Colombia. In U.S. Geological Survey Profesional Paper (Vol. 846). https://doi.org/10.1016/0003-6870(73)90259-7spa
dc.relation.referencesJaramillo, C., Ortiz, J., Bayona, G., D’Apolito, C., Wesselingh, F. P., Romero, I., … Duarte, E. (2017a). Miocene flooding events of western Amazonia. Science Advances, 3(5), e1601693. https://doi.org/10.1126/sciadv.1601693spa
dc.relation.referencesJaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, E., Louwye, S., … Wesselingh, F. P. (2017b). Supplementary Materials for Miocene flooding events of western Amazonia. Science Advances, 3(5). https://doi.org/10.1126/sciadv.1601693spa
dc.relation.referencesJiménez-Díaz, A., Ruiz, J., Pérez-Gussinyé, M., Kirby, J. F., Álvarez-Gómez, J. A., Tejero, R., & Capote, R. (2014). Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters, 391, 55–66. https://doi.org/10.1016/j.epsl.2014.01.042spa
dc.relation.referencesJulivert, M. (1970). Cover and basement tectonics in the Cordillera Oriental of Colombia, and a comparison with other folded chains. Geological Society of America Bulletin, (81), 3623-3646.spa
dc.relation.referencesKluth, C. F., Ladd, R., De-Aras, M., Gomez, L., & Tilander, N. (1997). Different structural styles and histories of the Colombian foreland: Castilla and Chichimene oil fields areas, east-central Colombia. VI Simpolsio Bolivariano Exploracion En Las Cuencas Subandinas: Cartagena de Indias. Mem., II, 185–197.spa
dc.relation.referencesLatrubesse, E. M., Bocquentin-villanueva, J., Santos, J. C. R., & Ramonell, C. G. (1997). Paleoenvironmental model for the Late Cenozoic Of Southwestern Amazonia : Paleontology and geology. Acta Amazonica, 27(3000), 103–1178. Retrieved from http://www.scielo.br/pdf/aa/v27n2/1809-4392-aa-27-2-0103.pdfspa
dc.relation.referencesLatrubesse, E. M., da Silva, S. A. F., Cozzuol, M., & Absy, M. L. (2007). Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: Biotic and geological evidence. Journal of South American Earth Sciences, 23(1), 61–80. https://doi.org/10.1016/j.jsames.2006.09.021spa
dc.relation.referencesLee, E. Y. (2015). Integrated basin analysis of the Vienna basin, Central Europe. Universitat Wien.spa
dc.relation.referencesLondoño, J. (2004). Foreland basins: Lithospheric flexure, plate strength and regional stratigraphy. 175. Retrieved from http://proquest.umi.com/pqdweb?did=1115100681&Fmt=7&clientId=13346&RQT=309&VName=PQDspa
dc.relation.referencesMcGirr, R., Seton, M., & Williams, S. (2020). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. GSA Bulletin, 1–18. https://doi.org/10.1130/b35595.1spa
dc.relation.referencesMcKenzie, D. (2003). Estimating Te in the presence of internal loads. Journal of Geophysical Research: Solid Earth, 108(B9), 1–21. https://doi.org/10.1029/2002jb001766spa
dc.relation.referencesMcNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. Journal of Geophysical Research, 89(B13), 11180–11194. https://doi.org/10.1029/JB089iB13p11180spa
dc.relation.referencesMedina, O., & Izarra, C. (2009). Anomalías Gravimétricas y Estimación de Espesor Elástico Efectivo de la Litosfera en Cuencas Antepaís: Cuenca Barinas - Apure. X Simposio Bolivariano Exploración Petrolera En Cuencas Subandinas. ACGGP.spa
dc.relation.referencesMedina, O., Izarra, C., & Jácome, M. (2006). Modelado Numérico 2D de Corrimientos y Formación de Cuencas Antepaís Usando Teoría Elástica de Deformación. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas. Retrieved from http://www.earthdoc.org/publication/publicationdetails/?publication=17602spa
dc.relation.referencesMiall, A. D. (1999). Principles of sedimentary basin analysis (3rd ed.). Berlin, Germany: Springer-Verlag.spa
dc.relation.referencesMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., … Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89(November 2018), 76–91. https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMora-Páez, H., Mencin, D. J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J. R., & Corchuelo-Cuervo, Y. (2016). GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett., (43), 8407–8416. https://doi.org/10.1002/2013GL058740.Receivedspa
dc.relation.referencesMora, A., Casallas, W., Ketcham, R. A., Gomez, D., Parra, M., Namson, J., … Ghorbal, B. (2015). Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99(8), 1575–1598. https://doi.org/10.1306/04281411108spa
dc.relation.referencesMora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L. I., … Strecker, M. R. (2009). The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of lower cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1), 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.xspa
dc.relation.referencesMora, A., Parra, M., Strecker, M. R., Sobel, E. R., Zeilinger, G., Jaramillo, C., … Blanco, M. (2010). The eastern foothills of the eastern cordillera of colombia: An example of multiple factors controlling structural styles and active tectonics. Bulletin of the Geological Society of America, 122(11–12), 1846–1864. https://doi.org/10.1130/B30033.1spa
dc.relation.referencesMora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., … Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publication, 377(1), 411–442. https://doi.org/10.1144/SP377.6spa
dc.relation.referencesMoreno, C. (2012). Evolution of the southern Llanos basin, Colombia. University of Stavanger.spa
dc.relation.referencesNivia, A. (1987). The geochemistry and origin of the Amáime and volcanic sequences, SW Colombia. University of Leicester, UK.spa
dc.relation.referencesOjeda, G. Y., Bayona, G., Pinilla, J., Cortés, M., & Gamba, N. (2006). Subsidence and geodynamic analysis of The Llanos Basin: Linking mountain building and basin filling processes. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas. Retrieved from http://archives.datapages.com/data/colombia_acggp/simp9/89.pdfspa
dc.relation.referencesOjeda, G. Y., & Whitman, D. (2002). Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: Results from northern South America. Journal of Geophysical Research: Solid Earth, 107(B11), ETG 3-1-ETG 3-12. https://doi.org/10.1029/2000jb000114spa
dc.relation.referencesPachón-Parra, L. F. (2013). Subsurface mapping and 3D Flexural modeling of the Putumayo foreland basin, Colombia. University of Houston.spa
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Strecker, M. R., Sobel, E. R., Quiroz, L., … Torres, V. (2009a). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, (April 2009), 780–800. https://doi.org/10.1130/B26257.1spa
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research, 22(6), 874–903. https://doi.org/10.1111/j.1365-2117.2009.00459.xspa
dc.relation.referencesParra, M., Mora, A., Lopez, C., Rojas, L. E., & Horton, B. K. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2), 175–178. https://doi.org/10.1130/G32519.1spa
dc.relation.referencesParra, M., Mora, A., Sobel, E. R., Strecker, M. R., & González, R. (2009b). Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4). https://doi.org/10.1029/2008TC002423spa
dc.relation.referencesRamos, V. A., & Moreno, M. (2006). Tectonic evolution of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 319–321. https://doi.org/10.1016/j.jsames.2006.07.008spa
dc.relation.referencesReyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., … Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. In AAPG Bulletin (Vol. 99). https://doi.org/10.1306/06181411110spa
dc.relation.referencesRoddaz, M., Brusset, S., Baby, P., & Hérail, G. (2006). Miocene tidal-influenced sedimentation to continental Pliocene sedimentation in the forebulge-backbulge depozones of the Beni-Mamore foreland Basin (northern Bolivia). Journal of South American Earth Sciences, 20(4), 351–368. https://doi.org/10.1016/j.jsames.2005.11.004spa
dc.relation.referencesRoddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., … Espurt, N. (2010). Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System. Amazonia, Landscape and Species Evolution: A Look into the Past, (July), 61–88. https://doi.org/10.1002/9781444306408.ch5spa
dc.relation.referencesRondón, F. J. (2016). Modelo gravimétrico cortical 2D del perfil Sur Proyecto GIAME, ubicado en la región Andina de Venezuela. Universidad Simón Bolívar.spa
dc.relation.referencesSánchez, N., Mora, A., Parra, M., Garcia, D., Cortes, M., Shanahan, T. M., … Guzman, M. (2015). Petroleum system modeling in the Eastern Cordillera of Colombia using geochemistry and timing of thrusting and deformation. AAPG Bulletin, 99(8), 1537–1556. https://doi.org/10.1306/04161511107spa
dc.relation.referencesSarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383–411. https://doi.org/10.1016/j.jsames.2006.07.003spa
dc.relation.referencesSarmiento, L. F. (2011). Geology and hydrocarbon potential Llanos Basin. In Fondo Editorial Universidad EAFIT (Ed.), Petroleum Geology of Colombia (Vol. 9). ANH.spa
dc.relation.referencesSarmiento Rojas, L. F. (2001). Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes. Inferences From Tectonic Models. Vrije Universiteit Amsterdam.spa
dc.relation.referencesSaylor, J. E., Horton, B., Stockli, D. F., Mora, A. &, & Corredor, J. (2012). Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39(November), 202–215. Retrieved from http://www.sciencedirect.com/science/journal/aip/%0A08959811spa
dc.relation.referencesSaylor, J. E., Stockli, D. F., Horton, B., Nie, J. &, & Mora, A. (2012). Discriminating rapid exhumation Zircon, from syndepositional volcanism using detrital Of, double dating: implications for the tectonic history the Eastern Cordillera, Colombia. Geological Society of America Bulletin, (124), 762–779.spa
dc.relation.referencesSclater, J. G., & Christie, P. A. F. (1980). Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea basin. Journal of Geophysical Research, 85(B7), 3711–3739.spa
dc.relation.referencesSiravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002spa
dc.relation.referencesStewart, J., & Watts, A. B. (1997). Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. Journal of Geophysical Research: Solid Earth, 102(B3), 5327–5352. https://doi.org/10.1029/96jb03664spa
dc.relation.referencesTesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., … Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society Special Publication, 377(1), 257–283. https://doi.org/10.1144/SP377.10spa
dc.relation.referencesToro, J., Roure, F., Bordas-Le Flonch, N., Le Cornec-Lance, S., & Sassu, W. (2004). Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia, in Swennen, R., Roure, F., and Granath, J.W., eds., Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belt Colombia. 1, 79– 115.spa
dc.relation.referencesTurcotte, D. L., & Schubert, G. (1982). Geodynamics (Second Edi). Cambridge.spa
dc.relation.referencesVan der Hammen, T. (1960). Estratigrafía del Terciario y Maestrichtiano Continentales y Tectonogenésis de los Andes Colombianos. Bogotá, Colombia: Servicio Geológico Nacional.spa
dc.relation.referencesVargas, C. A. (2011). Potencial de hidrocarburos en Colombia (pp. 1–79). pp. 1–79. Retrieved from http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Potencial de hidrocarburos en Colombia, Prof. Carlos A. Vargas (PDF).pdfspa
dc.relation.referencesVargas, C. A., & Mann, P. (2013). Tearing and Breaking Off of Subducted slabs as the result of collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVayssaire, A., Abdallah, H., Hermoza, W., & Figari, E. (2014). Regional Study and Petroleum System Modeling of the Eastern Llanos Basin. AAPG International Conference & Exhibition, 10564, 1–9.spa
dc.relation.referencesVelásquez, A. (2018). Observaciones sobre niveles de compensación isostática en el Piedemonte Llanero. Geología Norandina, 14, 23–28.spa
dc.relation.referencesVentsel, E., & Krauthammer, T. (2001). Thin Plates and Shells Theory, Análisis, and Applications. New York: Marcel Dekker, Inc.spa
dc.relation.referencesVillamil, T. (1999). Campanian-Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4), 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9spa
dc.relation.referencesWagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616–6623. https://doi.org/10.1002/2017GL073981spa
dc.relation.referencesWatts, A. B. (2001). Isostasy and flexure of the lithosphere. In Journal of Geophysical Research (Vol. 84). https://doi.org/10.1029/JB084iB10p05599spa
dc.relation.referencesWatts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1–2), 113–131. https://doi.org/10.1016/S0012-821X(03)00289-9spa
dc.relation.referencesWebb, S. D. (1995). Biological implications of the Middle Miocene Amazon seaway. Science, 269(5222), 361–362. https://doi.org/10.1126/science.269.5222.361spa
dc.relation.referencesWesselingh, F. P., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, (133), 439–458.spa
dc.relation.referencesXie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Bulletin of the Geological Society of America, 121(1–2), 55–64. https://doi.org/10.1130/B26398.1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalModelo Flexural 3D
dc.subject.proposalCuenca antepaís
dc.subject.proposalIsostasia
dc.subject.proposalEspesor elástico
dc.subject.proposalRigidez de la Litosfera
dc.subject.proposalEvolución tectonoestratigráfica
dc.subject.proposalLlanos Orientales de Colombia
dc.subject.proposal3D Flexural Modeling
dc.subject.proposalForeland basin
dc.subject.proposalIsostasy
dc.subject.proposalElastic thickness
dc.subject.proposalLithosphere rigidity
dc.subject.proposalTectonostratigraphic evolution
dc.subject.proposalEastern Llanos
dc.subject.proposalColombia
dc.titleModelado Flexural 3D de la cuenca Llanos Orientales de Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_fa2ee174bc00049fspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
456561.2020.pdf
Tamaño:
12.46 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: