On Chern's conjecture about the Euler characteristic of affine manifolds

dc.contributorArias Abad, Camilospa
dc.contributor.authorMartínez Madrid, Danielaspa
dc.date.accessioned2019-07-02T22:20:32Zspa
dc.date.available2019-07-02T22:20:32Zspa
dc.date.issued2018spa
dc.description.abstractThe development the theory of characteristic classes allowed Shiing-Shen Chern to generalize the Gauss Bonnet theorem to Riemannian manifolds of arbitrary dimension. The Chern Gauss Bonnet theorem expresses the Euler characteristic as an integral of a polynomial evaluated on the curvature tensor, i.e if K is the curvature form of the Levi-Civita connection, the Chern Gauss Bonnet formula is . In particular, the theorem implies that if the Levi Civita connection is _at, the Euler characteristic is zero.An a_ne structure on a manifold is an atlas whose transition functions are a_ne transformations. The existence of such a structure is equivalent to the existence of a _at torsion free connection on the tangent bundle. Around 1955 Chern conjectured the following: Conjecture. The Euler characteristic of a closed affine manifold is zero. Not all fat torsion free connections on TM admit a compatible metric, and therefore, Chern-Weil theory cannot be used in general to write down the Euler class in terms of the curvature. In 1955, Benzécri [1] proved that a closed affine surface has zero Euler characteristic. Later, in 1958, Milnor [11] proved inequalities which completely characterise those oriented rank two bundles over a surface that admit a fiat connection. These inequalities prove that in case of a surface the condition "be torsion free" in Chern's conjecture is not necessary. In 1975, Kostant and Sullivan [9] proved Chern's conjecture in the case where the manifold is complete. In 1977, Smillie [15] proved that the condition that the connection is torsion free matters. For each even dimension greater than 2, Smillie constructed closed manifolds with non-zero Euler characteristic that admit a _at connection on their tangent bundle. In 2015, Klingler [14] proved the conjecture for special affine manifolds. That is, affine manifolds that admit a parallel volume form.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/64628/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/63965
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Instituto de Matemática Pura y Aplicadaspa
dc.relation.ispartofInstituto de Matemática Pura y Aplicadaspa
dc.relation.referencesMartínez Madrid, Daniela (2018) On Chern's conjecture about the Euler characteristic of affine manifolds. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalTeorema de Chern-Gauss-Bonnetspa
dc.subject.proposalChern-Gauss-Bonnet theoremspa
dc.subject.proposalVectoresspa
dc.subject.proposalVectorsspa
dc.titleOn Chern's conjecture about the Euler characteristic of affine manifoldsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152441431.2018.pdf
Tamaño:
876.56 KB
Formato:
Adobe Portable Document Format