Investigación en espectroscopía de fluorescencia intrínseca de glóbulos rojos infectados con Plasmodium falciparum y diseño de un espectrofluorímetro portátil para su detección

dc.contributor.advisorLaroze Navarrete, David
dc.contributor.advisorHoyos Velasco, Fredy Edimer
dc.contributor.advisorRincón Santamaría, Alejandro
dc.contributor.authorGarrido Tamayo, Miguel Ángel
dc.contributor.googlescholarGarrido Tamayo, Miguel Ángel [https://scholar.google.com/citations?user=ujSC6S0AAAAJ&hl=es]
dc.contributor.orcidGarrido Tamayo, Miguel Ángel [0000-0002-5018-3170]
dc.contributor.researchgateGarrido Tamayo, Miguel Ángel [https://www.researchgate.net/profile/Miguel-Garrido-Tamayo]
dc.contributor.researchgroupProcesamiento Digital de Señales Para Sistemas en Tiempo Real
dc.contributor.scopusGarrido-Tamayo, Miguel Angel [59171121700]
dc.date.accessioned2025-09-01T03:00:03Z
dc.date.available2025-09-01T03:00:03Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractEn esta investigación se realizaron análisis espectrales mediante espectroscopía óptica de fluorescencia UV-VIS para estudiar los cambios en la fluorescencia intrínseca (autofluorescencia) de los glóbulos rojos infectados con Plasmodium falciparum, uno de los parásitos causante de la malaria, a partir de cultivos in vitro. El objetivo principal fue proponer un nuevo método físico de diagnóstico de la malaria basado en la autofluorescencia, que pueda ser implementado en un dispositivo de bajo costo y fabricado con componentes de fácil adquisición. Para lograr este objetivo, se realizaron mediciones de autofluorescencia de glóbulos rojos sanos e infectados, utilizando barridos espectrales en un rango de 255 nm a 640 nm, abarcando un total de 76 longitudes de onda de excitación. Asimismo, se caracterizaron diversos materiales con el potencial de ser utilizados como filtros ópticos, fuentes de excitación y detectores de autofluorescencia. Entre los principales resultados, se identificaron dos longitudes de onda de excitación en la región del ultravioleta (UV-A), 315 nm y 320 nm, que permiten diferenciar claramente las muestras de glóbulos rojos sanos de las infectadas. Estas longitudes de onda generaron picos de emisión máxima en el ultravioleta entre 350 nm a 366 nm, con una diferencia máxima observada en el borde superior del UV cercano, muy próximo al violeta visible a 374 y 380 nm respectivamente. Las muestras infectadas mostraron un incremento en la intensidad de fluorescencia superior al 70% en la región del ultravioleta y más del doble en la región del violeta-azul, lo cual podría estar relacionado con la presencia de fluoróforos derivados del metabolismo del parásito, así como con la disminución de proteínas estructurales, como la hemoglobina. A partir de estos resultados, se propone el diseño de un espectrofluorímetro portátil para la detección del parásito de la malaria, con el objetivo de trasladar los hallazgos experimentales a una solución práctica y accesible en el campo del diagnóstico clínico. Este dispositivo estaría basado en los principios de espectroscopía óptica de fluorescencia UV-VIS, utilizando las longitudes de onda identificadas (315 nm y 320 nm) como fuentes de excitación específicas que permiten distinguir de manera clara los glóbulos rojos infectados de los sanos. El diseño contempla componentes de bajo costo y fácil adquisición, tales como: LEDs emisores en el rango UV-A como fuente de excitación. Filtros ópticos seleccionados según las caracterizaciones realizadas, para aislar eficientemente las bandas de emisión relevantes (380–450 nm). LEDs como sensores sensibles a la región del UV cercano y azul, acoplados a sistemas de adquisición y procesamiento de señal. Además, se plantea la posibilidad de integrar el espectrofluorímetro con dispositivos móviles mediante conexiones inalámbricas, lo que facilitaría el almacenamiento, análisis y envío de datos clínicos en contextos rurales o con acceso limitado a laboratorios especializados. Desde el punto de vista social y epidemiológico, esta propuesta representa una alternativa tecnológica innovadora que podría complementar los métodos actuales de diagnóstico, reduciendo costos y tiempos de respuesta, y permitiendo una intervención más rápida en zonas endémicas. La sensibilidad del dispositivo ante los cambios espectrales derivados de la presencia del parásito ofrece un enfoque no invasivo y escalable, especialmente útil en campañas de vigilancia activa y tamizaje poblacional. (Tomado de la fuente)spa
dc.description.abstractIn this research, spectral analysis by UV-VIS optical fluorescence spectroscopy was performed to study the changes in intrinsic fluorescence (autofluorescence) of red blood cells infected with Plasmodium falciparum, one of the parasites that cause malaria, from in vitro cultures. The main objective was to propose a new physical method for malaria diagnosis based on autofluorescence, which can be implemented in a low-cost device made of easily available components. To achieve this goal, autofluorescence measurements of healthy and infected red blood cells were performed using spectral scans in a range from 255 nm to 640 nm, covering a total of 76 excitation wavelengths. In addition, several materials with the potential to be used as optical filters, excitation sources and autofluorescence detectors were characterized. Among the main results, two excitation wavelengths were identified, 315 nm and 320 nm, which allow a clear differentiation between healthy and infected red blood cell samples. These wavelengths generated maximum emission peaks in the ultraviolet region (UV-A) between 350 nm to 366 nm, with a maximum difference observed at the upper edge of the near-UV, very close to visible violet at 374 and 380 nm, respectively. Infected samples showed an increase in fluorescence intensity of more than 70% in the ultraviolet region and more than double in the violet-blue region, which could be related to the presence of fluorophores derived from parasite metabolism, as well as to the decrease in structural proteins, such as hemoglobin. Based on these results, the design of a portable spectrofluorometer for the detection of the malaria parasite is proposed, with the aim of transferring the experimental findings to a practical and accessible solution in the field of clinical diagnosis. This device would be based on the principles of UV-VIS fluorescence optical spectroscopy, using the identified wavelengths (315 nm and 320 nm) as specific excitation sources that allow to clearly distinguish infected red blood cells from healthy ones. The design contemplates low-cost and easy-to-acquire components, such as: Emitting LEDs in the UV-A range as excitation source. Optical filters selected according to the characterizations performed, to efficiently isolate the relevant emission bands (380-450 nm). LEDs as sensors sensitive to the near-UV and blue region, coupled to signal acquisition and processing systems. In addition, the possibility of integrating the spectrofluorometer with mobile devices through wireless connections is proposed, which would facilitate the storage, analysis and sending of clinical data in rural contexts or with limited access to specialized laboratories. From a social and epidemiological point of view, this proposal represents an innovative technological alternative that could complement current diagnostic methods, reducing costs and response times, and allowing faster intervention in endemic areas. The device's sensitivity to spectral changes derived from the presence of the parasite offers a noninvasive and scalable approach, especially useful in active surveillance and population screening campaigns.eng
dc.description.curricularareaFísica.Sede Medellín
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Física
dc.description.researchareaEspectroscopía de fluorescencia
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación (MinCiencias)
dc.format.extent214 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88513
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Física
dc.relation.indexedLaReferencia
dc.relation.referencesAcuña, A. U., & Amat-Guerri, F. (2008). Early History of Solution Fluorescence: The Lignum nephriticum of Nicolás Monardes. Springer Series on Fluorescence, 4(August 2007), 3–20. https://doi.org/10.1007/4243_2007_006
dc.relation.referencesAjibade, P. (2018). The contributions of information management in promoting indigenous medicine use to enhance public healthcare systems. Studies on Ethno-Medicine, 12(4), 244–252. https://doi.org/10.31901/24566772.2018/12.04.524
dc.relation.referencesAkdemir, S. (2018). Convergence of Slater-Type Orbitals in Calculations of Basic Molecular Integrals. Iranian Journal of Science and Technology, Transaction A: Science, 42, 1613–1621. https://doi.org/10.1007/s40995-017-0177-1
dc.relation.referencesAkerele, D., Ljolje, D., Talundzic, E., Udhayakumar, V., & Lucchi, N. W. (2017). Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR. PLOS ONE, 12(6), e0179178. https://doi.org/10.1371/journal.pone.0179178
dc.relation.referencesAlbani, R. J. (2007). Principles and Applications of Fluorescence Spectroscopy (First). Blackweel.
dc.relation.referencesAnalog Devices. (2011). Low Cost Low Power Instrumentation Amplifier: AD620 [Datasheet] (pp. 1–21).
dc.relation.referencesAndersson-Engels, S., Johansson, J., Svanberg, K., & Svanberg, S. (1991). Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue. Photochemistry and Photobiology, 53(6), 807–814. https://doi.org/10.1111/j.1751-1097.1991.tb09895.x
dc.relation.referencesAnkita, Suthar, B., & Bhargava, A. (2021). Biosensor Application of One- Dimensional Photonic Crystal for Malaria Diagnosis. Plasmonics, 16(1), 59-63. https://doi.org/10.1007/s11468-020-01259-8
dc.relation.referencesAppolus, E. E., & Okoli, C. N. (2022). A Robust Comparison Powers of Four Multivariate Analysis of Variance Tests. European Journal of Statistics and Probability, 10(1), 11–20. https://doi.org/10.37745/ejsp.2013/vol10no1pp.11-20
dc.relation.referencesAvidor, B., Golenser, J., & Sulitzeanu, D. (1985). Detection of Plasmodium falciparum using a radioimmunoassay based on a crossreacting, monoclonal anti-P. berghei antibody-P. berghei antigen system. Journal of Immunological Methods, 82(1), 121–129. https://doi.org/10.1016/0022-1759(85)90231-5
dc.relation.referencesAvraham, H., Golenser, J., Gazitt, Y., Spira, D. T., & Sulitzeanu, D. (1982). A highly sensitive solid-phase radioimmunoassay for the assay of Plasmodium falciparum antigens and antibodies. Journal of Immunological Methods, 53(1), 61–68. https://doi.org/10.1016/0022-1759(82)90240-X
dc.relation.referencesBağcı, A., & Hoggan, P. E. (2020). Analytical evaluation of relativistic molecular integrals: III. Computation and results for molecular auxiliary functions. Rendiconti Lincei, 31(4), 1089–1103. https://doi.org/10.1007/s12210-02000953-3
dc.relation.referencesBahk, Y. Y., Cho, P. Y., Ahn, S. K., Lee, W.-J., & Kim, T.-S. (2018). An Evaluation of Active Case Detection in Malaria Control Program in Kiyuni Parish of Kyankwanzi District, Uganda. The Korean Journal of Parasitology, 56(6), 625–632. https://doi.org/10.3347/kjp.2018.56.6.625
dc.relation.referencesBaker, J., McCarthy, J., Gatton, M., Kyle, D. E., Belizario, V., Luchavez, J., Bell, D., & Cheng, Q. (2005). Genetic diversity of Plasmodium falciparum histidinerich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. Journal of Infectious Diseases, 192(5), 870–877. https://doi.org/10.1086/432010
dc.relation.referencesBalasco, N., Diaferia, C., Rosa, E., Monti, A., Ruvo, M., Doti, N., & Vitagliano, L. (2023). A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24098372
dc.relation.referencesBanoth, E., Kasula, V. K., Jagannadh, V. K., & Gorthi, S. S. (2016). Optofluidic single-cell absorption flow analyzer for point-of-care diagnosis of malaria. Journal of Biophotonics, 9(6), 610–618. https://doi.org/10.1002/jbio.201500118
dc.relation.referencesBaumgartner, H., Vaskuri, A., Kärhä, P., & Ikonen, E. (2016). Temperature invariant energy value in LED spectra. Applied Physics Letters, 109(23). https://doi.org/10.1063/1.4971831
dc.relation.referencesBecerril, M. A. (2012). Parasitología médica (Tercera Ed). McGrawHill.
dc.relation.referencesBecker, W. (2015). Advanced Time- Correlated Single Photon Counting Applications (first). Springer Science+Business Media, LLC. https://doi.org/10.1007/978-3-319-14929-5
dc.relation.referencesBellemare, M. J., Bohle, D. S., Brosseau, C. N., Georges, E., Godbout, M., Kelly, J., Leimanis, M. L., Leonelli, R., Olivier, M., & Smilkstein, M. (2009). Autofluorescence of condensed heme aggregates in malaria pigment and its synthetic equivalent hematin anhydride (B-hematin). Journal of Physical Chemistry B, 113(24), 8391–8401. https://doi.org/10.1021/jp8104375
dc.relation.referencesBeltrán-Santoyo, G., Ruíz-Huerta, E. A., & Gómez-Bernal, J. M. (2021). La importancia e influencia del idioma inglés dentro del campo científico. Revista Lengua y Cultura, 3(5), 46–51.
dc.relation.referencesBreugelmans, J. G.., Roberge, G., Tippett, C., Durning, M., Struck, D. B., & Makanga, M. M. (2018). Scientific impact increases when researchers publish in open access and international collaboration: A bibliometric analysis on poverty-related disease papers. PLoS ONE, 13(9), 1–20. https://doi.org/10.1371/journal.pone.0203156
dc.relation.referencesButykai, A., Orbán, A., Kocsis, V., Szaller, D., Bordács, S., Tátrai-Szekeres, E., Kiss, L. F., Bóta, A., Vértessy, B. G., Zelles, T., & Kézsmárki, I. (2013). Malaria pigment crystals as magnetic micro-rotors: key for high-sensitivity diagnosis. Scientific Reports, 3(1431), 1431. https://doi.org/10.1038/srep01431
dc.relation.referencesCarmona, N., Wittstadt, K., & Römich, H. (2009). Consolidation of paint on stained glass windows: Comparative study and new approaches. Journal of Cultural Heritage, 10(3), 403–409. https://doi.org/10.1016/j.culher.2008.12.004
dc.relation.referencesChen, S., Wan, Q., & Badu-Tawiah, A. K. (2016). Mass Spectrometry for PaperBased Immunoassays: Toward On-Demand Diagnosis. Journal of the American Chemical Society, 138(20), 6356–6359. https://doi.org/10.1021/jacs.6b02232
dc.relation.referencesChiodini, P. L. (2014). Malaria diagnostics: now and the future. Parasitology, 141(14), 1873–1879. https://doi.org/10.1017/S0031182014001371
dc.relation.referencesCifuentes-Rodriguez, N. A., Benavides-Cuestas, E. R., Chacon-Chamorro, S. G., & Segura-Giraldo, B. (2023). Espectroscopia óptica de fluorescencia usando luz tipo LED en tejidos ex-vivo del cuello uterino. Ingeniería Y Competitividad, 25(2). https://doi.org/10.25100/iyc.v25i2.12532
dc.relation.referencesClark, T., & Koch, R. (1999). The Chemist’s Electronic Book of Orbitals (Springer- Verlag (ed.)). https://doi.org/10.1007/978-3-662-13150-3
dc.relation.referencesCorti, A., & Garavaglia, M. (2015). Biopsia óptica. Descripción general y medidas preliminares por espectroscopía óptica de autofluorescencia Optical Biopsy . General description and preliminary measures by autofluorescence optical spectroscopy. Anales AFA, 26(4), 167–169.
dc.relation.referencesCroce, A. C., & Bottiroli, G. (2014). Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry, 58(4), 320–337. https://doi.org/10.4081/ejh.2014.2461
dc.relation.referencesDatta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A., & Skala, M. C. (2020). Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. Journal of Biomedical Optics, 25(07), 071203. https://doi.org/10.1117/1.jbo.25.7.071203
dc.relation.referencesde Koning-Ward, T. F., Dixon, M. W. A., Tilley, L., & Gilson, P. R. 2016). Plasmodium species: master renovators of their host cells. Nature Reviews Microbiology, 14. https://doi.org/10.1038/nrmicro.2016.79
dc.relation.referencesDevos, O., Ghaffari, M., Vitale, R., de Juan, A., Sliwa, M., & Ruckebusch, C. (2021). Multivariate Curve Resolution Slicing of Multiexponential Time- Resolved Spectroscopy Fluorescence Data. Analytical Chemistry, 93(37), 12504–12513. https://doi.org/10.1021/acs.analchem.1c01284
dc.relation.referencesDhamnetiya, D., Goel, M. K., Jha, R. P., Shalini, S., & Bhattacharyya, K. (2022). How to Perform Discriminant Analysis in Medical Research? Explained with Illustrations. Journal of Laboratory Physicians, 14(04), 511–520. https://doi.org/10.1055/s-0042-1747675
dc.relation.referencesDong, Y., Liu, L., Han, J., Zhang, L., Wang, Y., Li, J., Li, Y., Liu, H., Zhou, K., Li, L., Wang, X., Shen, X., Zhang, M., Zhang, B., & Hu, X. (2022). Worldwide Research Trends on Artemisinin: A Bibliometric Analysis From 2000 to 2021. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.868087
dc.relation.referencesdos Santos Rodrigues, F. H., Delgado, G. G., Santana da Costa, T., & Tasic, L. (2023). Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA Advances, 3(April). https://doi.org/10.1016/j.bbadva.2023.100091
dc.relation.referencesEck, N. J. Van, & Waltman, L. (2018). VOSviewer Manual (Issue April). Universiteit Leiden.
dc.relation.referencesEisinger, J., & Flores, J. (1979). Front-face fluorometry of liquid samples. Analytical Biochemistry, 94(1), 15–21. https://doi.org/10.1016/0003-2697(79)90783-8
dc.relation.referencesElson, D. S., Webb, S. E. D., Siegel, J., & French, P. M. W. (2002). Fluorescence Lifetime Imaging with a Blue Picosecond Diode Laser. Optics Letters, 27(16), 1409–1411.
dc.relation.referencesFiedoruk-pogrebniak, M., Granica, M., & Koncki, R. (2018). Compact detectors made of paired LEDs for photometric and fluorometric measurements on paper. Talanta, 178(August 2017), 31–36. https://doi.org/10.1016/j.talanta.2017.08.091
dc.relation.referencesFiedoruk-Pogrebniak, M., & Koncki, R. (2015). Multicommutated flow analysis system based on fluorescence microdetectors for simultaneous determination of phosphate and calcium ions in human serum. Talanta, 144, 184–188. https://doi.org/10.1016/j.talanta.2015.06.001
dc.relation.referencesFiedoruk, M., Cocovi-Solberg, D. J., Tymecki, L., Koncki, R., & Miró, M. (2015). Hybrid flow system integrating a miniaturized optoelectronic detector for online dynamic fractionation and fluorometric determination of bioaccessible orthophosphate in soils. Talanta, 133, 59–65. https://doi.org/10.1016/j.talanta.2014.05.063
dc.relation.referencesFilippo, R., Taralli, E., & Rajteri, M. (2017). LEDs: Sources and intrinsically bandwidth-limited detectors. Sensors (Switzerland), 17(7). https://doi.org/10.3390/s17071673
dc.relation.referencesFranco, A. Y., & Longart, M. (2009). Aplicaciones de la proteína verde fluorescente (GFP) en la biología celular y en la visualización del sistema nervioso. Revista de Estudios Transdisciplinarios, 1(2), 84–96. http://www.tsienlab.ucsd.edu/Default.htm
dc.relation.referencesG.G.Stokes. (1852). On the change of refrangibility of light. Philos.Trans.R.Soc.London, 142(June 1848), 463–562. https://doi.org/10.1098/rstl.1852.0022
dc.relation.referencesGarrido-Cardenas, J. A., Mesa-Valle, C., & Manzano-Agugliaro, F. (2018). Genetic approach towards a vaccine against malaria. European Journal of Clinical Microbiology and Infectious Diseases, 37(10), 1829–1839. https://doi.org/10.1007/s10096-018-3313-8
dc.relation.referencesGarrido Tamayo, M. Á., Hoyos Velasco, F. E., & Candelo-Becerra, J. E. (2019). Characterization of excitation source LEDs and sensors without filters for measuring fluorescence in fluorescein and green leaf extract. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(4), 1838–1844. http://doi.org/10.12928/telkomnika.v17i4.11985
dc.relation.referencesGhisaidoobe, A. B. T., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on förster resonance energy transfer techniques. International Journal of Molecular Sciences, 15(12), 22518–22538. https://doi.org/10.3390/ijms151222518
dc.relation.referencesGoh, B., Ching, K., Soares Magalhães, R. J., Ciocchetta, S., Edstein, M. D., Maciel-de-freitas, R., & Sikulu-lord, M. T. (2021). The application of spectroscopy techniques for diagnosis of malaria parasites and arboviruses and surveillance of mosquito vectors : A systematic review and critical appraisal of evidence. PLoS Neglected Tropical Diseases, 1–24. https://doi.org/10.1371/journal.pntd.0009218
dc.relation.referencesGondosubroto, R. (2024). Internet of Things from Scratch_ Build IoT solutions for Industry 4. Packt Publishing
dc.relation.referencesGopakumar, G., Swetha, M., Siva, G. S., & Subrahmanyam, G. R. K. S. (2017). Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. Journal of Biophotonics, 11(3), e201700003. https://doi.org/10.1002/jbio.201700003
dc.relation.referencesGrabias, B., Zheng, H., Mlambo, G., Tripathi, A. K., & Kumar, S. (2015). A sensitive enhanced chemiluminescent-ELISA for the detection of Plasmodium falciparum circumsporozoite antigen in midguts of Anopheles stephensi mosquitoes. Journal of Microbiological Methods, 108, 19–24. https://doi.org/10.1016/j.mimet.2014.10.006
dc.relation.referencesGraumans, W., Tadesse, F. G., Andolina, C., van Gemert, G.-J., Teelen, K., Lanke, K., Gadisa, E., Yewhalaw, D., van de Vegte-Bolmer, M., SiebelinkStoter, R., Reuling, I., Sauerwein, R., & Bousema, T. (2017). Semi-highthroughput detection of Plasmodium falciparum and Plasmodium vivax oocysts in mosquitoes using bead-beating followed by circumsporozoite ELISA and quantitative PCR. Malaria Journal, 16(1), 356. https://doi.org/10.1186/s12936-017-2011-9
dc.relation.referencesGryczynski, Z. (Karol), & Gryczynski, I. (2020). Practical Fluorescence Spectroscopy. In CRC Press (Vol. 1). Taylor & Francis Group. https://doi.org/10.1201/9781315374758
dc.relation.referencesHammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleaontología Electrónica, 4(1), 103–107
dc.relation.referencesHashimoto, M., Yatsushiro, S., Yamamura, S., & Kataoka, M. (2017). Development of a cell microarray chip system for early and accurate malaria diagnosis. Synthesiology - English Edition, 10(1), 34–41.
dc.relation.referencesHlaing, M. M., Dunn, M., Stoddart, P. R., & McArthur, S. L. (2016). Raman spectroscopic identification of single bacterial cells at different stages of their lifecycle. Vibrational Spectroscopy, 86, 81–89. https://doi.org/10.1016/j.vibspec.2016.06.008
dc.relation.referencesHo, M.-F., Baker, J., Lee, N., Luchavez, J., Ariey, F., Nhem, S., Oyibo, W., Bell, D., González, I., Chiodini, P., Gatton, M. L., Cheng, Q., & McCarthy, J. S. (2014). Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malaria Journal, 13, 480. https://doi.org/10.1186/1475-2875-13-480
dc.relation.referencesHobro, A. J., Pavillon, N., Fujita, K., Ozkan, M., Coban, C., & Smith, N. I. (2015). Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. The Analyst, 140(7). https://doi.org/10.1039/C4AN01850H
dc.relation.referencesHoffman, R., Edward J. Benz, J., Silberstein, L. E., Heslop, H. E., Weitz, J. I., & Anastasi, J. (2013). Hematology : basic principles and practice (Saunders (ed.); Sixth Edit). Elsevier Inc.
dc.relation.referencesHofmann, N., Mwingira, F., Shekalaghe, S., Robinson, L. J., Mueller, I., & Felger, I. (2015). Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Medicine, 12(3), e1001788. https://doi.org/10.1371/journal.pmed.1001788
dc.relation.referencesHu, L., Shi, D., Li, X., Zhu, J., Mao, F., Li, X., Xia, C., Jiang, B., Guo, Y., & Li, J. (2020). Curcumin-based polarity fluorescent probes: Design strategy and biological applications. Dyes and Pigments, 177(March), 108320. https://doi.org/10.1016/j.dyepig.2020.108320
dc.relation.referencesJollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of A, 374(2065). https://doi.org/10.1098/rsta.2015.0202
dc.relation.referencesKagaya, W., Takehara, I., Kurihara, K., Maina, M., Chan, C. W., Okomo, G., Kongere, J., Gitaka, J., & Kaneko, A. (2022). Potential application of the haematology analyser XN-31 prototype for field malaria surveillance in Kenya. Malaria Journal, 21(1), 252. https://doi.org/10.1186/s12936-02204259-7
dc.relation.referencesKasetsirikul, S., Buranapong, J., Srituravanich, W., Kaewthamasorn, M., Pimpin, A., Gething, P., Elyazar, I., Moyes, C., Smith, D., Battle, K., Guerra, C., Coleman, R., Sattabongkot, J., Promstaporm, S., Maneechai, N., Tippayachai, B., Kengluecha, A., Sudhinaraset, M., Briegleb, C., … Jensen, P. (2016). The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malaria Journal, 15(1), 358. https://doi.org/10.1186/s12936-016-1400-9
dc.relation.referencesKayange, M., M’baya, B., Hwandih, T., Saker, J., Coetzer, T. L., & Münster, M. (2022). Automated measurement of malaria parasitaemia among asymptomatic blood donors in Malawi using the Sysmex XN-31 analyser: could such data be used to complement national malaria surveillance in real time? Malaria Journal, 21(1), 299. https://doi.org/10.1186/s12936-022-043143
dc.relation.referencesKersting, S., Rausch, V., Bier, F. F., & von Nickisch-Rosenegk, M. (2014). Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal, 13, 99. https://doi.org/10.1186/1475-2875-13-99
dc.relation.referencesKhoshmanesh, A., Dixon, M. W. A., Kenny, S., Tilley, L., Mcnaughton, D., & Wood, B. R. (2014). Detection and Quantification of Early-Stage Malaria Parasites in Laboratory Infected Erythrocytes by Attenuated Total Re fl ectance Infrared Spectroscopy and Multivariate Analysis.
dc.relation.referencesKhoshmanesh, A., Dixon, M. W. A., Kenny, S., Tilley, L., McNaughton, D., & Wood, B. R. (2014). Detection and quantification of early-stage malaria parasites in laboratory infected erythrocytes by attenuated total reflectance infrared spectroscopy and multivariate analysis. Analytical Chemistry, 86(9), 4379–4386. https://doi.org/10.1021/ac500199x
dc.relation.referencesKneissl, M., & Rass, J. (2016). III-Nitride Ultraviolet Emitters - Technology and Applications. In M. Kneissl & J. Rass (Eds.), Springer Series in Materials Science (Vol. 227). Springer. https://doi.org/10.1007/978-3-319-24100-5
dc.relation.referencesKolawole, E. O., Ayeni, E. T., Abolade, S. A., Ugwu, S. E., Awoyinka, T. B., Ofeh, A. S., & Okolo, B. O. (2023). Malaria endemicity in sub-Saharan Africa: Past and present issues in public health. Microbes and Infectious Diseases, 4(1), 242–251. https://doi.org/10.21608/MID.2022.150194.1346
dc.relation.referencesKumar, S., Zheng, H., Deng, B., Mahajan, B., Grabias, B., Kozakai, Y., Morin, M. J., Locke, E., Birkett, A., Miura, K., & Long, C. (2014). A slot blot immunoassay for quantitative detection of Plasmodium falciparum circumsporozoite protein in mosquito midgut oocyst. PloS One, 9(12), e115807. https://doi.org/10.1371/journal.pone.0115807
dc.relation.referencesKumar, S., Zheng, H., Mahajan, B., Kozakai, Y., Morin, M., & Locke, E. (2014). Western Blot Assay for Quantitative and Qualitative Antigen Detection in Vaccine Development. Current Protocols in Microbiology, 33(1), 18.4.1- 18.4.11. https://doi.org/10.1002/9780471729259.mc1804s33
dc.relation.referencesKumar, S., Zheng, H., Sangweme, D. T., Mahajan, B., Kozakai, Y., Pham, P. T., Morin, M. J., Locke, E., & Kumar, N. (2013). A chemiluminescent-western blot assay for quantitative detection of Plasmodium falciparum circumsporozoite protein. Journal of Immunological Methods, 390(1–2), 99–105. https://doi.org/10.1016/j.jim.2013.02.001
dc.relation.referencesLakowicz, J. R. (2000). Topics in Fluorescence Spectroscopy: Protein Fluorescence. In Topics in Fluorescence Spectroscopy (Volume 6). KIuwer Academic Publishers. https://doi.org/10.1007/0-306-47060-8_13
dc.relation.referencesLakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (J. R. Lakowicz (ed.); Third Edit). Springer US. https://doi.org/10.1007/978-0-387-46312-4
dc.relation.referencesLamoureux, G., & Ogilvie, J. F. (2021). Orbitals in general chemistry, part II: Mathematical realities. Quimica Nova, 44(3), 348–354. https://doi.org/10.21577/0100-4042.20170664
dc.relation.referencesLange, V., Ribeiro, F., Tews, W., & Kühlke, D. (2008). Multicolor LED sensor. Proc. of SPIE, 7003(April), 70030M-70030M – 7. https://doi.org/10.1117/12.780497
dc.relation.referencesLaura-Ochoa, L. (2019). Evaluación de Algoritmos de Clasificación utilizando Validación Cruzada. In 17th LACCEI International Multi-Conference for Engineering, Education, and Technology, 1(July 2019), 1–6. https://doi.org/10.18687/laccei2019.1.1.471
dc.relation.referencesLeblanc, L., & Dufour, É. (2002). Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiology Letters, 211(2), 147–153. https://doi.org/10.1016/S0378-1097(02)00636-5
dc.relation.referencesLee, N., Baker, J., Andrews, K. T., Gatton, M. L., Bell, D., Cheng, Q., & McCarthy, J. (2006). Effect of sequence variation in Plasmodium falciparum histidine-rich protein 2 on binding of specific monoclonal antibodies: Implications for rapid diagnostic tests for malaria. Journal of Clinical Microbiology, 44(8), 2773–2778. https://doi.org/10.1128/JCM.02557-05
dc.relation.referencesLema, O. E., Carter, J. Y., Nagelkerke, N., Wangai, M. W., Kitenge, P., Gikunda, S. M., Arube, P. A., Munafu, C. G., Materu, S. F., Adhiambo, C. A., & Mukunza, H. K. (1999). Comparison of five methods of malaria detection in the outpatient setting. American Journal of Tropical Medicine and Hygiene, 60(2), 177–182.
dc.relation.referencesLewison, G., & Srivastava, D. (2008). Malaria research, 1980-2004, and the burden of disease. ACTA TROPICA, 106(2), 96–103. https://doi.org/10.1016/j.actatropica.2008.01.009
dc.relation.referencesLi, J., Saidi, A. M., Seydel, K., & Lillehoj, P. B. (2024). Rapid diagnosis and prognosis of malaria infection using a microfluidic point-of-care immunoassay. Biosensors and Bioelectronics, 250(January), 116091. https://doi.org/10.1016/j.bios.2024.116091
dc.relation.referencesLittlejohn, B., Heeger, K. M., Wise, T., Gettrust, E., & Lyman, M. (2009). UV degradation of the optical properties of acrylic for neutrino and dark matter experiments. Journal of Instrumentation, 4(9). https://doi.org/10.1088/17480221/4/09/T09001
dc.relation.referencesMackey, L., McGregor, I. A., & Lambert, P. H. (1980). Diagnosis of Plasmodium falciparum infection using a solid-phase radioimmunoassay for the detection of malaria antigens. Bulletin of the World Health Organization, 58(3), 439–444. https://iris.who.int/handle/10665/261996
dc.relation.referencesMaia, M. F., Kapulu, M., Muthui, M., Wagah, M. G., Ferguson, H. M., Dowell, F. E., Baldini, F., & Cartwright, L.-R. (2019). Detection of Plasmodium falciparum infected Anopheles gambiae using near-infrared spectroscopy. Malaria Journal, 18(1). https://doi.org/10.1186/s12936-019-2719-9
dc.relation.referencesMaier, A. G., Rug, M., O’Neill, M. T., Brown, M., Chakravorty, S., Szestak, T., Chesson, J., Wu, Y., Hughes, K., Coppel, R. L., Newbold, C., Beeson, J. G., Craig, A., Crabb, B. S., & Cowman, A. F. (2008). Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes. Cell, 134(1), 48–61. https://doi.org/10.1016/j.cell.2008.04.051
dc.relation.referencesMakarov, I. S., Golova, L. K., Bondarenko, G. N., Anokhina, T. S., Dmitrieva, E. S., Levin, I. S., Makhatova, V. E., Galimova, N. Z., & Shambilova, G. K. (2022). Structure, Morphology, and Permeability of Cellulose Films. Membranes, 12(3), 1–13. https://doi.org/10.3390/membranes12030297
dc.relation.referencesMakler, M. T., & Hinrichs, D. J. (1993). Measurement of the Lactate Dehydrogenase Activity of Plasmodium falciparum as an Assessment of Parasitemia. The American Journal of Tropical Medicine and Hygiene, 48(2), 205–210. https://doi.org/10.4269/ajtmh.1993.48.205
dc.relation.referencesMalpartida-Cardenas, K., Miscourides, N., Rodriguez-Manzano, J., Yu, L.-S., Moser, N., Baum, J., & Georgiou, P. (2019). Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform. Biosensors & Bioelectronics, 145, 111678. https://doi.org/10.1016/j.bios.2019.111678
dc.relation.referencesMaquelin, K., Kirschner, C., Choo-Smith, L.-P., Ngo-Thi, N. A., van Vreeswijk, T., Stämmler, M., Endtz, H. P., Bruining, H. A., Naumann, D., & Puppels, G. J. (2003). Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. Journal of Clinical Microbiology, 41(1), 324–329. https://doi.org/10.1128/JCM.41.1.324
dc.relation.referencesMarti, X., Skjefte, M., Sikka, R., & Gupta, H. (2022). Factors Affecting the Performance of HRP2-Based Malaria Rapid Diagnostic Tests. Tropical Medicine and Infectious Disease, 7(265), 1–22. https://doi.org/10.3390/tropicalmed7100265
dc.relation.referencesMasilamani, V., Devanesan, S., Ravikumar, M., Perinbam, K., AlSalhi, M., Prasad, S., Palled, S., Ganesh, K., & Alsaeed, A. (2014). Fluorescence spectral diagnosis of malaria a preliminary study. Diagnostic Pathology, 9(1), 182. https://doi.org/10.1186/s13000-014-0182-z
dc.relation.referencesMens, P. F., Matelon, R. J., Nour, B. Y. M., Newman, D. M., & Schallig, H. D. F. H. (2010). Laboratory evaluation on the sensitivity and specificity of a novel and rapid detection method for malaria diagnosis based on magneto-optical technology (MOT). Malaria Journal, 9, 207. https://doi.org/10.1186/14752875-9-207
dc.relation.referencesMims_III, F. _M. (1992). Sun photometer with light-emitting diodes as spectrally selective detectors. Applied Optics, 31(33), 6965–6967.
dc.relation.referencesMinisterio de Salud y Protección Social. (2024). Malaria en Colombia. Página Web. https://www.minsalud.gov.co/salud/publica/PET/Paginas/malaria.aspx
dc.relation.referencesMinisters of Health of High Burden High Impact (HBHI) countries in Africa. (2024). Declaration for accelerated malaria mortality reduction in Africa : commitment that “ No one shall die from malaria .” https://cdn.who.int/media/docs/default-source/malaria/mpac-documentation/malaria-conference-declaration-final.pdf
dc.relation.referencesMinopoli, A., Della Ventura, B., Lenyk, B., Gentile, F., Tanner, J. A., Offenhäusser, A., Mayer, D., & Velotta, R. (2020). Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nature Communications, 11(1), 6134. https://doi.org/10.1038/s41467-020-19755-0
dc.relation.referencesMiyagawa, A., Harada, M., Fukuhara, G., & Okada, T. (2020). Space SizeDependent Transformation of Tetraphenylethylene Carboxylate Aggregates by Ice Confinement. Journal of Physical Chemistry B, 124(11), 2209–2217. https://doi.org/10.1021/acs.jpcb.9b11345
dc.relation.referencesMiyagishi, H. V., Masai, H., & Terao, J. (2022). Linked Rotaxane Structure Restricts Local Molecular Motions in Solution to Enhance Fluorescence Properties of Tetraphenylethylene. Chemistry - A European Journal, 28(6). https://doi.org/10.1002/chem.202103175
dc.relation.referencesMolyneux, P. M., Kilvington, S., Wakefield, M. J., Prydal, J. I., & Bannister, N. P. (2015). Autofluorescence Signatures of Seven Pathogens: Preliminary in Vitro Investigations of a Potential Diagnostic for Acanthamoeba Keratitis. Cornea, 00(00), 1588–1592. https://doi.org/10.1097/ICO.0000000000000645
dc.relation.referencesMshani, I. H., Siria, D. J., Mwanga, E. P., Sow, B. B. D., Sanou, R., Opiyo, M., Lord, M. T. S., Ferguson, H. M., Diabate, A., Wynne, K., Jiménez, M. G., Baldini, F., Babayan, S. A., & Okumu, F. (2023). Key considerations , target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis. Malaria Journal, 1–16. https://doi.org/10.1186/s12936-023-04780-3
dc.relation.referencesMwanga, E. P., Minja, E. G., Mrimi, E., Jiménez, M. G., Swai, J. K., Abbasi, S., Ngowo, H. S., Siria, D. J., Mapua, S., Stica, C., Maia, M. F., Olotu, A., SikuluLord, M. T., Baldini, F., Ferguson, H. M., Wynne, K., Selvaraj, P., Babayan, S. A., & Okumu, F. O. (2019). Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis. Malaria Journal, 18(1), 341. https://doi.org/10.1186/s12936-019-2982-9
dc.relation.referencesNagel, R. L. (2010). Hemoglobin Disorders: Molecular Methods and Protocols. In Humana Press Inc. (Ed.), Methods in Molecular Medicine (Vol. 82). https://doi.org/10.1385/1-59259-373-9:101
dc.relation.referencesNaserrudin, N. A., Abdul Aziz, E. I., Aljet, E., Mangunji, G., Tojo, B., Jeffree, M. S., Culleton, R., & Ahmed, K. (2021). High incidence of asymptomatic cases during an outbreak of plasmodium malariae in a remote village of Malaysian borneo. PLoS Neglected Tropical Diseases, 15(6), 1–10. https://doi.org/10.1371/journal.pntd.0009450
dc.relation.referencesOcean Optics Inc. (2016). The Next Generation of Miniature Spectrometers. http://oceanoptics.com/product/flame-spectrometer/
dc.relation.referencesOpoku-Ansah, J., Eghan, M. J., Anderson, B., & Boampong, J. N. (2014). Wavelength Markers for Malaria (Plasmodium Falciparum) Infected and Uninfected Red Blood Cells for Ring and Trophozoite Stages. Applied Physics Research, 6(2), 47–55. https://doi.org/10.5539/apr.v6n2p47
dc.relation.referencesOpoku-Ansah, J., Eghan, M. J., Anderson, B., Boampong, J. N., & Buah-Bassuah, P. K. (2016). Laser-Induced Autofluorescence Technique for Plasmodium falciparum Parasite Density Estimation. Applied Physics Research, 8(2), 43. https://doi.org/10.5539/apr.v8n2p43
dc.relation.referencesOpoku Afriyie, S., Addison, T. K., Gebre, Y., Mutala, A. H., Antwi, K. B., Abbas, D. A., Addo, K. A., Tweneboah, A., Ayisi-Boateng, N. K., Koepfli, C., & Badu, K. (2023). Accuracy of diagnosis among clinical malaria patients: comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malaria Journal, 22(1), 1–11. https://doi.org/10.1186/s12936-023-04506-5
dc.relation.referencesOrdoñez Moreno, M. (2024). Avances y Desafíos en la Aplicación de Espectroscopía de Infrarrojo Cercano (NIR) para el Desarrollo de Nanomateriales en Biomedicina: “Revisión sistemática.” In Universidad Santiago de Cali. Universidad Santiago de Cali.
dc.relation.referencesOspina Montoya, A. (2013). Metodología para medición de ozono mediante el método fotométrico con tecnología de diodo led ultravioleta y monitoreo remoto con protocolo zigbee. Instituto Tecnológico Metropolitano - Institución Universitaria.
dc.relation.referencesOyeyemi, O. T., Ogunlade, A. F., & Oyewole, I. O. (2015). Comparative assessment of microscopy and rapid diagnostic test (RDT) as malaria diagnostic tools. Research Journal of Parasitology, 10(3), 120–126. https://doi.org/10.3923/jp.2015.120.126
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71
dc.relation.referencesPanklang, N., Techaumnat, B., Wisitsoraat, A., Putaporntip, C., Chotivanich, K., & Suzuki, Y. (2022). A discrete dielectrophoresis device for the separation of malaria-infected cells. Electrophoresis, 43(12), 1347–1356. https://doi.org/10.1002/elps.202100271
dc.relation.referencesParson, W. W., & Burda, C. (2023). Modern optical spectroscopy: From fundamentals to applications in chemistry, biochemistry and biophysics. In Springer Nature Switzerland (Ed.), Springer Nature Switzerland (Third). https://doi.org/10.1007/978-3-031-17222-9
dc.relation.referencesPatiño, S., Alamo, L., Cimino, M., Casart, Y., Bartoli, F., Garcia, M. J., & Salazar, L. (2008). Autofluorescence of Mycobacteria as a Tool for Detection of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 46(10), 3296– 3302. https://doi.org/10.1128/JCM.02183-07
dc.relation.referencesPaunonen, S. (2013). Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources, 8(2), 3098–3121. https://doi.org/10.15376/biores.8.2.3098-3121
dc.relation.referencesPedraja-Rejas, L., Garrido-Tamayo, M. A., Ortega-Piwonka, I., Rodríguez-Ponce, E., & Laroze, D. (2024). Scientific production in Latin American physics: a bibliometric analysis. In Scientometrics (Vol. 129, Issue 7). Springer International Publishing. https://doi.org/10.1007/s11192-024-05035-x
dc.relation.referencesPedraja-Rejas, L., Rodríguez-ponce, E., Laroze, D., & Muñoz-Fritis, C. (2023). Mapping global citizenship : A Bibliometric analysis of the field of education for sustainable development. Frontiers in Education, 8(March), 1–12. https://doi.org/10.3389/feduc.2023.1139198
dc.relation.referencesPedraja-Rejas, L., Rodríguez-Ponce, E., & Muñoz-Fritis, C. (2022). Análisis global de la producción científica respecto del aprendizaje organizacional en la educación superior. Actas Del V Congreso Internacional de Ingeniería de Sistemas 64, 61–76
dc.relation.referencesPedraja-Rejas, L., Rodríguez-Ponce, E., Muñoz-Fritis, C., Garrido-Tamayo, M.-A., Vélez, J., & Laroze, D. (2025). Chinchorro culture: An analysis from the learning perspective. Social Sciences & Humanities Open Journal, 11(January), 101309. https://doi.org/10.1016/j.ssaho.2025.101309
dc.relation.referencesPedraja-Rejas, L., Rodríguez-Ponce, E., Muñoz-Fritis, C., & Laroze, D. (2023a). Online Learning and Experiences in Higher Education during COVID-19: A Systematic Review. Sustainability, 15(21). https://doi.org/10.3390/su152115583
dc.relation.referencesPedraja-Rejas, L., Rodríguez-Ponce, E., Muñoz-Fritis, C., & Laroze, D. (2023b). Sustainable Development Goals and Education: A Bibliometric Review—The Case of Latin America. Sustainability (Switzerland), 15(12). https://doi.org/10.3390/su15129833
dc.relation.referencesPeng, C., & Liu, J. (2013). Studies on Red-Shift Rules in Fluorescence Spectra of Human Blood Induced by LED. Applied Physics Research, 5(1), 1–6. https://doi.org/10.5539/apr.v5n1p1
dc.relation.referencesPreißinger, K., Molnar, P., Vertessy, B., Kezsmarki, I., & Kellermayer, M. (2021). Stage-Dependent Topographical and Optical Properties of Plasmodium Falciparum-Infected Red Blood Cells. Journal of Biotechnology and Biomedicine, 04(03). https://doi.org/10.26502/jbb.2642-91280040
dc.relation.referencesQueensland University of Technology. (2023). Prof. Dra. Michelle Gatton. https://www.qut.edu.au/about/our-people/academic-profiles/m.gatton
dc.relation.referencesRadboud University. (2023). Prof. Dr. Teun Bousema. https://www.radboudumc.nl/en/people/teun-bousema
dc.relation.referencesRadboud University Medical Center. (2023). Prof. Dr. Robert Sauerwein. https://www.radboudumc.nl/en/people/robert-sauerwein
dc.relation.referencesRamasamy, R. (2014). Zoonotic malaria - global overview and research and policy needs. Frontiers in Public Health, 2(AUG), 1–7. https://doi.org/10.3389/fpubh.2014.00123
dc.relation.referencesRequena, A., & Zuñiga, J. (2004). Espectroscopía (I. Capella (ed.)). Pearson Educación S.A
dc.relation.referencesRichards-Kortum, R., Rava, R. P., Fitzmaurice, M., Tong, L. L., Kramer, J. R., & Feld, M. S. (1989). A One-Layer Model of Laser-Induced Fluorescence for Diagnosis of Disease in Human Tissue: Applications to Atherosclerosis. IEEE Transactions on Biomedical Engineering, 36(12), 1222–1232. https://doi.org/10.1109/10.42117
dc.relation.referencesRiglar, D. T., Richard, D., Wilson, D. W., Boyle, M. J., Dekiwadia, C., Turnbull, L., Angrisano, F., Marapana, D. S., Rogers, K. L., Whitchurch, C. B., Beeson, J. G., Cowman, A. F., Ralph, S. A., & Baum, J. (2011). Article Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte. Cell Host and Microbe, 9(1), 9–20. https://doi.org/10.1016/j.chom.2010.12.003
dc.relation.referencesRivadeneira, E. M., Wasserman, M., & Espinal, C. T. (1983). Separation and Concentration of Schizonts of Plasmodium falciparum by Percoll Gradients. The Journal of Protozoology, 30(2), 367–370. https://doi.org/10.1111/j.15507408.1983.tb02932.x
dc.relation.referencesRomanolo, K. F., Gorski, L., Wang, S., & Lauzon, C. R. (2015). Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis. PLoS ONE, 10(11), 1–8. https://doi.org/10.1371/journal.pone.0143425
dc.relation.referencesROVIRA, L., SENRA, P., & JOU, D. (2000). Bibliometric analysis of physics in Catalonia: Towards quality consolidation, Scientometrics, 49(2), 233–256.
dc.relation.referencesRuiz-Vega, G., Arias-Alpízar, K., de la Serna, E., Borgheti-Cardoso, L. N., Sulleiro, E., Molina, I., Fernàndez-Busquets, X., Sánchez-Montalvá, A., Del Campo, F. J., & Baldrich, E. (2020). Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosensors & Bioelectronics, 150, 111925. https://doi.org/10.1016/j.bios.2019.111925
dc.relation.referencesSahoo, H. (2022). Optical Spectroscopic and Microscopic Techniques. In Optical Spectroscopic and Microscopic Techniques. Springer. https://doi.org/10.1007/978-981-16-4550-1
dc.relation.referencesSCHOTT Advanced Optics. (2016). Interference Filters. Website. http://www.schott.com/advanced_optics/english/syn/advanced_optics/product s/optical-components/optical-filters/interference-filters/index.html
dc.relation.referencesSerway, R. A., & Jewett Jr., J. W. (2019). Physics for Scientist and Engineers - With Modern Physiics. In Cengage Learning (Tenth Edic).
dc.relation.referencesShrirao, A. B., Schloss, R. S., Fritz, Z., Shrirao, M. V., Rosen, R., & Yarmush, M. L. (2021). Autofluorescence of blood and its application in biomedical and clinical research. Biotechnology and Bioengineering, 118(12), 4550–4576. https://doi.org/10.1002/bit.27933
dc.relation.referencesSilva-Pérez, A., Godínez-Fernández, J., Fernández-Guasti, M., & Haro- Poniatowski, E. (2009). Espectroscopía de fluorescencia inducida por láser en células (pp. 487–508).
dc.relation.referencesSkoog, D., Holler, F., & Nieman, T. (2001). Principios de análisis instrumental (5ed ed.). McGrawHill.
dc.relation.referencesSohn, M., Himmelsbach, D. S., Barton, F. E., & Fedorka-Cray, P. J. (2009). Fluorescence Spectroscopy for Rapid Detection and Classification of Bacterial Pathogens. Appl. Spectrosc., 63(11), 1251–1255. http://as.osa.org/abstract.cfm?URI=as-63-11-1251
dc.relation.referencesSpillman, N. J., Beck, J. R., & Goldberg, D. E. (2015). Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annual Review of Biochemistry, 84(January), 813–841. https://doi.org/10.1146/annurev-biochem-060614-034157
dc.relation.referencesStübel, H. (1911). Die Fluoreszenz tierischer Gewebe in ultraviolettem Licht. Pflüger’s Archiv Für Die Gesammte Physiologie Des Menschen Und Der Tiere, 142(1–2), 1–14. https://doi.org/10.1007/BF01680690
dc.relation.referencesSun, Q., Zeng, Y., Zhang, W., Zheng, W., Luo, Y., & Qu, J. Y. (2015). Two-photon excited fluorescence emission from hemoglobin. Multiphoton Microscopy in the Biomedical Sciences XV, 9329, 93290O. https://doi.org/10.1117/12.2076685
dc.relation.referencesSun, Q., Zheng, W., Wang, J., Luo, Y., & Qu, J. Y. (2015). Mechanism of twophoton excited hemoglobin fluorescence emission. Journal of Biomedical Optics, 20(10), 105014. https://doi.org/10.1117/1.jbo.20.10.105014
dc.relation.referencesTadesse, F. G., Lanke, K., Nebie, I., Schildkraut, J. A., Gonçalves, B. P., Tiono, A. B., Sauerwein, R., Drakeley, C., Bousema, T., & Rijpma, S. R. (2017). Molecular Markers for Sensitive Detection of Plasmodium falciparum Asexual Stage Parasites and their Application in a Malaria Clinical Trial. The American Journal of Tropical Medicine and Hygiene, 97(1), 188–198. https://doi.org/10.4269/ajtmh.16-0893
dc.relation.referencesTangpukdee, N., Duangdee, C., Wilairatana, P., & Krudsood, S. (2009). Malaria diagnosis: A brief review. Korean Journal of Parasitology, 47(2), 93–102. https://doi.org/10.3347/kjp.2009.47.2.93
dc.relation.referencesTaylor, B. J., Howell, A., Martin, K. A., Manage, D. P., Gordy, W., Campbell, S. D., Lam, S., Jin, A., Polley, S. D., Samuel, R. A., Atrazhev, A., Stickel, A. J., Birungi, J., Mbonye, A. K., Pilarski, L. M., Acker, J. P., & Yanow, S. K. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13, 179. https://doi.org/10.1186/1475-2875-13-179
dc.relation.referencesThorlabs Inc. (2020). LED with Window, 310 nm [Datasheet] (pp. 1–4).
dc.relation.referencesToro, D. del Á., & Bravo, R. M. (2013). Propuesta de una tecnología para la obtención de pinturas para la Empresa de Pinturas Vitral. Tecnología Química, XXXIII(3), 212–223.
dc.relation.referencesUniversity of Glasgow. (2014). Detection of Plasmodium falciparum or Trypanosome infection with ultrasound-based separation of red blood cells (RBCs). https://doi.org/10.1038/scibx.2014.469
dc.relation.referencesvan Weijen, D. (2012). The language of (future) scientific communication. Research Trends Volume, 1(31), 1–3.
dc.relation.referencesVernot-Hernandez, J.-P., & Heidrich, H.-G. (1985). The relationship to knobs of the 92,000 D protein specific for knobby strains of Plasmodium falciparum. Zeitschrift Für Parasitenkunde, 71, 41–51. https://doi.org/10.1007/BF00932917
dc.relation.referencesVidal, R., Ma, Y., & Sastry, S. S. (2016). Generalized Principal Component Analysis. In S. S. Antman, L. Greengard, & P. Holmes (Eds.), Interdisciplinary Applied Mathematics (Vol. 40). Springer-Verlag. https://doi.org/10.1007/9780-387-87811-9
dc.relation.referencesWalsh, J. D., Hyman, J. M., Borzhemskaya, L., Bowen, A., Mckellar, C., Ullery, M., Mathias, E., Ronsick, C., Link, J., Wilson, M., Clay, B., Robinson, R., Thorpe, T., Belkum, A. Van, & Dunne, W. M. (2013). Rapid Intrinsic Fluorescence Method for Direct Identification of Pathogens in Blood Cultures. MBio, 4(6), 1– 9. https://doi.org/10.1128/mBio.00865-13.Editor
dc.relation.referencesWarkiani, M. E., Tay, A. K. P., Khoo, B. L., Xiaofeng, X., Han, J., & Lim, C. T. (2014). Malaria detection using inertial microfluidics. Lab on a Chip, 15(4), 1101–1109. https://doi.org/10.1039/c4lc01058b
dc.relation.referencesWhite, A. (1959). Effect of pH on fluorescence of tyrosine, tryptophan and related compounds. Biochemical Journal, 71(2), 217–220.
dc.relation.referencesWHO. (1988). Malaria diagnosis: memorandum from a WHO meeting. Bulletin of the World Health Organization, 66(5), 575–594.
dc.relation.referencesWHO. (2016a). Giemsa Staining of Malaria Blood Films. In Malaria Microscopy Standard Operating Procedure — MM-SOP-07A. http://www.wpro.who.int/mvp/lab_quality/2096_oms_gmp_sop_07a_rev.pdf
dc.relation.referencesWHO. (2016b). Malaria Parasite Counting. In Malaria Microscopy Standard Operating Procedure – MM-SOP-09. https://apps.who.int/iris/handle/10665/274382
dc.relation.referencesWHO. (2023). World malaria report 2023. World Health Organization. https://www.who.int/teams/global-malaria-programme/reports/world-malariareport-2023
dc.relation.referencesWissing, F., Sanchez, C. P., Rohrbach, P., Ricken, S., & Lanzer, M. (2002). Illumination of the Malaria Parasite Plasmodium falciparum Alters Intracellular pH. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 277(40), 10. https://doi.org/10.1074/jbc.M204845200
dc.relation.referencesWu, L., van den Hoogen, L. L., Slater, H., Walker, P. G. T., Ghani, A. C., Drakeley, C. J., & Okell, L. C. (2015). Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature, 528(7580), S86-93. https://doi.org/10.1038/nature16039
dc.relation.referencesWu, W. T., Martin, A. B., Gandini, A., Aubry, N., Massoudi, M., & Antaki, J. F. (2016). Design of microfluidic channels for magnetic separation of malariainfected red blood cells. Microfluidics and Nanofluidics, 20(2). https://doi.org/10.1007/s10404-016-1707-4
dc.relation.referencesXiu, H., Zhang, Y., Fu, J., Ma, Z., Zhao, L., & Feng, J. (2019). Degradation behavior of deep UV-LEDs studied by electro-optical methods and transmission electron microscopy. Current Applied Physics, 19(1), 20–24. https://doi.org/10.1016/J.CAP.2018.10.019
dc.relation.referencesYilmaz, M., Grilli, M. L., & Turgut, G. (2020). A Bibliometric Analysis of the Publications on In Doped ZnO to be a Guide for Future Studies. Metals, 10(Mayo), 1–20.
dc.relation.referencesZhang, Y., Lei, B., & Zhang, X. (2022). Intramolecular energy transfer dyes as temperature- and polarity-sensitive fluorescence probes. Dyes and Pigments, 205(March), 110492. https://doi.org/10.1016/j.dyepig.2022.110492
dc.relation.referencesZheng, Q., Huang, J., Li, H., & Chen, L. (2019). Preparation of highly visible transparent ZnO/cellophane UV-shielding film by RF magnetron sputtering. Ceramics International, 45(3), 3729–3734. https://doi.org/10.1016/j.ceramint.2018.11.038
dc.relation.referencesZheng, W., Li, D., Zeng, Y., Luo, Y., & Qu, J. Y. (2011). Two-photon excited hemoglobin fluorescence. Biomedical Optics Express, 2(1), 71. https://doi.org/10.1364/boe.2.000071
dc.relation.referencesZheng, Z., & Cheng, Z. (2017). Advances in Molecular Diagnosis of Malaria. Advances in Clinical Chemistry, 80, 155–192. https://doi.org/10.1016/bs.acc.2016.11.006
dc.relation.referencesZulfiqar, A. (2024). Hands-on ESP32 with Arduino IDE: Unleash the power of IoT with ESP32 and build exciting projects with this practical guide. Packt Publishing.
dc.relation.referencesZuluaga-Idárraga, L., Rios, A., Sierra-Cifuentes, V., Garzón, E., Tobón-Castaño, A., Takehara, I., Toya, Y., Izuka, M., Uchihashi, K., & Lopera-Mesa, T. M. (2021). Performance of the hematology analyzer XN-31 prototype in the detection of Plasmodium infections in an endemic region of Colombia. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-84594-y
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.lembEspectroscopía de fluorescencia
dc.subject.lembEritrocitos
dc.subject.lembMalaria
dc.subject.proposalPlasmodium falciparumspa
dc.subject.proposalmalariaspa
dc.subject.proposalespectroscopía de fluorescenciaspa
dc.subject.proposalmétodos diagnósticosspa
dc.subject.proposalPlasmodium falciparumeng
dc.subject.proposalmalariaeng
dc.subject.proposalfluorescence spectroscopyeng
dc.subject.proposaldiagnostic methodseng
dc.titleInvestigación en espectroscopía de fluorescencia intrínseca de glóbulos rojos infectados con Plasmodium falciparum y diseño de un espectrofluorímetro portátil para su detecciónspa
dc.title.translatedResearch on intrinsic fluorescence spectroscopy of red blood cells infected with Plasmodium falciparum and design of a portable spectrofluorimeter for its detectioneng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinCiencias

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ciencias - Física
Tamaño:
6.36 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: