Investigación en espectroscopía de fluorescencia intrínseca de glóbulos rojos infectados con Plasmodium falciparum y diseño de un espectrofluorímetro portátil para su detección
dc.contributor.advisor | Laroze Navarrete, David | |
dc.contributor.advisor | Hoyos Velasco, Fredy Edimer | |
dc.contributor.advisor | Rincón Santamaría, Alejandro | |
dc.contributor.author | Garrido Tamayo, Miguel Ángel | |
dc.contributor.googlescholar | Garrido Tamayo, Miguel Ángel [https://scholar.google.com/citations?user=ujSC6S0AAAAJ&hl=es] | |
dc.contributor.orcid | Garrido Tamayo, Miguel Ángel [0000-0002-5018-3170] | |
dc.contributor.researchgate | Garrido Tamayo, Miguel Ángel [https://www.researchgate.net/profile/Miguel-Garrido-Tamayo] | |
dc.contributor.researchgroup | Procesamiento Digital de Señales Para Sistemas en Tiempo Real | |
dc.contributor.scopus | Garrido-Tamayo, Miguel Angel [59171121700] | |
dc.date.accessioned | 2025-09-01T03:00:03Z | |
dc.date.available | 2025-09-01T03:00:03Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | En esta investigación se realizaron análisis espectrales mediante espectroscopía óptica de fluorescencia UV-VIS para estudiar los cambios en la fluorescencia intrínseca (autofluorescencia) de los glóbulos rojos infectados con Plasmodium falciparum, uno de los parásitos causante de la malaria, a partir de cultivos in vitro. El objetivo principal fue proponer un nuevo método físico de diagnóstico de la malaria basado en la autofluorescencia, que pueda ser implementado en un dispositivo de bajo costo y fabricado con componentes de fácil adquisición. Para lograr este objetivo, se realizaron mediciones de autofluorescencia de glóbulos rojos sanos e infectados, utilizando barridos espectrales en un rango de 255 nm a 640 nm, abarcando un total de 76 longitudes de onda de excitación. Asimismo, se caracterizaron diversos materiales con el potencial de ser utilizados como filtros ópticos, fuentes de excitación y detectores de autofluorescencia. Entre los principales resultados, se identificaron dos longitudes de onda de excitación en la región del ultravioleta (UV-A), 315 nm y 320 nm, que permiten diferenciar claramente las muestras de glóbulos rojos sanos de las infectadas. Estas longitudes de onda generaron picos de emisión máxima en el ultravioleta entre 350 nm a 366 nm, con una diferencia máxima observada en el borde superior del UV cercano, muy próximo al violeta visible a 374 y 380 nm respectivamente. Las muestras infectadas mostraron un incremento en la intensidad de fluorescencia superior al 70% en la región del ultravioleta y más del doble en la región del violeta-azul, lo cual podría estar relacionado con la presencia de fluoróforos derivados del metabolismo del parásito, así como con la disminución de proteínas estructurales, como la hemoglobina. A partir de estos resultados, se propone el diseño de un espectrofluorímetro portátil para la detección del parásito de la malaria, con el objetivo de trasladar los hallazgos experimentales a una solución práctica y accesible en el campo del diagnóstico clínico. Este dispositivo estaría basado en los principios de espectroscopía óptica de fluorescencia UV-VIS, utilizando las longitudes de onda identificadas (315 nm y 320 nm) como fuentes de excitación específicas que permiten distinguir de manera clara los glóbulos rojos infectados de los sanos. El diseño contempla componentes de bajo costo y fácil adquisición, tales como: LEDs emisores en el rango UV-A como fuente de excitación. Filtros ópticos seleccionados según las caracterizaciones realizadas, para aislar eficientemente las bandas de emisión relevantes (380–450 nm). LEDs como sensores sensibles a la región del UV cercano y azul, acoplados a sistemas de adquisición y procesamiento de señal. Además, se plantea la posibilidad de integrar el espectrofluorímetro con dispositivos móviles mediante conexiones inalámbricas, lo que facilitaría el almacenamiento, análisis y envío de datos clínicos en contextos rurales o con acceso limitado a laboratorios especializados. Desde el punto de vista social y epidemiológico, esta propuesta representa una alternativa tecnológica innovadora que podría complementar los métodos actuales de diagnóstico, reduciendo costos y tiempos de respuesta, y permitiendo una intervención más rápida en zonas endémicas. La sensibilidad del dispositivo ante los cambios espectrales derivados de la presencia del parásito ofrece un enfoque no invasivo y escalable, especialmente útil en campañas de vigilancia activa y tamizaje poblacional. (Tomado de la fuente) | spa |
dc.description.abstract | In this research, spectral analysis by UV-VIS optical fluorescence spectroscopy was performed to study the changes in intrinsic fluorescence (autofluorescence) of red blood cells infected with Plasmodium falciparum, one of the parasites that cause malaria, from in vitro cultures. The main objective was to propose a new physical method for malaria diagnosis based on autofluorescence, which can be implemented in a low-cost device made of easily available components. To achieve this goal, autofluorescence measurements of healthy and infected red blood cells were performed using spectral scans in a range from 255 nm to 640 nm, covering a total of 76 excitation wavelengths. In addition, several materials with the potential to be used as optical filters, excitation sources and autofluorescence detectors were characterized. Among the main results, two excitation wavelengths were identified, 315 nm and 320 nm, which allow a clear differentiation between healthy and infected red blood cell samples. These wavelengths generated maximum emission peaks in the ultraviolet region (UV-A) between 350 nm to 366 nm, with a maximum difference observed at the upper edge of the near-UV, very close to visible violet at 374 and 380 nm, respectively. Infected samples showed an increase in fluorescence intensity of more than 70% in the ultraviolet region and more than double in the violet-blue region, which could be related to the presence of fluorophores derived from parasite metabolism, as well as to the decrease in structural proteins, such as hemoglobin. Based on these results, the design of a portable spectrofluorometer for the detection of the malaria parasite is proposed, with the aim of transferring the experimental findings to a practical and accessible solution in the field of clinical diagnosis. This device would be based on the principles of UV-VIS fluorescence optical spectroscopy, using the identified wavelengths (315 nm and 320 nm) as specific excitation sources that allow to clearly distinguish infected red blood cells from healthy ones. The design contemplates low-cost and easy-to-acquire components, such as: Emitting LEDs in the UV-A range as excitation source. Optical filters selected according to the characterizations performed, to efficiently isolate the relevant emission bands (380-450 nm). LEDs as sensors sensitive to the near-UV and blue region, coupled to signal acquisition and processing systems. In addition, the possibility of integrating the spectrofluorometer with mobile devices through wireless connections is proposed, which would facilitate the storage, analysis and sending of clinical data in rural contexts or with limited access to specialized laboratories. From a social and epidemiological point of view, this proposal represents an innovative technological alternative that could complement current diagnostic methods, reducing costs and response times, and allowing faster intervention in endemic areas. The device's sensitivity to spectral changes derived from the presence of the parasite offers a noninvasive and scalable approach, especially useful in active surveillance and population screening campaigns. | eng |
dc.description.curriculararea | Física.Sede Medellín | |
dc.description.degreelevel | Doctorado | |
dc.description.degreename | Doctor en Ciencias - Física | |
dc.description.researcharea | Espectroscopía de fluorescencia | |
dc.description.sponsorship | Ministerio de Ciencia, Tecnología e Innovación (MinCiencias) | |
dc.format.extent | 214 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88513 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias - Doctorado en Ciencias - Física | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Acuña, A. U., & Amat-Guerri, F. (2008). Early History of Solution Fluorescence: The Lignum nephriticum of Nicolás Monardes. Springer Series on Fluorescence, 4(August 2007), 3–20. https://doi.org/10.1007/4243_2007_006 | |
dc.relation.references | Ajibade, P. (2018). The contributions of information management in promoting indigenous medicine use to enhance public healthcare systems. Studies on Ethno-Medicine, 12(4), 244–252. https://doi.org/10.31901/24566772.2018/12.04.524 | |
dc.relation.references | Akdemir, S. (2018). Convergence of Slater-Type Orbitals in Calculations of Basic Molecular Integrals. Iranian Journal of Science and Technology, Transaction A: Science, 42, 1613–1621. https://doi.org/10.1007/s40995-017-0177-1 | |
dc.relation.references | Akerele, D., Ljolje, D., Talundzic, E., Udhayakumar, V., & Lucchi, N. W. (2017). Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR. PLOS ONE, 12(6), e0179178. https://doi.org/10.1371/journal.pone.0179178 | |
dc.relation.references | Albani, R. J. (2007). Principles and Applications of Fluorescence Spectroscopy (First). Blackweel. | |
dc.relation.references | Analog Devices. (2011). Low Cost Low Power Instrumentation Amplifier: AD620 [Datasheet] (pp. 1–21). | |
dc.relation.references | Andersson-Engels, S., Johansson, J., Svanberg, K., & Svanberg, S. (1991). Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue. Photochemistry and Photobiology, 53(6), 807–814. https://doi.org/10.1111/j.1751-1097.1991.tb09895.x | |
dc.relation.references | Ankita, Suthar, B., & Bhargava, A. (2021). Biosensor Application of One- Dimensional Photonic Crystal for Malaria Diagnosis. Plasmonics, 16(1), 59-63. https://doi.org/10.1007/s11468-020-01259-8 | |
dc.relation.references | Appolus, E. E., & Okoli, C. N. (2022). A Robust Comparison Powers of Four Multivariate Analysis of Variance Tests. European Journal of Statistics and Probability, 10(1), 11–20. https://doi.org/10.37745/ejsp.2013/vol10no1pp.11-20 | |
dc.relation.references | Avidor, B., Golenser, J., & Sulitzeanu, D. (1985). Detection of Plasmodium falciparum using a radioimmunoassay based on a crossreacting, monoclonal anti-P. berghei antibody-P. berghei antigen system. Journal of Immunological Methods, 82(1), 121–129. https://doi.org/10.1016/0022-1759(85)90231-5 | |
dc.relation.references | Avraham, H., Golenser, J., Gazitt, Y., Spira, D. T., & Sulitzeanu, D. (1982). A highly sensitive solid-phase radioimmunoassay for the assay of Plasmodium falciparum antigens and antibodies. Journal of Immunological Methods, 53(1), 61–68. https://doi.org/10.1016/0022-1759(82)90240-X | |
dc.relation.references | Bağcı, A., & Hoggan, P. E. (2020). Analytical evaluation of relativistic molecular integrals: III. Computation and results for molecular auxiliary functions. Rendiconti Lincei, 31(4), 1089–1103. https://doi.org/10.1007/s12210-02000953-3 | |
dc.relation.references | Bahk, Y. Y., Cho, P. Y., Ahn, S. K., Lee, W.-J., & Kim, T.-S. (2018). An Evaluation of Active Case Detection in Malaria Control Program in Kiyuni Parish of Kyankwanzi District, Uganda. The Korean Journal of Parasitology, 56(6), 625–632. https://doi.org/10.3347/kjp.2018.56.6.625 | |
dc.relation.references | Baker, J., McCarthy, J., Gatton, M., Kyle, D. E., Belizario, V., Luchavez, J., Bell, D., & Cheng, Q. (2005). Genetic diversity of Plasmodium falciparum histidinerich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. Journal of Infectious Diseases, 192(5), 870–877. https://doi.org/10.1086/432010 | |
dc.relation.references | Balasco, N., Diaferia, C., Rosa, E., Monti, A., Ruvo, M., Doti, N., & Vitagliano, L. (2023). A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24098372 | |
dc.relation.references | Banoth, E., Kasula, V. K., Jagannadh, V. K., & Gorthi, S. S. (2016). Optofluidic single-cell absorption flow analyzer for point-of-care diagnosis of malaria. Journal of Biophotonics, 9(6), 610–618. https://doi.org/10.1002/jbio.201500118 | |
dc.relation.references | Baumgartner, H., Vaskuri, A., Kärhä, P., & Ikonen, E. (2016). Temperature invariant energy value in LED spectra. Applied Physics Letters, 109(23). https://doi.org/10.1063/1.4971831 | |
dc.relation.references | Becerril, M. A. (2012). Parasitología médica (Tercera Ed). McGrawHill. | |
dc.relation.references | Becker, W. (2015). Advanced Time- Correlated Single Photon Counting Applications (first). Springer Science+Business Media, LLC. https://doi.org/10.1007/978-3-319-14929-5 | |
dc.relation.references | Bellemare, M. J., Bohle, D. S., Brosseau, C. N., Georges, E., Godbout, M., Kelly, J., Leimanis, M. L., Leonelli, R., Olivier, M., & Smilkstein, M. (2009). Autofluorescence of condensed heme aggregates in malaria pigment and its synthetic equivalent hematin anhydride (B-hematin). Journal of Physical Chemistry B, 113(24), 8391–8401. https://doi.org/10.1021/jp8104375 | |
dc.relation.references | Beltrán-Santoyo, G., Ruíz-Huerta, E. A., & Gómez-Bernal, J. M. (2021). La importancia e influencia del idioma inglés dentro del campo científico. Revista Lengua y Cultura, 3(5), 46–51. | |
dc.relation.references | Breugelmans, J. G.., Roberge, G., Tippett, C., Durning, M., Struck, D. B., & Makanga, M. M. (2018). Scientific impact increases when researchers publish in open access and international collaboration: A bibliometric analysis on poverty-related disease papers. PLoS ONE, 13(9), 1–20. https://doi.org/10.1371/journal.pone.0203156 | |
dc.relation.references | Butykai, A., Orbán, A., Kocsis, V., Szaller, D., Bordács, S., Tátrai-Szekeres, E., Kiss, L. F., Bóta, A., Vértessy, B. G., Zelles, T., & Kézsmárki, I. (2013). Malaria pigment crystals as magnetic micro-rotors: key for high-sensitivity diagnosis. Scientific Reports, 3(1431), 1431. https://doi.org/10.1038/srep01431 | |
dc.relation.references | Carmona, N., Wittstadt, K., & Römich, H. (2009). Consolidation of paint on stained glass windows: Comparative study and new approaches. Journal of Cultural Heritage, 10(3), 403–409. https://doi.org/10.1016/j.culher.2008.12.004 | |
dc.relation.references | Chen, S., Wan, Q., & Badu-Tawiah, A. K. (2016). Mass Spectrometry for PaperBased Immunoassays: Toward On-Demand Diagnosis. Journal of the American Chemical Society, 138(20), 6356–6359. https://doi.org/10.1021/jacs.6b02232 | |
dc.relation.references | Chiodini, P. L. (2014). Malaria diagnostics: now and the future. Parasitology, 141(14), 1873–1879. https://doi.org/10.1017/S0031182014001371 | |
dc.relation.references | Cifuentes-Rodriguez, N. A., Benavides-Cuestas, E. R., Chacon-Chamorro, S. G., & Segura-Giraldo, B. (2023). Espectroscopia óptica de fluorescencia usando luz tipo LED en tejidos ex-vivo del cuello uterino. Ingeniería Y Competitividad, 25(2). https://doi.org/10.25100/iyc.v25i2.12532 | |
dc.relation.references | Clark, T., & Koch, R. (1999). The Chemist’s Electronic Book of Orbitals (Springer- Verlag (ed.)). https://doi.org/10.1007/978-3-662-13150-3 | |
dc.relation.references | Corti, A., & Garavaglia, M. (2015). Biopsia óptica. Descripción general y medidas preliminares por espectroscopía óptica de autofluorescencia Optical Biopsy . General description and preliminary measures by autofluorescence optical spectroscopy. Anales AFA, 26(4), 167–169. | |
dc.relation.references | Croce, A. C., & Bottiroli, G. (2014). Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry, 58(4), 320–337. https://doi.org/10.4081/ejh.2014.2461 | |
dc.relation.references | Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A., & Skala, M. C. (2020). Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. Journal of Biomedical Optics, 25(07), 071203. https://doi.org/10.1117/1.jbo.25.7.071203 | |
dc.relation.references | de Koning-Ward, T. F., Dixon, M. W. A., Tilley, L., & Gilson, P. R. 2016). Plasmodium species: master renovators of their host cells. Nature Reviews Microbiology, 14. https://doi.org/10.1038/nrmicro.2016.79 | |
dc.relation.references | Devos, O., Ghaffari, M., Vitale, R., de Juan, A., Sliwa, M., & Ruckebusch, C. (2021). Multivariate Curve Resolution Slicing of Multiexponential Time- Resolved Spectroscopy Fluorescence Data. Analytical Chemistry, 93(37), 12504–12513. https://doi.org/10.1021/acs.analchem.1c01284 | |
dc.relation.references | Dhamnetiya, D., Goel, M. K., Jha, R. P., Shalini, S., & Bhattacharyya, K. (2022). How to Perform Discriminant Analysis in Medical Research? Explained with Illustrations. Journal of Laboratory Physicians, 14(04), 511–520. https://doi.org/10.1055/s-0042-1747675 | |
dc.relation.references | Dong, Y., Liu, L., Han, J., Zhang, L., Wang, Y., Li, J., Li, Y., Liu, H., Zhou, K., Li, L., Wang, X., Shen, X., Zhang, M., Zhang, B., & Hu, X. (2022). Worldwide Research Trends on Artemisinin: A Bibliometric Analysis From 2000 to 2021. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.868087 | |
dc.relation.references | dos Santos Rodrigues, F. H., Delgado, G. G., Santana da Costa, T., & Tasic, L. (2023). Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA Advances, 3(April). https://doi.org/10.1016/j.bbadva.2023.100091 | |
dc.relation.references | Eck, N. J. Van, & Waltman, L. (2018). VOSviewer Manual (Issue April). Universiteit Leiden. | |
dc.relation.references | Eisinger, J., & Flores, J. (1979). Front-face fluorometry of liquid samples. Analytical Biochemistry, 94(1), 15–21. https://doi.org/10.1016/0003-2697(79)90783-8 | |
dc.relation.references | Elson, D. S., Webb, S. E. D., Siegel, J., & French, P. M. W. (2002). Fluorescence Lifetime Imaging with a Blue Picosecond Diode Laser. Optics Letters, 27(16), 1409–1411. | |
dc.relation.references | Fiedoruk-pogrebniak, M., Granica, M., & Koncki, R. (2018). Compact detectors made of paired LEDs for photometric and fluorometric measurements on paper. Talanta, 178(August 2017), 31–36. https://doi.org/10.1016/j.talanta.2017.08.091 | |
dc.relation.references | Fiedoruk-Pogrebniak, M., & Koncki, R. (2015). Multicommutated flow analysis system based on fluorescence microdetectors for simultaneous determination of phosphate and calcium ions in human serum. Talanta, 144, 184–188. https://doi.org/10.1016/j.talanta.2015.06.001 | |
dc.relation.references | Fiedoruk, M., Cocovi-Solberg, D. J., Tymecki, L., Koncki, R., & Miró, M. (2015). Hybrid flow system integrating a miniaturized optoelectronic detector for online dynamic fractionation and fluorometric determination of bioaccessible orthophosphate in soils. Talanta, 133, 59–65. https://doi.org/10.1016/j.talanta.2014.05.063 | |
dc.relation.references | Filippo, R., Taralli, E., & Rajteri, M. (2017). LEDs: Sources and intrinsically bandwidth-limited detectors. Sensors (Switzerland), 17(7). https://doi.org/10.3390/s17071673 | |
dc.relation.references | Franco, A. Y., & Longart, M. (2009). Aplicaciones de la proteína verde fluorescente (GFP) en la biología celular y en la visualización del sistema nervioso. Revista de Estudios Transdisciplinarios, 1(2), 84–96. http://www.tsienlab.ucsd.edu/Default.htm | |
dc.relation.references | G.G.Stokes. (1852). On the change of refrangibility of light. Philos.Trans.R.Soc.London, 142(June 1848), 463–562. https://doi.org/10.1098/rstl.1852.0022 | |
dc.relation.references | Garrido-Cardenas, J. A., Mesa-Valle, C., & Manzano-Agugliaro, F. (2018). Genetic approach towards a vaccine against malaria. European Journal of Clinical Microbiology and Infectious Diseases, 37(10), 1829–1839. https://doi.org/10.1007/s10096-018-3313-8 | |
dc.relation.references | Garrido Tamayo, M. Á., Hoyos Velasco, F. E., & Candelo-Becerra, J. E. (2019). Characterization of excitation source LEDs and sensors without filters for measuring fluorescence in fluorescein and green leaf extract. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(4), 1838–1844. http://doi.org/10.12928/telkomnika.v17i4.11985 | |
dc.relation.references | Ghisaidoobe, A. B. T., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on förster resonance energy transfer techniques. International Journal of Molecular Sciences, 15(12), 22518–22538. https://doi.org/10.3390/ijms151222518 | |
dc.relation.references | Goh, B., Ching, K., Soares Magalhães, R. J., Ciocchetta, S., Edstein, M. D., Maciel-de-freitas, R., & Sikulu-lord, M. T. (2021). The application of spectroscopy techniques for diagnosis of malaria parasites and arboviruses and surveillance of mosquito vectors : A systematic review and critical appraisal of evidence. PLoS Neglected Tropical Diseases, 1–24. https://doi.org/10.1371/journal.pntd.0009218 | |
dc.relation.references | Gondosubroto, R. (2024). Internet of Things from Scratch_ Build IoT solutions for Industry 4. Packt Publishing | |
dc.relation.references | Gopakumar, G., Swetha, M., Siva, G. S., & Subrahmanyam, G. R. K. S. (2017). Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. Journal of Biophotonics, 11(3), e201700003. https://doi.org/10.1002/jbio.201700003 | |
dc.relation.references | Grabias, B., Zheng, H., Mlambo, G., Tripathi, A. K., & Kumar, S. (2015). A sensitive enhanced chemiluminescent-ELISA for the detection of Plasmodium falciparum circumsporozoite antigen in midguts of Anopheles stephensi mosquitoes. Journal of Microbiological Methods, 108, 19–24. https://doi.org/10.1016/j.mimet.2014.10.006 | |
dc.relation.references | Graumans, W., Tadesse, F. G., Andolina, C., van Gemert, G.-J., Teelen, K., Lanke, K., Gadisa, E., Yewhalaw, D., van de Vegte-Bolmer, M., SiebelinkStoter, R., Reuling, I., Sauerwein, R., & Bousema, T. (2017). Semi-highthroughput detection of Plasmodium falciparum and Plasmodium vivax oocysts in mosquitoes using bead-beating followed by circumsporozoite ELISA and quantitative PCR. Malaria Journal, 16(1), 356. https://doi.org/10.1186/s12936-017-2011-9 | |
dc.relation.references | Gryczynski, Z. (Karol), & Gryczynski, I. (2020). Practical Fluorescence Spectroscopy. In CRC Press (Vol. 1). Taylor & Francis Group. https://doi.org/10.1201/9781315374758 | |
dc.relation.references | Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleaontología Electrónica, 4(1), 103–107 | |
dc.relation.references | Hashimoto, M., Yatsushiro, S., Yamamura, S., & Kataoka, M. (2017). Development of a cell microarray chip system for early and accurate malaria diagnosis. Synthesiology - English Edition, 10(1), 34–41. | |
dc.relation.references | Hlaing, M. M., Dunn, M., Stoddart, P. R., & McArthur, S. L. (2016). Raman spectroscopic identification of single bacterial cells at different stages of their lifecycle. Vibrational Spectroscopy, 86, 81–89. https://doi.org/10.1016/j.vibspec.2016.06.008 | |
dc.relation.references | Ho, M.-F., Baker, J., Lee, N., Luchavez, J., Ariey, F., Nhem, S., Oyibo, W., Bell, D., González, I., Chiodini, P., Gatton, M. L., Cheng, Q., & McCarthy, J. S. (2014). Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malaria Journal, 13, 480. https://doi.org/10.1186/1475-2875-13-480 | |
dc.relation.references | Hobro, A. J., Pavillon, N., Fujita, K., Ozkan, M., Coban, C., & Smith, N. I. (2015). Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. The Analyst, 140(7). https://doi.org/10.1039/C4AN01850H | |
dc.relation.references | Hoffman, R., Edward J. Benz, J., Silberstein, L. E., Heslop, H. E., Weitz, J. I., & Anastasi, J. (2013). Hematology : basic principles and practice (Saunders (ed.); Sixth Edit). Elsevier Inc. | |
dc.relation.references | Hofmann, N., Mwingira, F., Shekalaghe, S., Robinson, L. J., Mueller, I., & Felger, I. (2015). Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Medicine, 12(3), e1001788. https://doi.org/10.1371/journal.pmed.1001788 | |
dc.relation.references | Hu, L., Shi, D., Li, X., Zhu, J., Mao, F., Li, X., Xia, C., Jiang, B., Guo, Y., & Li, J. (2020). Curcumin-based polarity fluorescent probes: Design strategy and biological applications. Dyes and Pigments, 177(March), 108320. https://doi.org/10.1016/j.dyepig.2020.108320 | |
dc.relation.references | Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of A, 374(2065). https://doi.org/10.1098/rsta.2015.0202 | |
dc.relation.references | Kagaya, W., Takehara, I., Kurihara, K., Maina, M., Chan, C. W., Okomo, G., Kongere, J., Gitaka, J., & Kaneko, A. (2022). Potential application of the haematology analyser XN-31 prototype for field malaria surveillance in Kenya. Malaria Journal, 21(1), 252. https://doi.org/10.1186/s12936-02204259-7 | |
dc.relation.references | Kasetsirikul, S., Buranapong, J., Srituravanich, W., Kaewthamasorn, M., Pimpin, A., Gething, P., Elyazar, I., Moyes, C., Smith, D., Battle, K., Guerra, C., Coleman, R., Sattabongkot, J., Promstaporm, S., Maneechai, N., Tippayachai, B., Kengluecha, A., Sudhinaraset, M., Briegleb, C., … Jensen, P. (2016). The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malaria Journal, 15(1), 358. https://doi.org/10.1186/s12936-016-1400-9 | |
dc.relation.references | Kayange, M., M’baya, B., Hwandih, T., Saker, J., Coetzer, T. L., & Münster, M. (2022). Automated measurement of malaria parasitaemia among asymptomatic blood donors in Malawi using the Sysmex XN-31 analyser: could such data be used to complement national malaria surveillance in real time? Malaria Journal, 21(1), 299. https://doi.org/10.1186/s12936-022-043143 | |
dc.relation.references | Kersting, S., Rausch, V., Bier, F. F., & von Nickisch-Rosenegk, M. (2014). Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal, 13, 99. https://doi.org/10.1186/1475-2875-13-99 | |
dc.relation.references | Khoshmanesh, A., Dixon, M. W. A., Kenny, S., Tilley, L., Mcnaughton, D., & Wood, B. R. (2014). Detection and Quantification of Early-Stage Malaria Parasites in Laboratory Infected Erythrocytes by Attenuated Total Re fl ectance Infrared Spectroscopy and Multivariate Analysis. | |
dc.relation.references | Khoshmanesh, A., Dixon, M. W. A., Kenny, S., Tilley, L., McNaughton, D., & Wood, B. R. (2014). Detection and quantification of early-stage malaria parasites in laboratory infected erythrocytes by attenuated total reflectance infrared spectroscopy and multivariate analysis. Analytical Chemistry, 86(9), 4379–4386. https://doi.org/10.1021/ac500199x | |
dc.relation.references | Kneissl, M., & Rass, J. (2016). III-Nitride Ultraviolet Emitters - Technology and Applications. In M. Kneissl & J. Rass (Eds.), Springer Series in Materials Science (Vol. 227). Springer. https://doi.org/10.1007/978-3-319-24100-5 | |
dc.relation.references | Kolawole, E. O., Ayeni, E. T., Abolade, S. A., Ugwu, S. E., Awoyinka, T. B., Ofeh, A. S., & Okolo, B. O. (2023). Malaria endemicity in sub-Saharan Africa: Past and present issues in public health. Microbes and Infectious Diseases, 4(1), 242–251. https://doi.org/10.21608/MID.2022.150194.1346 | |
dc.relation.references | Kumar, S., Zheng, H., Deng, B., Mahajan, B., Grabias, B., Kozakai, Y., Morin, M. J., Locke, E., Birkett, A., Miura, K., & Long, C. (2014). A slot blot immunoassay for quantitative detection of Plasmodium falciparum circumsporozoite protein in mosquito midgut oocyst. PloS One, 9(12), e115807. https://doi.org/10.1371/journal.pone.0115807 | |
dc.relation.references | Kumar, S., Zheng, H., Mahajan, B., Kozakai, Y., Morin, M., & Locke, E. (2014). Western Blot Assay for Quantitative and Qualitative Antigen Detection in Vaccine Development. Current Protocols in Microbiology, 33(1), 18.4.1- 18.4.11. https://doi.org/10.1002/9780471729259.mc1804s33 | |
dc.relation.references | Kumar, S., Zheng, H., Sangweme, D. T., Mahajan, B., Kozakai, Y., Pham, P. T., Morin, M. J., Locke, E., & Kumar, N. (2013). A chemiluminescent-western blot assay for quantitative detection of Plasmodium falciparum circumsporozoite protein. Journal of Immunological Methods, 390(1–2), 99–105. https://doi.org/10.1016/j.jim.2013.02.001 | |
dc.relation.references | Lakowicz, J. R. (2000). Topics in Fluorescence Spectroscopy: Protein Fluorescence. In Topics in Fluorescence Spectroscopy (Volume 6). KIuwer Academic Publishers. https://doi.org/10.1007/0-306-47060-8_13 | |
dc.relation.references | Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (J. R. Lakowicz (ed.); Third Edit). Springer US. https://doi.org/10.1007/978-0-387-46312-4 | |
dc.relation.references | Lamoureux, G., & Ogilvie, J. F. (2021). Orbitals in general chemistry, part II: Mathematical realities. Quimica Nova, 44(3), 348–354. https://doi.org/10.21577/0100-4042.20170664 | |
dc.relation.references | Lange, V., Ribeiro, F., Tews, W., & Kühlke, D. (2008). Multicolor LED sensor. Proc. of SPIE, 7003(April), 70030M-70030M – 7. https://doi.org/10.1117/12.780497 | |
dc.relation.references | Laura-Ochoa, L. (2019). Evaluación de Algoritmos de Clasificación utilizando Validación Cruzada. In 17th LACCEI International Multi-Conference for Engineering, Education, and Technology, 1(July 2019), 1–6. https://doi.org/10.18687/laccei2019.1.1.471 | |
dc.relation.references | Leblanc, L., & Dufour, É. (2002). Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiology Letters, 211(2), 147–153. https://doi.org/10.1016/S0378-1097(02)00636-5 | |
dc.relation.references | Lee, N., Baker, J., Andrews, K. T., Gatton, M. L., Bell, D., Cheng, Q., & McCarthy, J. (2006). Effect of sequence variation in Plasmodium falciparum histidine-rich protein 2 on binding of specific monoclonal antibodies: Implications for rapid diagnostic tests for malaria. Journal of Clinical Microbiology, 44(8), 2773–2778. https://doi.org/10.1128/JCM.02557-05 | |
dc.relation.references | Lema, O. E., Carter, J. Y., Nagelkerke, N., Wangai, M. W., Kitenge, P., Gikunda, S. M., Arube, P. A., Munafu, C. G., Materu, S. F., Adhiambo, C. A., & Mukunza, H. K. (1999). Comparison of five methods of malaria detection in the outpatient setting. American Journal of Tropical Medicine and Hygiene, 60(2), 177–182. | |
dc.relation.references | Lewison, G., & Srivastava, D. (2008). Malaria research, 1980-2004, and the burden of disease. ACTA TROPICA, 106(2), 96–103. https://doi.org/10.1016/j.actatropica.2008.01.009 | |
dc.relation.references | Li, J., Saidi, A. M., Seydel, K., & Lillehoj, P. B. (2024). Rapid diagnosis and prognosis of malaria infection using a microfluidic point-of-care immunoassay. Biosensors and Bioelectronics, 250(January), 116091. https://doi.org/10.1016/j.bios.2024.116091 | |
dc.relation.references | Littlejohn, B., Heeger, K. M., Wise, T., Gettrust, E., & Lyman, M. (2009). UV degradation of the optical properties of acrylic for neutrino and dark matter experiments. Journal of Instrumentation, 4(9). https://doi.org/10.1088/17480221/4/09/T09001 | |
dc.relation.references | Mackey, L., McGregor, I. A., & Lambert, P. H. (1980). Diagnosis of Plasmodium falciparum infection using a solid-phase radioimmunoassay for the detection of malaria antigens. Bulletin of the World Health Organization, 58(3), 439–444. https://iris.who.int/handle/10665/261996 | |
dc.relation.references | Maia, M. F., Kapulu, M., Muthui, M., Wagah, M. G., Ferguson, H. M., Dowell, F. E., Baldini, F., & Cartwright, L.-R. (2019). Detection of Plasmodium falciparum infected Anopheles gambiae using near-infrared spectroscopy. Malaria Journal, 18(1). https://doi.org/10.1186/s12936-019-2719-9 | |
dc.relation.references | Maier, A. G., Rug, M., O’Neill, M. T., Brown, M., Chakravorty, S., Szestak, T., Chesson, J., Wu, Y., Hughes, K., Coppel, R. L., Newbold, C., Beeson, J. G., Craig, A., Crabb, B. S., & Cowman, A. F. (2008). Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes. Cell, 134(1), 48–61. https://doi.org/10.1016/j.cell.2008.04.051 | |
dc.relation.references | Makarov, I. S., Golova, L. K., Bondarenko, G. N., Anokhina, T. S., Dmitrieva, E. S., Levin, I. S., Makhatova, V. E., Galimova, N. Z., & Shambilova, G. K. (2022). Structure, Morphology, and Permeability of Cellulose Films. Membranes, 12(3), 1–13. https://doi.org/10.3390/membranes12030297 | |
dc.relation.references | Makler, M. T., & Hinrichs, D. J. (1993). Measurement of the Lactate Dehydrogenase Activity of Plasmodium falciparum as an Assessment of Parasitemia. The American Journal of Tropical Medicine and Hygiene, 48(2), 205–210. https://doi.org/10.4269/ajtmh.1993.48.205 | |
dc.relation.references | Malpartida-Cardenas, K., Miscourides, N., Rodriguez-Manzano, J., Yu, L.-S., Moser, N., Baum, J., & Georgiou, P. (2019). Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform. Biosensors & Bioelectronics, 145, 111678. https://doi.org/10.1016/j.bios.2019.111678 | |
dc.relation.references | Maquelin, K., Kirschner, C., Choo-Smith, L.-P., Ngo-Thi, N. A., van Vreeswijk, T., Stämmler, M., Endtz, H. P., Bruining, H. A., Naumann, D., & Puppels, G. J. (2003). Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. Journal of Clinical Microbiology, 41(1), 324–329. https://doi.org/10.1128/JCM.41.1.324 | |
dc.relation.references | Marti, X., Skjefte, M., Sikka, R., & Gupta, H. (2022). Factors Affecting the Performance of HRP2-Based Malaria Rapid Diagnostic Tests. Tropical Medicine and Infectious Disease, 7(265), 1–22. https://doi.org/10.3390/tropicalmed7100265 | |
dc.relation.references | Masilamani, V., Devanesan, S., Ravikumar, M., Perinbam, K., AlSalhi, M., Prasad, S., Palled, S., Ganesh, K., & Alsaeed, A. (2014). Fluorescence spectral diagnosis of malaria a preliminary study. Diagnostic Pathology, 9(1), 182. https://doi.org/10.1186/s13000-014-0182-z | |
dc.relation.references | Mens, P. F., Matelon, R. J., Nour, B. Y. M., Newman, D. M., & Schallig, H. D. F. H. (2010). Laboratory evaluation on the sensitivity and specificity of a novel and rapid detection method for malaria diagnosis based on magneto-optical technology (MOT). Malaria Journal, 9, 207. https://doi.org/10.1186/14752875-9-207 | |
dc.relation.references | Mims_III, F. _M. (1992). Sun photometer with light-emitting diodes as spectrally selective detectors. Applied Optics, 31(33), 6965–6967. | |
dc.relation.references | Ministerio de Salud y Protección Social. (2024). Malaria en Colombia. Página Web. https://www.minsalud.gov.co/salud/publica/PET/Paginas/malaria.aspx | |
dc.relation.references | Ministers of Health of High Burden High Impact (HBHI) countries in Africa. (2024). Declaration for accelerated malaria mortality reduction in Africa : commitment that “ No one shall die from malaria .” https://cdn.who.int/media/docs/default-source/malaria/mpac-documentation/malaria-conference-declaration-final.pdf | |
dc.relation.references | Minopoli, A., Della Ventura, B., Lenyk, B., Gentile, F., Tanner, J. A., Offenhäusser, A., Mayer, D., & Velotta, R. (2020). Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nature Communications, 11(1), 6134. https://doi.org/10.1038/s41467-020-19755-0 | |
dc.relation.references | Miyagawa, A., Harada, M., Fukuhara, G., & Okada, T. (2020). Space SizeDependent Transformation of Tetraphenylethylene Carboxylate Aggregates by Ice Confinement. Journal of Physical Chemistry B, 124(11), 2209–2217. https://doi.org/10.1021/acs.jpcb.9b11345 | |
dc.relation.references | Miyagishi, H. V., Masai, H., & Terao, J. (2022). Linked Rotaxane Structure Restricts Local Molecular Motions in Solution to Enhance Fluorescence Properties of Tetraphenylethylene. Chemistry - A European Journal, 28(6). https://doi.org/10.1002/chem.202103175 | |
dc.relation.references | Molyneux, P. M., Kilvington, S., Wakefield, M. J., Prydal, J. I., & Bannister, N. P. (2015). Autofluorescence Signatures of Seven Pathogens: Preliminary in Vitro Investigations of a Potential Diagnostic for Acanthamoeba Keratitis. Cornea, 00(00), 1588–1592. https://doi.org/10.1097/ICO.0000000000000645 | |
dc.relation.references | Mshani, I. H., Siria, D. J., Mwanga, E. P., Sow, B. B. D., Sanou, R., Opiyo, M., Lord, M. T. S., Ferguson, H. M., Diabate, A., Wynne, K., Jiménez, M. G., Baldini, F., Babayan, S. A., & Okumu, F. (2023). Key considerations , target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis. Malaria Journal, 1–16. https://doi.org/10.1186/s12936-023-04780-3 | |
dc.relation.references | Mwanga, E. P., Minja, E. G., Mrimi, E., Jiménez, M. G., Swai, J. K., Abbasi, S., Ngowo, H. S., Siria, D. J., Mapua, S., Stica, C., Maia, M. F., Olotu, A., SikuluLord, M. T., Baldini, F., Ferguson, H. M., Wynne, K., Selvaraj, P., Babayan, S. A., & Okumu, F. O. (2019). Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis. Malaria Journal, 18(1), 341. https://doi.org/10.1186/s12936-019-2982-9 | |
dc.relation.references | Nagel, R. L. (2010). Hemoglobin Disorders: Molecular Methods and Protocols. In Humana Press Inc. (Ed.), Methods in Molecular Medicine (Vol. 82). https://doi.org/10.1385/1-59259-373-9:101 | |
dc.relation.references | Naserrudin, N. A., Abdul Aziz, E. I., Aljet, E., Mangunji, G., Tojo, B., Jeffree, M. S., Culleton, R., & Ahmed, K. (2021). High incidence of asymptomatic cases during an outbreak of plasmodium malariae in a remote village of Malaysian borneo. PLoS Neglected Tropical Diseases, 15(6), 1–10. https://doi.org/10.1371/journal.pntd.0009450 | |
dc.relation.references | Ocean Optics Inc. (2016). The Next Generation of Miniature Spectrometers. http://oceanoptics.com/product/flame-spectrometer/ | |
dc.relation.references | Opoku-Ansah, J., Eghan, M. J., Anderson, B., & Boampong, J. N. (2014). Wavelength Markers for Malaria (Plasmodium Falciparum) Infected and Uninfected Red Blood Cells for Ring and Trophozoite Stages. Applied Physics Research, 6(2), 47–55. https://doi.org/10.5539/apr.v6n2p47 | |
dc.relation.references | Opoku-Ansah, J., Eghan, M. J., Anderson, B., Boampong, J. N., & Buah-Bassuah, P. K. (2016). Laser-Induced Autofluorescence Technique for Plasmodium falciparum Parasite Density Estimation. Applied Physics Research, 8(2), 43. https://doi.org/10.5539/apr.v8n2p43 | |
dc.relation.references | Opoku Afriyie, S., Addison, T. K., Gebre, Y., Mutala, A. H., Antwi, K. B., Abbas, D. A., Addo, K. A., Tweneboah, A., Ayisi-Boateng, N. K., Koepfli, C., & Badu, K. (2023). Accuracy of diagnosis among clinical malaria patients: comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malaria Journal, 22(1), 1–11. https://doi.org/10.1186/s12936-023-04506-5 | |
dc.relation.references | Ordoñez Moreno, M. (2024). Avances y Desafíos en la Aplicación de Espectroscopía de Infrarrojo Cercano (NIR) para el Desarrollo de Nanomateriales en Biomedicina: “Revisión sistemática.” In Universidad Santiago de Cali. Universidad Santiago de Cali. | |
dc.relation.references | Ospina Montoya, A. (2013). Metodología para medición de ozono mediante el método fotométrico con tecnología de diodo led ultravioleta y monitoreo remoto con protocolo zigbee. Instituto Tecnológico Metropolitano - Institución Universitaria. | |
dc.relation.references | Oyeyemi, O. T., Ogunlade, A. F., & Oyewole, I. O. (2015). Comparative assessment of microscopy and rapid diagnostic test (RDT) as malaria diagnostic tools. Research Journal of Parasitology, 10(3), 120–126. https://doi.org/10.3923/jp.2015.120.126 | |
dc.relation.references | Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71 | |
dc.relation.references | Panklang, N., Techaumnat, B., Wisitsoraat, A., Putaporntip, C., Chotivanich, K., & Suzuki, Y. (2022). A discrete dielectrophoresis device for the separation of malaria-infected cells. Electrophoresis, 43(12), 1347–1356. https://doi.org/10.1002/elps.202100271 | |
dc.relation.references | Parson, W. W., & Burda, C. (2023). Modern optical spectroscopy: From fundamentals to applications in chemistry, biochemistry and biophysics. In Springer Nature Switzerland (Ed.), Springer Nature Switzerland (Third). https://doi.org/10.1007/978-3-031-17222-9 | |
dc.relation.references | Patiño, S., Alamo, L., Cimino, M., Casart, Y., Bartoli, F., Garcia, M. J., & Salazar, L. (2008). Autofluorescence of Mycobacteria as a Tool for Detection of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 46(10), 3296– 3302. https://doi.org/10.1128/JCM.02183-07 | |
dc.relation.references | Paunonen, S. (2013). Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources, 8(2), 3098–3121. https://doi.org/10.15376/biores.8.2.3098-3121 | |
dc.relation.references | Pedraja-Rejas, L., Garrido-Tamayo, M. A., Ortega-Piwonka, I., Rodríguez-Ponce, E., & Laroze, D. (2024). Scientific production in Latin American physics: a bibliometric analysis. In Scientometrics (Vol. 129, Issue 7). Springer International Publishing. https://doi.org/10.1007/s11192-024-05035-x | |
dc.relation.references | Pedraja-Rejas, L., Rodríguez-ponce, E., Laroze, D., & Muñoz-Fritis, C. (2023). Mapping global citizenship : A Bibliometric analysis of the field of education for sustainable development. Frontiers in Education, 8(March), 1–12. https://doi.org/10.3389/feduc.2023.1139198 | |
dc.relation.references | Pedraja-Rejas, L., Rodríguez-Ponce, E., & Muñoz-Fritis, C. (2022). Análisis global de la producción científica respecto del aprendizaje organizacional en la educación superior. Actas Del V Congreso Internacional de Ingeniería de Sistemas 64, 61–76 | |
dc.relation.references | Pedraja-Rejas, L., Rodríguez-Ponce, E., Muñoz-Fritis, C., Garrido-Tamayo, M.-A., Vélez, J., & Laroze, D. (2025). Chinchorro culture: An analysis from the learning perspective. Social Sciences & Humanities Open Journal, 11(January), 101309. https://doi.org/10.1016/j.ssaho.2025.101309 | |
dc.relation.references | Pedraja-Rejas, L., Rodríguez-Ponce, E., Muñoz-Fritis, C., & Laroze, D. (2023a). Online Learning and Experiences in Higher Education during COVID-19: A Systematic Review. Sustainability, 15(21). https://doi.org/10.3390/su152115583 | |
dc.relation.references | Pedraja-Rejas, L., Rodríguez-Ponce, E., Muñoz-Fritis, C., & Laroze, D. (2023b). Sustainable Development Goals and Education: A Bibliometric Review—The Case of Latin America. Sustainability (Switzerland), 15(12). https://doi.org/10.3390/su15129833 | |
dc.relation.references | Peng, C., & Liu, J. (2013). Studies on Red-Shift Rules in Fluorescence Spectra of Human Blood Induced by LED. Applied Physics Research, 5(1), 1–6. https://doi.org/10.5539/apr.v5n1p1 | |
dc.relation.references | Preißinger, K., Molnar, P., Vertessy, B., Kezsmarki, I., & Kellermayer, M. (2021). Stage-Dependent Topographical and Optical Properties of Plasmodium Falciparum-Infected Red Blood Cells. Journal of Biotechnology and Biomedicine, 04(03). https://doi.org/10.26502/jbb.2642-91280040 | |
dc.relation.references | Queensland University of Technology. (2023). Prof. Dra. Michelle Gatton. https://www.qut.edu.au/about/our-people/academic-profiles/m.gatton | |
dc.relation.references | Radboud University. (2023). Prof. Dr. Teun Bousema. https://www.radboudumc.nl/en/people/teun-bousema | |
dc.relation.references | Radboud University Medical Center. (2023). Prof. Dr. Robert Sauerwein. https://www.radboudumc.nl/en/people/robert-sauerwein | |
dc.relation.references | Ramasamy, R. (2014). Zoonotic malaria - global overview and research and policy needs. Frontiers in Public Health, 2(AUG), 1–7. https://doi.org/10.3389/fpubh.2014.00123 | |
dc.relation.references | Requena, A., & Zuñiga, J. (2004). Espectroscopía (I. Capella (ed.)). Pearson Educación S.A | |
dc.relation.references | Richards-Kortum, R., Rava, R. P., Fitzmaurice, M., Tong, L. L., Kramer, J. R., & Feld, M. S. (1989). A One-Layer Model of Laser-Induced Fluorescence for Diagnosis of Disease in Human Tissue: Applications to Atherosclerosis. IEEE Transactions on Biomedical Engineering, 36(12), 1222–1232. https://doi.org/10.1109/10.42117 | |
dc.relation.references | Riglar, D. T., Richard, D., Wilson, D. W., Boyle, M. J., Dekiwadia, C., Turnbull, L., Angrisano, F., Marapana, D. S., Rogers, K. L., Whitchurch, C. B., Beeson, J. G., Cowman, A. F., Ralph, S. A., & Baum, J. (2011). Article Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte. Cell Host and Microbe, 9(1), 9–20. https://doi.org/10.1016/j.chom.2010.12.003 | |
dc.relation.references | Rivadeneira, E. M., Wasserman, M., & Espinal, C. T. (1983). Separation and Concentration of Schizonts of Plasmodium falciparum by Percoll Gradients. The Journal of Protozoology, 30(2), 367–370. https://doi.org/10.1111/j.15507408.1983.tb02932.x | |
dc.relation.references | Romanolo, K. F., Gorski, L., Wang, S., & Lauzon, C. R. (2015). Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis. PLoS ONE, 10(11), 1–8. https://doi.org/10.1371/journal.pone.0143425 | |
dc.relation.references | ROVIRA, L., SENRA, P., & JOU, D. (2000). Bibliometric analysis of physics in Catalonia: Towards quality consolidation, Scientometrics, 49(2), 233–256. | |
dc.relation.references | Ruiz-Vega, G., Arias-Alpízar, K., de la Serna, E., Borgheti-Cardoso, L. N., Sulleiro, E., Molina, I., Fernàndez-Busquets, X., Sánchez-Montalvá, A., Del Campo, F. J., & Baldrich, E. (2020). Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosensors & Bioelectronics, 150, 111925. https://doi.org/10.1016/j.bios.2019.111925 | |
dc.relation.references | Sahoo, H. (2022). Optical Spectroscopic and Microscopic Techniques. In Optical Spectroscopic and Microscopic Techniques. Springer. https://doi.org/10.1007/978-981-16-4550-1 | |
dc.relation.references | SCHOTT Advanced Optics. (2016). Interference Filters. Website. http://www.schott.com/advanced_optics/english/syn/advanced_optics/product s/optical-components/optical-filters/interference-filters/index.html | |
dc.relation.references | Serway, R. A., & Jewett Jr., J. W. (2019). Physics for Scientist and Engineers - With Modern Physiics. In Cengage Learning (Tenth Edic). | |
dc.relation.references | Shrirao, A. B., Schloss, R. S., Fritz, Z., Shrirao, M. V., Rosen, R., & Yarmush, M. L. (2021). Autofluorescence of blood and its application in biomedical and clinical research. Biotechnology and Bioengineering, 118(12), 4550–4576. https://doi.org/10.1002/bit.27933 | |
dc.relation.references | Silva-Pérez, A., Godínez-Fernández, J., Fernández-Guasti, M., & Haro- Poniatowski, E. (2009). Espectroscopía de fluorescencia inducida por láser en células (pp. 487–508). | |
dc.relation.references | Skoog, D., Holler, F., & Nieman, T. (2001). Principios de análisis instrumental (5ed ed.). McGrawHill. | |
dc.relation.references | Sohn, M., Himmelsbach, D. S., Barton, F. E., & Fedorka-Cray, P. J. (2009). Fluorescence Spectroscopy for Rapid Detection and Classification of Bacterial Pathogens. Appl. Spectrosc., 63(11), 1251–1255. http://as.osa.org/abstract.cfm?URI=as-63-11-1251 | |
dc.relation.references | Spillman, N. J., Beck, J. R., & Goldberg, D. E. (2015). Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annual Review of Biochemistry, 84(January), 813–841. https://doi.org/10.1146/annurev-biochem-060614-034157 | |
dc.relation.references | Stübel, H. (1911). Die Fluoreszenz tierischer Gewebe in ultraviolettem Licht. Pflüger’s Archiv Für Die Gesammte Physiologie Des Menschen Und Der Tiere, 142(1–2), 1–14. https://doi.org/10.1007/BF01680690 | |
dc.relation.references | Sun, Q., Zeng, Y., Zhang, W., Zheng, W., Luo, Y., & Qu, J. Y. (2015). Two-photon excited fluorescence emission from hemoglobin. Multiphoton Microscopy in the Biomedical Sciences XV, 9329, 93290O. https://doi.org/10.1117/12.2076685 | |
dc.relation.references | Sun, Q., Zheng, W., Wang, J., Luo, Y., & Qu, J. Y. (2015). Mechanism of twophoton excited hemoglobin fluorescence emission. Journal of Biomedical Optics, 20(10), 105014. https://doi.org/10.1117/1.jbo.20.10.105014 | |
dc.relation.references | Tadesse, F. G., Lanke, K., Nebie, I., Schildkraut, J. A., Gonçalves, B. P., Tiono, A. B., Sauerwein, R., Drakeley, C., Bousema, T., & Rijpma, S. R. (2017). Molecular Markers for Sensitive Detection of Plasmodium falciparum Asexual Stage Parasites and their Application in a Malaria Clinical Trial. The American Journal of Tropical Medicine and Hygiene, 97(1), 188–198. https://doi.org/10.4269/ajtmh.16-0893 | |
dc.relation.references | Tangpukdee, N., Duangdee, C., Wilairatana, P., & Krudsood, S. (2009). Malaria diagnosis: A brief review. Korean Journal of Parasitology, 47(2), 93–102. https://doi.org/10.3347/kjp.2009.47.2.93 | |
dc.relation.references | Taylor, B. J., Howell, A., Martin, K. A., Manage, D. P., Gordy, W., Campbell, S. D., Lam, S., Jin, A., Polley, S. D., Samuel, R. A., Atrazhev, A., Stickel, A. J., Birungi, J., Mbonye, A. K., Pilarski, L. M., Acker, J. P., & Yanow, S. K. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13, 179. https://doi.org/10.1186/1475-2875-13-179 | |
dc.relation.references | Thorlabs Inc. (2020). LED with Window, 310 nm [Datasheet] (pp. 1–4). | |
dc.relation.references | Toro, D. del Á., & Bravo, R. M. (2013). Propuesta de una tecnología para la obtención de pinturas para la Empresa de Pinturas Vitral. Tecnología Química, XXXIII(3), 212–223. | |
dc.relation.references | University of Glasgow. (2014). Detection of Plasmodium falciparum or Trypanosome infection with ultrasound-based separation of red blood cells (RBCs). https://doi.org/10.1038/scibx.2014.469 | |
dc.relation.references | van Weijen, D. (2012). The language of (future) scientific communication. Research Trends Volume, 1(31), 1–3. | |
dc.relation.references | Vernot-Hernandez, J.-P., & Heidrich, H.-G. (1985). The relationship to knobs of the 92,000 D protein specific for knobby strains of Plasmodium falciparum. Zeitschrift Für Parasitenkunde, 71, 41–51. https://doi.org/10.1007/BF00932917 | |
dc.relation.references | Vidal, R., Ma, Y., & Sastry, S. S. (2016). Generalized Principal Component Analysis. In S. S. Antman, L. Greengard, & P. Holmes (Eds.), Interdisciplinary Applied Mathematics (Vol. 40). Springer-Verlag. https://doi.org/10.1007/9780-387-87811-9 | |
dc.relation.references | Walsh, J. D., Hyman, J. M., Borzhemskaya, L., Bowen, A., Mckellar, C., Ullery, M., Mathias, E., Ronsick, C., Link, J., Wilson, M., Clay, B., Robinson, R., Thorpe, T., Belkum, A. Van, & Dunne, W. M. (2013). Rapid Intrinsic Fluorescence Method for Direct Identification of Pathogens in Blood Cultures. MBio, 4(6), 1– 9. https://doi.org/10.1128/mBio.00865-13.Editor | |
dc.relation.references | Warkiani, M. E., Tay, A. K. P., Khoo, B. L., Xiaofeng, X., Han, J., & Lim, C. T. (2014). Malaria detection using inertial microfluidics. Lab on a Chip, 15(4), 1101–1109. https://doi.org/10.1039/c4lc01058b | |
dc.relation.references | White, A. (1959). Effect of pH on fluorescence of tyrosine, tryptophan and related compounds. Biochemical Journal, 71(2), 217–220. | |
dc.relation.references | WHO. (1988). Malaria diagnosis: memorandum from a WHO meeting. Bulletin of the World Health Organization, 66(5), 575–594. | |
dc.relation.references | WHO. (2016a). Giemsa Staining of Malaria Blood Films. In Malaria Microscopy Standard Operating Procedure — MM-SOP-07A. http://www.wpro.who.int/mvp/lab_quality/2096_oms_gmp_sop_07a_rev.pdf | |
dc.relation.references | WHO. (2016b). Malaria Parasite Counting. In Malaria Microscopy Standard Operating Procedure – MM-SOP-09. https://apps.who.int/iris/handle/10665/274382 | |
dc.relation.references | WHO. (2023). World malaria report 2023. World Health Organization. https://www.who.int/teams/global-malaria-programme/reports/world-malariareport-2023 | |
dc.relation.references | Wissing, F., Sanchez, C. P., Rohrbach, P., Ricken, S., & Lanzer, M. (2002). Illumination of the Malaria Parasite Plasmodium falciparum Alters Intracellular pH. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 277(40), 10. https://doi.org/10.1074/jbc.M204845200 | |
dc.relation.references | Wu, L., van den Hoogen, L. L., Slater, H., Walker, P. G. T., Ghani, A. C., Drakeley, C. J., & Okell, L. C. (2015). Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature, 528(7580), S86-93. https://doi.org/10.1038/nature16039 | |
dc.relation.references | Wu, W. T., Martin, A. B., Gandini, A., Aubry, N., Massoudi, M., & Antaki, J. F. (2016). Design of microfluidic channels for magnetic separation of malariainfected red blood cells. Microfluidics and Nanofluidics, 20(2). https://doi.org/10.1007/s10404-016-1707-4 | |
dc.relation.references | Xiu, H., Zhang, Y., Fu, J., Ma, Z., Zhao, L., & Feng, J. (2019). Degradation behavior of deep UV-LEDs studied by electro-optical methods and transmission electron microscopy. Current Applied Physics, 19(1), 20–24. https://doi.org/10.1016/J.CAP.2018.10.019 | |
dc.relation.references | Yilmaz, M., Grilli, M. L., & Turgut, G. (2020). A Bibliometric Analysis of the Publications on In Doped ZnO to be a Guide for Future Studies. Metals, 10(Mayo), 1–20. | |
dc.relation.references | Zhang, Y., Lei, B., & Zhang, X. (2022). Intramolecular energy transfer dyes as temperature- and polarity-sensitive fluorescence probes. Dyes and Pigments, 205(March), 110492. https://doi.org/10.1016/j.dyepig.2022.110492 | |
dc.relation.references | Zheng, Q., Huang, J., Li, H., & Chen, L. (2019). Preparation of highly visible transparent ZnO/cellophane UV-shielding film by RF magnetron sputtering. Ceramics International, 45(3), 3729–3734. https://doi.org/10.1016/j.ceramint.2018.11.038 | |
dc.relation.references | Zheng, W., Li, D., Zeng, Y., Luo, Y., & Qu, J. Y. (2011). Two-photon excited hemoglobin fluorescence. Biomedical Optics Express, 2(1), 71. https://doi.org/10.1364/boe.2.000071 | |
dc.relation.references | Zheng, Z., & Cheng, Z. (2017). Advances in Molecular Diagnosis of Malaria. Advances in Clinical Chemistry, 80, 155–192. https://doi.org/10.1016/bs.acc.2016.11.006 | |
dc.relation.references | Zulfiqar, A. (2024). Hands-on ESP32 with Arduino IDE: Unleash the power of IoT with ESP32 and build exciting projects with this practical guide. Packt Publishing. | |
dc.relation.references | Zuluaga-Idárraga, L., Rios, A., Sierra-Cifuentes, V., Garzón, E., Tobón-Castaño, A., Takehara, I., Toya, Y., Izuka, M., Uchihashi, K., & Lopera-Mesa, T. M. (2021). Performance of the hematology analyzer XN-31 prototype in the detection of Plasmodium infections in an endemic region of Colombia. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-84594-y | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
dc.subject.lemb | Espectroscopía de fluorescencia | |
dc.subject.lemb | Eritrocitos | |
dc.subject.lemb | Malaria | |
dc.subject.proposal | Plasmodium falciparum | spa |
dc.subject.proposal | malaria | spa |
dc.subject.proposal | espectroscopía de fluorescencia | spa |
dc.subject.proposal | métodos diagnósticos | spa |
dc.subject.proposal | Plasmodium falciparum | eng |
dc.subject.proposal | malaria | eng |
dc.subject.proposal | fluorescence spectroscopy | eng |
dc.subject.proposal | diagnostic methods | eng |
dc.title | Investigación en espectroscopía de fluorescencia intrínseca de glóbulos rojos infectados con Plasmodium falciparum y diseño de un espectrofluorímetro portátil para su detección | spa |
dc.title.translated | Research on intrinsic fluorescence spectroscopy of red blood cells infected with Plasmodium falciparum and design of a portable spectrofluorimeter for its detection | eng |
dc.type | Trabajo de grado - Doctorado | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.fundername | MinCiencias |