Fisiología del proceso succión:deglución:respiración durante exposición a la voz materna de neonatos pretérmino en la unidad de cuidado intensivo neonatal

dc.contributor.advisorSampallo Pedroza, Rosa Mercedesspa
dc.contributor.advisorZuluaga, Jairo Albertospa
dc.contributor.authorLamprea Rodríguez, Sandra Milenaspa
dc.contributor.orcidLamprea Rodríguez, Sandra Milena [0000000248845761]spa
dc.contributor.researchgroupVoz, Habla y Degluciónspa
dc.date.accessioned2024-10-25T17:19:29Z
dc.date.available2024-10-25T17:19:29Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractUn neonato pretérmino, definido como aquel que nace antes de la semana 37 de gestación, requiere de cuidados especializados en las Unidades de Cuidado Intensivo Neonatal (UCIN) debido a su inmadurez. El ambiente en la UCIN, cualitativa y cuantitativamente diferente al útero, puede generar niveles de estrés altos en los neonatos, afectando su estabilidad clínica. Teorías del neurodesarrollo sugieren la creación de intervenciones dentro de la UCIN que favorezcan la estabilidad clínica y el desarrollo del neonato, como la exposición a la voz materna y el uso de la succión no nutritiva, para contrarrestar los efectos nocivos del estrés. Esta investigación tiene como objetivo evaluar los cambios fisiológicos en el patrón de succión no nutritiva y en la saturación de oxígeno enmarcados dentro del proceso succión:deglución:respiración ante la exposición de la voz materna en vivo. Se realizó un estudio cuasiexperimental con 9 neonatos pretérmino tardíos por 4 días consecutivos, con dos condiciones: exposición a la voz materna en vivo y no exposición. Resultados: Aunque no se encontraron diferencias significativas entre la condición de voz y no voz para las variables medidas, se observaron diferencias en función del día. Se realizaron análisis descriptivos y complementarios de covarianza. Discusión y conclusiones: Se discuten los posibles mecanismos fisiológicos y otros factores que pudieron llevar a la ausencia de diferencias en la condición de exposición a la voz materna. La conclusión destaca que el estudio fisiológico del proceso succión:deglución:respiración es multifactorial y debe abordarse con diseños que tengan en cuenta la complejidad del fenómeno (Texto tomado de la fuente).spa
dc.description.abstractA preterm newborn, defined as one born before the 37th week of gestation, requires specialized care in Neonatal Intensive Care Units (NICUs) due to their immaturity. The NICU environment, qualitatively and quantitatively different from the uterus, can generate high levels of stress in neonates, affecting their clinical stability. Neurodevelopmental Theories suggest the implementation of interventions within the NICU that promote clinical stability and neonatal development, such as exposure to maternal voice and the use of non-nutritive sucking, to counteract the detrimental effects of stress. This research aims to evaluate physiological changes in the non-nutritive sucking pattern and oxygen saturation framed within the sucking:swallowing:breathing process during exposure to live maternal voice. A quasi-experimental study was conducted with 9 late preterm neonates over 4 consecutive days, with two conditions: exposure to live maternal voice and no exposure. Results: Although no significant differences were found between the voice and no-voice conditions for the measured variables, differences were observed based on the day. Descriptive and complementary covariate analyses were performed. Discussion and Conclusions: Possible physiological mechanisms and other factors that could have led to the absence of differences in exposure to maternal voice are discussed. The conclusion emphasizes that the physiological study of the sucking:swallowing:breathing process is multifactorial and should be approached with designs that consider the complexity of the phenomenon.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisiologíaspa
dc.description.methodsEstudio de diseño cuasiexperimental con medidas repetidas, contrabalanceado por 4 días seguidos. Muestreo: A conveniencia, 11 neonatos pretérmino hospitalizados en la UCIN de la Clínica del Occidente junto con sus madres.spa
dc.format.extentxv, 148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87066
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.references1. World Health Organization. Born Too Soon: The global action report on preterm birth. 2012.spa
dc.relation.references2. McCormick MC, Litt JS, Smith VC, Zupancic JAF. Prematurity: An overview and public health implications. Annu Rev Public Health. 2011;32:367–79.spa
dc.relation.references3. Lubbe W, van der Walt C, Klopper H. NICU environment - What should it be like? J Neonatal Nurs. 2012;18(3):90–3.spa
dc.relation.references4. Bremmer P, Byers JF, Kiehl E. Noise and the premature infant: physiological effects and practice implications. J Obstet Gynecol Neonatal Nurs. 2003;32(4):447–54.spa
dc.relation.references5. Acevedo DH, Becerra JIR, Martínez ÁL. The philosophy of the developmental centred care of the premature infant (NIDCAP): A literature review. Enferm Glob. 2017;16(4):577–602.spa
dc.relation.references6. Maltese A, Gallai B, Marotta R, Lavano F, Lavano S, Tripi G, et al. The synactive theory of development: The keyword for neurodevelopmental disorders. Acta Medica Mediterr [Internet]. 2017;33(June):393–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26350424spa
dc.relation.references7. Mooney-Leber SM, Brummelte S. Neonatal pain and reduced maternal care: Early-life stressors interacting to impact brain and behavioral development. Neuroscience [Internet]. 2017;342:21–36. Available from: http://www.sciencedirect.com/science/article/pii/S0306452216301403spa
dc.relation.references8. Bucsea O, Pillai Riddell R. Non-pharmacological pain management in the neonatal intensive care unit: Managing neonatal pain without drugs. Semin Fetal Neonatal Med [Internet]. 2019;24(4):101017. Available from: https://doi.org/10.1016/j.siny.2019.05.009spa
dc.relation.references9. Basch K. Beiträge zur Kenntniss des menschlichen Milchapparats. Arch Gynakol [Internet]. 1893;44(1):15–54. Available from: https://doi.org/10.1007/BF01981179spa
dc.relation.references10. Tamilia E, Taffoni F, Formica D, Ricci L, Schena E, Keller F, et al. Technological solutions and main indices for the assessment of newborns’ Nutritive Sucking: A review. Sensors (Switzerland). 2014;14(1):634–58.spa
dc.relation.references11. Tamilia E, Formica D, Scaini A, Taffoni F. An Automated System for the Analysis of Newborns’ Oral-Motor Behavior. IEEE Trans Neural Syst Rehabil Eng. 2016;24(12):1294–303.spa
dc.relation.references12. Rand K, Lahav A. Maternal sounds elicit lower heart rate in preterm newborns in the first month of life. Early Hum Dev [Internet]. 2014;90(10):679–83. Available from: http://dx.doi.org/10.1016/j.earlhumdev.2014.07.016spa
dc.relation.references13. Krueger C. Exposure to maternal voice in preterm infants: A review. Adv Neonatal Care. 2010;10(1):13–8.spa
dc.relation.references14. Filippa M, Devouche E, Arioni C, Imberty M, Gratier M. Live maternal speech and singing have beneficial effects on hospitalized preterm infants. Acta Paediatr Int J Paediatr. 2013;102(10):1017–20.spa
dc.relation.references15.Provenzi L, Broso S, Montirosso R. Do mothers sound good? A systematic review of the effects of maternal voice exposure on preterm infants’ development. Neurosci Biobehav Rev [Internet]. 2018;88(January):42–50. Available from: https://doi.org/10.1016/j.neubiorev.2018.03.009spa
dc.relation.references16. Williamson S, McGrath JM. What Are the Effects of the Maternal Voice on Preterm Infants in the NICU? Adv Neonatal Care. 2019;19(4):294–310.spa
dc.relation.references17. Capilouto GJ, Cunningham TJ, Giannone PJ, Grider D. A comparison of the nutritive sucking performance of full-term and preterm neonates at hospital discharge: A prospective study. Early Hum Dev [Internet]. 2019;134(May):26–30. Available from: https://doi.org/10.1016/j.earlhumdev.2019.05.007spa
dc.relation.references18. Lau C. Development of infant oral feeding skills: What do we know? Am J Clin Nutr. 2016;103(2):616S-621S.spa
dc.relation.references19. Lau C. Development of suck and swallow mechanisms in infants. Ann Nutr Metab. 2015;66(0 5):7–14.spa
dc.relation.references20. World Health Organization. Preterm birth [Internet]. Notas descriptivas. 2018. Available from: https://www.who.int/es/news-room/fact-sheets/detail/preterm-birthspa
dc.relation.references21. Departamento Nacional de Estadística (DANE). Nacimientos 2019. 2019.spa
dc.relation.references22. Stewart DL, Barfield WD. Updates on an at-risk population: Late-preterm and early-term infants. Pediatrics. 2019;144(5).spa
dc.relation.references23. Engle WA, Tomashek KM, Wallman C, Stark AR, Adamkin DH, Batton DG, et al. “Late-preterm” infants: A population at risk. Pediatrics. 2007;120(6):1390–401.spa
dc.relation.references24. Almadhoob A, Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst Rev. 2020;2020(1).spa
dc.relation.references25. Brown G. NICU Noise and The Preterm Infant. Neonatal Netw. 2008;28(April):165–73.spa
dc.relation.references26. Fumagalli M, Provenzi L, De Carli P, Dessimone F, Sirgiovanni I, Giorda R, et al. From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth. PLoS One. 2018;13(1):1–15.spa
dc.relation.references27. Pados BF. Physiology of Stress and Use of Skin-to-Skin Care as a Stress-Reducing Intervention in the NICU. Nurs Women's Health [Internet]. 2019;23(1):59–70. Available from: https://doi.org/10.1016/j.nwh.2018.11.002spa
dc.relation.references28. Hall RW, Anand KJS. Physiology of Pain and Stress in the Newborn. Neoreviews [Internet]. 2005 [cited 2023 Aug 31];6(2):e61–8. Available from: https://publications.aap.org/neoreviews/article-abstract/6/2/e61/88579/Physiology-of-Pain-and-Stress-in-the-Newborn?redirectedFrom=fulltexspa
dc.relation.references29. Krueger C, Parker L, Chiu S-H, Theriaque D. Maternal Voice and Short-Term Outcomes in Preterm Infants. Dev Psychobiol [Internet]. 2010 [cited 2023 Aug 31];23(1):1–7. Available from: https://onlinelibrary.wiley.com/doi/10.1002/dev.20426spa
dc.relation.references30. Ministerio de Salud y Protección Social. Guía de práctica clínica del recién nacido prematuro [Internet]. Vol. 2, Colciencias. 2013 [cited 2023 Aug 31]. 2–70 p. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IETS/GPC_Completa_Premat.pdfspa
dc.relation.references31. Sajjadian N, Mohammadzadeh M, Alizadeh Taheri P, Shariat M. Positive effects of low intensity recorded maternal voice on physiologic reactions in premature infants. Infant Behav Dev [Internet]. 2017;46:59–66. Available from: http://dx.doi.org/10.1016/j.infbeh.2016.11.009spa
dc.relation.references32. Pallás Alonso CR. Cuidados centrados en el desarrollo en las unidades neonatales. An Pediatr Contin. 2014;12(2):62–7.spa
dc.relation.references33. Ruiz E. Cuidados Centrados En El Neurodesarrollo Del Recién Nacido. Rev Enfermería CyL [Internet]. 2016;8:1–33. Available from: http://www.revistaenfermeriacyl.com/index.php/revistaenfermeriacyl/article/viewFile/177/148spa
dc.relation.references34. Byers-Heinlein K. High-Amplitude Sucking Procedure. In: Brooks PJ, Kempe V, editors. Encyclopedia of Language Development. SAGE Publications, Inc.; 2014. p. 263–4.spa
dc.relation.references35. Capilouto GJ, Cunningham TJ, Giannone PJ, Grider D. A comparison of the nutritive sucking performance of full-term and preterm neonates at hospital discharge: A prospective study. Early Hum Dev. 2019;134(May):26–30.spa
dc.relation.references36. Haslbeck FB, Jakab A, Held U, Bassler D, Bucher H-U, Hagmann C. Creative music therapy to promote brain function and brain structure in preterm infants: A randomized controlled pilot study. NeuroImage Clin [Internet]. 2020;25:102171. Available from: http://www.sciencedirect.com/science/article/pii/S2213158220300103spa
dc.relation.references37. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci [Internet]. 2014;15(3):170–80. Available from: http://dx.doi.org/10.1038/nrn3666spa
dc.relation.references38. Koelsch S, Boehlig A, Hohenadel M, Nitsche I, Bauer K, Sack U. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood. Sci Rep. 2016;6(September 2015):1–11.spa
dc.relation.references39. Mendoza A, Claros D, Mendoza L, Arias M, Peñaranda C. Epidemiología de la prematuridad, sus determinantes y prevención del parto prematuro. Rev Chil Obstet Ginecol. 2016;81(4):330–42.spa
dc.relation.references40. Therien JM, Worwa CT, Mattia FR, DeRegnier RAO. Altered pathways for auditory discrimination and recognition memory in preterm infants. Dev Med Child Neurol. 2004;46(12):816–24.spa
dc.relation.references41. Smith SW, Ortmann AJ, Clark WW. Noise in the neonatal intensive care unit: a new approach to examining acoustic events. Noise Health [Internet]. 2018;20(95):121–30. Available from: https://www.noiseandhealth.org/article.asp?issn=1463-1741;year=2018;volume=20;issue=95;spage=121;epage=130;aulast=Smithspa
dc.relation.references42. Lyngstad LT, Tandberg BS, Storm H, Ekeberg BL, Moen A. Does skin-to-skin contact reduce stress during diaper change in preterm infants? Early Hum Dev [Internet]. 2014;90(4):169–72. Available from: http://dx.doi.org/10.1016/j.earlhumdev.2014.01.011spa
dc.relation.references43. Mcmahon E, Wintermark P, Lahav A. Auditory brain development in premature infants: The importance of early experience. Ann N Y Acad Sci [Internet]. 2012 [cited 2023 Oct 14];1252(1):17–24. Available from: https://pubmed.ncbi.nlm.nih.gov/22524335/spa
dc.relation.references44. Chang E, Merzenich M. Environmental Noise Retards Auditory Cortical Development. Science (80- ). 2003;300(April):498–502.spa
dc.relation.references45. Koeppen BM, Stanton BA. Berne y Levy: Fisiología. Séptima. Elsevier; 2018.spa
dc.relation.references46. Cannizzaro C, Paladino M. Fisiología y fisiopatología de la adaptación neonatal. Anest Analg Reanim. 2011;24(2):59–74.spa
dc.relation.references47. Hillman NH, Kallapur SG, Jobe AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. 2012;39(4):769–83.spa
dc.relation.references48. Mulkey SB, Plessis A dú. The Critical Role of the Central Autonomic Nervous System in Fetal-Neonatal Transition. Semin Pediatr Neurol [Internet]. 2018;28:29–37. Available from: http://dx.doi.org/10.1016/j.spen.2018.05.004spa
dc.relation.references49. Longin E, Gerstner T, Schaible T, Lenz T, König S. Maturation of the autonomic nervous system: Differences in heart rate variability in premature vs. term infants. J Perinat Med. 2006;34(4):303–8.spa
dc.relation.references50. Boron W, Boulpaep E. Fisiología Médica. 3ra ed. 2017.spa
dc.relation.references51. Hunt CE. Ontogeny of Autonomic Regulation in Late Preterm Infants Born at 34-37 Weeks Postmenstrual Age. Semin Perinatol. 2006;30(2):73–6.spa
dc.relation.references52. Mulkey SB, du Plessis AJ. Autonomic nervous system development and its impact on neuropsychiatric outcome. Pediatr Res. 2019;85(2):120–6.spa
dc.relation.references53. Cannon WB. Bodily changes in pain, hunger, fear, and rage : an account of recent researches into the function of emotional excitement. Second. New York, NY: D.Appleton and Company; 1929.spa
dc.relation.references54. Brazelton T. Neonatal Behavioral Assesment Scale. London: Spastic International Medical Publications; 1973. 1–65 p.spa
dc.relation.references55. Medoff‐Cooper B, Ray W. Neonatal Sucking Behaviors. Image J Nurs Scholarsh. 1995;27(3):195–200.spa
dc.relation.references56. Lumeng JC, Weeks HM, Asta K, Sturza J, Kaciroti NA, Miller AL, et al. Sucking behavior in typical and challenging feedings in association with weight gain from birth to 4 Months in full-term infants: Sucking and Weight Gain in Infancy. Appetite [Internet]. 2020;153(July 2019):104745. Available from: https://doi.org/10.1016/j.appet.2020.104745spa
dc.relation.references57. Modrell A, Tadi P. Primitive Reflexes [Internet]. StatPearls. 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554606/spa
dc.relation.references58. Sohn M, Ahn Y, Lee S. Assessment of Primitive Reflexes in High-risk Newborns. J Clin Med Res. 2011;3(6):285–90.spa
dc.relation.references59. Hall KD. Pediatric Dysphagia Resource Guide [Internet]. Singular Thomson Learning, editor. Singular Thomson Learning; 2001. Available from: https://books.google.com.co/books?id=pepsAAAAMAAJspa
dc.relation.references60. Boron W, Boulapaep E. Fisiología Médica. Tercera. Elsevier; 2017.spa
dc.relation.references61. Bianchini P V, Montenegro HP. Motricidad orofacial: Fundamentos anatomofisiológicos y evolutivos para la evaluación clínica [Internet]. 2009. Available from: https://books.google.com.co/books?id=SsxgjwEACAAJspa
dc.relation.references62. Sampallo-Pedroza R. Neonatos y lactantes menores- Guía orofacial y deglutoria: Evaluación, diagnóstico e intervención terapéutica. Bogotá: Facultad de Medicina- Universidad Nacional de Colombia; 2015.spa
dc.relation.references63. Katz PS. Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc B Biol Sci. 2016;371(1685).spa
dc.relation.references64. Samson N, Praud JP, Quenet B, Similowski T, Straus C. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors. Neurosci Lett [Internet]. 2017;638:90–5. Available from: http://dx.doi.org/10.1016/j.neulet.2016.12.016spa
dc.relation.references65. Barlow SM. Central pattern generation involved in oral and respiratory control for feeding in the term infant. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):187–93.spa
dc.relation.references66. Iriki A, Nozaki S, Nakamura Y. Feeding behavior in mammals: corticobulbar projection is reorganized during conversion from sucking to chewing. Dev Brain Res. 1988;44(2):189–96.spa
dc.relation.references67. Barlow SM, Estep M. Central pattern generation and the motor infrastructure for suck, respiration, and speech. J Commun Disord. 2006;39(5):366–80.spa
dc.relation.references68. Muñoz-Ortiz J, Muñoz-Ortiz E, López-Meraz ML, Beltran-Parrazal L, Morgado-Valle C. Pre-Bötzinger complex: Generation and modulation of respiratory rhythm. Neurologia. 2019;34(7):461–8.spa
dc.relation.references69. Barlow SM, Radder JPL, Radder ME, Radder AK. Central pattern generators for orofacial movements and speech. Handb Behav Neurosci. 2010;19(C):351–69.spa
dc.relation.references70. Shandley S, Capilouto G, Tamilia E, Riley DM, Johnson YR, Papadelis C. Abnormal Nutritive Sucking as an Indicator of Neonatal Brain Injury. Front Pediatr. 2021;8(January):1–13.spa
dc.relation.references71. Mistry S, Hamdy S. Neural Control of Feeding and Swallowing. Phys Med Rehabil Clin N Am [Internet]. 2008;19(4):709–28. Available from: http://dx.doi.org/10.1016/j.pmr.2008.05.002spa
dc.relation.references72. Piontelli A, Ceriani F, Fabietti I, Fogliani R, Restelli E, Kustermann A. Swallowing, Sucking, and Mouthing BT - Development of Normal Fetal Movements: The Last 15 Weeks of Gestation. In: Piontelli A, editor. Milano: Springer Milan; 2015. p. 41–51. Available from: https://doi.org/10.1007/978-88-470-5373-1_5spa
dc.relation.references73. Rendón M, Serrano G. Physiology of nutritive sucking in newborns and infants. Bol Med Hosp Infant Mex. 2011;68(4):319–27.spa
dc.relation.references74. Lau C. Oral Feeding in the Preterm Infant. Neoreviews. 2006;7(1):e19–27.spa
dc.relation.references75. Polin R, Fox W, Steven Abman. Fetal and Neonatal physiology. 4ta ed. Elsevier; 2011.spa
dc.relation.references76. Guido-campuzano MA, Ibarra-reyes MP, Mateos-ortiz C, Mendoza-vásquez N. Eficacia de la succión no nutritiva en recién nacidos pretérmino. Perinatol y Reprod humana. 2012;26(3):198–207.spa
dc.relation.references77. Foster J, Psaila K, Patterson T. Non-nutritive sucking for increasing physiologic stability and nutrition in preterm infants. Cochrane Database Syst Rev [Internet]. 2016; Available from: www.growthcharts.rcpch.ac.ukspa
dc.relation.references78. Neiva FCB, Leone CR, Leone C, Siqueira LL, Uema KA, Evangelista D, et al. Non-nutritive sucking evaluation in preterm newborns and the start of oral feeding: A multicenter study. Clinics. 2014;69(6):393–7.spa
dc.relation.references79. Pineda R, Dewey K, Jacobsen A, Smith J. Non-Nutritive Sucking in the Preterm Infant. Am J Perinatol. 2019;36(3):268–76.spa
dc.relation.references80. Hogan N, Sternad D. Sensitivity of Smoothness Measures to Movement Duration, Amplitude and Arrests. J Mot Behav. 2009;41(6):529–34.spa
dc.relation.references81. Balasubramanian S, Melendez-Calderon A, Roby-Brami A, Burdet E. On the analysis of movement smoothness. J Neuroeng Rehabil [Internet]. 2015;12(1):1–11. Available from: http://dx.doi.org/10.1186/s12984-015-0090-9spa
dc.relation.references82. Vali P, Lakshminrusimha S. Oxyhemoglobin Saturation Targets in Newborns and the Role of Automated Oxygen Delivery Systems [Internet]. Updates on Neonatal Chronic Lung Disease. Elsevier Inc.; 2020. 207–223 p. Available from: http://dx.doi.org/10.1016/B978-0-323-68353-1.00014-2spa
dc.relation.references83. Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, Van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial. BMJ. 2015;350(January):1–11.spa
dc.relation.references84. Saliba S, Esseily R, Filippa M, Kuhn P, Gratier M. Exposure to human voices has beneficial effects on preterm infants in the neonatal intensive care unit. Acta Paediatr Int J Paediatr. 2018;107(7):1122–30.spa
dc.relation.references85. Webb AR, Heller HT, Benson CB, Lahav A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc Natl Acad Sci U S A. 2015;112(10):3152–7.spa
dc.relation.references86. Carlier MEM, Harmony T. Development of auditory sensory memory in preterm infants. Early Hum Dev [Internet]. 2020;145:105045. Available from: http://www.sciencedirect.com/science/article/pii/S0378378219304360spa
dc.relation.references87. Caskey M, Stephens B, Tucker R, Vohr B. Importance of parent talk on the development of preterm infant vocalizations. Vol. 128, Pediatrics. 2011. p. 910–6.spa
dc.relation.references88. Caskey M, Stephens B, Tucker R, Vohr B. Adult talk in the NICU with preterm infants and developmental outcomes. Pediatrics. 2014;133(3).spa
dc.relation.references89. Alexandre C, De Jonckheere J, Rakza T, Mur S, Carette D, Logier R, et al. Impact of cocooning and maternal voice on the autonomic nervous system activity in the premature newborn infant. Arch Pediatr. 2013;20(9):963–8.spa
dc.relation.references90. Doheny L, Hurwitz S, Insoft R, Ringer S, Lahav A. Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J Matern Neonatal Med. 2012;25(9):1591–4.spa
dc.relation.references91. Panagiotidis J, Lahav A. Simulation of prenatal maternal sounds in NICU incubators: A pilot safety and feasibility study. J Matern Neonatal Med. 2010;23(SUPPL. 3):106–9.spa
dc.relation.references92. Zimmerman E, Keunen K, Norton M, Lahav A. Weight gain velocity in very low-birth-weight infants: Effects of exposure to biological maternal sounds. Am J Perinatol. 2013;30(10):863–70.spa
dc.relation.references93. Butler SC, O’Sullivan LP, Shah BL, Berthier NE. Preference for infant-directed speech in preterm infants. Infant Behav Dev [Internet]. 2014;37(4):505–11. Available from: http://dx.doi.org/10.1016/j.infbeh.2014.06.007spa
dc.relation.references94. Schaefer M, Hatcher RP, Barglow PD. Prematurity and infant stimulation: A review of research. Child Psychiatry Hum Dev. 1980;10(4):199–212.spa
dc.relation.references95. Bozzette M. Healthy preterm infant responses to taped maternal voice. J Perinat Neonatal Nurs. 2008;22(4):307–16.spa
dc.relation.references96. Johnston CC, Filion F, Nuyt AM. Recorded maternal voice for preterm neonates undergoing heel lance. Adv Neonatal Care. 2007;7(5):258–66.spa
dc.relation.references97. Picciolini O, Porro M, Meazza A, Giannì ML, Rivoli C, Lucco G, et al. Early exposure to maternal voice: Effects on preterm infants development. Early Hum Dev [Internet]. 2014;90(6):287–92. Available from: http://dx.doi.org/10.1016/j.earlhumdev.2014.03.003spa
dc.relation.references98. Saito Y, Fukuhara R, Aoyama S, Toshima T. Frontal brain activation in premature infants’ response to auditory stimuli in neonatal intensive care unit. Early Hum Dev [Internet]. 2009;85(7):471–4. Available from: http://dx.doi.org/10.1016/j.earlhumdev.2009.04.004spa
dc.relation.references99. Nfant Labs. Clinical Evidence Guide [Internet]. 2019. Available from: www.nfant.comspa
dc.relation.references100. Asociación Médica Mundial. Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas en seres humanos. Helsinki; 1964.spa
dc.relation.references101. Ministerio de Salud y Protección Social. Resolución 8430. 1993.spa
dc.relation.references102. Woythaler M. Neurodevelopmental outcomes of the late preterm infant. Semin Fetal Neonatal Med [Internet]. 2019;24(1):54–9. Available from: https://www.sciencedirect.com/science/article/pii/S1744165X18301136spa
dc.relation.references103. Capilouto GJ, Cunningham TJ. Objective assessment of a preterm infant’s nutritive sucking from initiation of feeding through hospitalization and discharge. Neonatal Intensive Care. 2016;29(1):40–5.spa
dc.relation.references104. Capilouto GJ, Cunningham TJ, Mullineaux DR, Tamilia E, Papadelis C, Giannone PJ. Quantifying Neonatal Sucking Performance: Promise of New Methods. MCN Am J Matern Nurs. 2017;42(5):300.spa
dc.relation.references105. Capilouto GJ, Cunningham T, Frederick E, Dupont-Versteegden E, Desai N, Butterfield TA. Comparison of tongue muscle characteristics of preterm and full-term infants during nutritive and nonnutritive sucking. Infant Behav Dev [Internet]. 2014;37(3):435–45. Available from: http://dx.doi.org/10.1016/j.infbeh.2014.05.010spa
dc.relation.references106. Als H, Tronick E, Lester BM, Brazelton TB. The Brazelton Neonatal Behavioral Assesment Scale (BNBAS). J Abnorm Child Psychol. 1977;5(3):215–30.spa
dc.relation.references107. Villamizar Carvajal B, Vargas Porras C, Díaz Martínez LA. El progreso de la alimentación oral del recién nacido prematuro. Salud UIS. 2010;42:262–70.spa
dc.relation.references108. DiTomasso D, Cloud M. Systematic Review of Expected Weight Changes After Birth for Full-Term, Breastfed Newborns. JOGNN - J Obstet Gynecol Neonatal Nurs [Internet]. 2019;48(6):593–603. Available from: https://doi.org/10.1016/j.jogn.2019.09.004spa
dc.relation.references109. Valentine GC, Umoren RA, Perez KM. Early inadequate or excessive weight loss: A potential contributor to mortality in premature newborns in resource-scarce settings? Pediatr Neonatol [Internet]. 2021;62(3):237–9. Available from: https://doi.org/10.1016/j.pedneo.2021.01.004spa
dc.relation.references110. Adjerid K, Mayerl CJ, Gould FDH, Edmonds CE, Stricklen BM, Bond LE, et al. Does birth weight affect neonatal body weight, growth, and physiology in an animal model? PLoS One [Internet]. 2021;16:1–14. Available from: http://dx.doi.org/10.1371/journal.pone.0246954spa
dc.relation.references111. Mayerl CJ, Gould FDH, Bond LE, Stricklen BM, Buddington RK, German RZ. Preterm birth disrupts the development of feeding and breathing coordination. J Appl Physiol. 2019;126(6):1681–6.spa
dc.relation.references112. Dodds R, Denison HJ, Ntani G, Cooper R, Cooper C, Sayer AA, et al. Birth weight and muscle strength : a systematic review and meta- analysis. J Nutr Heal Aging. 2019;16(7):609–15.spa
dc.relation.references113. Barr JG, Veena SR, Kiran KN, Wills AK, Winder NR, Kehoe S, et al. The relationship of birthweight, muscle size at birth and post-natal growth to grip strength in 9-year-old Indian children: Findings from the Mysore Parthenon study. J Dev Orig Health Dis. 2010;1(5):329–37.spa
dc.relation.references114. Lahav A. Questionable sound exposure outside of the womb: Frequency analysis of environmental noise in the neonatal intensive care unit. Acta Paediatr Int J Paediatr. 2015;104(1):e14–9.spa
dc.relation.references115. Lahav A, Skoe E. An acoustic gap between the NICU and womb: A potential risk for compromised neuroplasticity of the auditory system in preterm infants. Front Neurosci. 2014;8(DEC):1–8.spa
dc.relation.references116. Šrámková H, Granqvist S, Herbst CT, Švec JG. The softest sound levels of the human voice in normal subjects. J Acoust Soc Am [Internet]. 2015;137(1):407–18. Available from: http://dx.doi.org/10.1121/1.4904538spa
dc.relation.references117. Leino T, Laukkanen AM, Ilomäki I, Mäki E. Assessment of vocal capacity of Finnish university students. Folia Phoniatr Logop. 2008;60(4):199–209.spa
dc.relation.references118. Gramming P. Vocal loudness and frequency capabilities of the voice. J Voice. 1991;5(2):144–57.spa
dc.relation.references119. Sanchez K, Oates J, Dacakis G, Holmberg EB. Speech and voice range profiles of adults with untrained normal voices: Methodological implications. Logop Phoniatr Vocology. 2014;39(2):62–71.spa
dc.relation.references120. Gholami N, Borimnejad L, Jafari R, Rasouli M, Ranjbar F. Effect of a noise reduction program on stress of premature neonates in neonatal intensive care unit. J Neonatal Nurs [Internet]. 2023;29(1):194–8. Available from: https://www.sciencedirect.com/science/article/pii/S1355184122000989spa
dc.relation.references121. Smith S, Ortmann A, Clark W. Noise in the Neonatal Intensive Care Unit: A New Approach to Examining Acoustica Events. Noise Heal. 2018;20(95):121–30.spa
dc.relation.references122. Wachman EM, Lahav A. The effects of noise on preterm infants in the NICU. Arch Dis Child Fetal Neonatal Ed. 2011;96(4).spa
dc.relation.references123. Anand KJS, Scalzo FM. Can Adverse Neonatal Experiences Alter Brain Development and Subsequent Behavior? Biol Neonate [Internet]. 2000 Feb 7;77(2):69–82. Available from: https://doi.org/10.1159/000014197spa
dc.relation.references124. Zimmerman E, Lahav A. Ototoxicity in preterm infants: Effects of genetics, aminoglycosides, and loud environmental noise. J Perinatol [Internet]. 2013;33(1):3–8. Available from: http://dx.doi.org/10.1038/jp.2012.105spa
dc.relation.references125. Scheydt S, Müller Staub M, Frauenfelder F, Nielsen GH, Behrens J, Needham I. Sensory overload: A concept analysis. Int J Ment Health Nurs. 2017;26(2):110–20.spa
dc.relation.references126. Philpott-Robinson K, Lane SJ, Korostenski L, Lane AE. The impact of the Neonatal Intensive Care Unit on sensory and developmental outcomes in infants born preterm: A scoping review. Br J Occup Ther. 2017;80(8):459–69.spa
dc.relation.references127. Ryckman J, Hilton C, Rogers C, Pineda R. Sensory processing disorder in preterm infants during early childhood and relationships to early neurobehavior. Early Hum Dev. 2017;113:18–22.spa
dc.relation.references128. Crozier SC, Goodson JZ, Mackay ML, Synnes AR, Grunau RE, Miller SP, et al. Sensory Processing Patterns in Children Born Very Preterm. Am J Occup Ther [Internet]. 2015 Dec 18;70(1):7001220050p1–7. Available from: https://doi.org/10.5014/ajot.2016.018747spa
dc.relation.references129. Chorna O, Solomon JE, Slaughter JC, Stark AR, Maitre NL. Abnormal sensory reactivity in preterm infants during the first year correlates with adverse neurodevelopmental outcomes at 2 years of age. Arch Dis Child Fetal Neonatal Ed. 2014;99(6):F475–9.spa
dc.relation.references130. Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RSC. The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev [Internet]. 2013;89(3):145–52. Available from: http://dx.doi.org/10.1016/j.earlhumdev.2012.09.009spa
dc.relation.references131. Rand K, Lahav A. Impact of the NICU environment on language deprivation in preterm infants. Acta Paediatr Int J Paediatr. 2014;103(3):243–8.spa
dc.relation.references132. Korja R, Latva R, Lehtonen L. The effects of preterm birth on mother-infant interaction and attachment during the infant’s first two years. Acta Obstet Gynecol Scand. 2012;91(2):164–73.spa
dc.relation.references133. Schmücker G, Brisch KH, Köhntop B, Betzler S, Österle M, Pohlandt F, et al. The influence of prematurity, maternal anxiety, and infants’ neurobiological risk on mother-infant interactions. Infant Ment Health J. 2005;26(5):423–41.spa
dc.relation.references134. Alkozei A, McMahon E, Lahav A. Stress levels and depressive symptoms in NICU mothers in the early postpartum period. J Matern Neonatal Med. 2014;27(17):1738–43.spa
dc.relation.references135. Ionio C, Colombo C, Brazzoduro V, Mascheroni E, Confalonieri E, Castoldi F, et al. Mothers and fathers in nicu: The impact of preterm birth on parental distress. Eur J Psychol. 2016;12(4):604–21.spa
dc.relation.references136. Bieleninik Ł, Lutkiewicz K, Cieślak M, Preis-Orlikowska J, Bidzan M. Associations of maternal-infant bonding with maternal mental health, infant’s characteristics and socio-demographical variables in the early postpartum period: A cross-sectional study. Int J Environ Res Public Health. 2021;18(16):1–19.spa
dc.relation.references137. Hofer MA. Early relationships as regulators of infant physiology and behavior. Acta Paediatr Suppl. 1994;397(8):9–18.spa
dc.relation.references138. Carvalho MES, Justo JMRM, Gratier M, Tomé T, Pereira E, Rodrigues H. Vocal responsiveness of preterm infants to maternal infant-directed speaking and singing during skin-to-skin contact (Kangaroo Care) in the NICU. Infant Behav Dev. 2019;57(August).spa
dc.relation.references139. Ionio C, Lista G, Mascheroni E, Olivari MG, Confalonieri E, Mastrangelo M, et al. Premature birth: complexities and difficulties in building the mother–child relationship. J Reprod Infant Psychol [Internet]. 2017;35(5):509–23. Available from: http://doi.org/10.1080/02646838.2017.1383977spa
dc.relation.references140. Gatta M, Miscioscia M, Svanellini L, Peraro C, Simonelli A. A psychological perspective on preterm children: The influence of contextual factors on quality of family interactions. Biomed Res Int. 2017;2017.spa
dc.relation.references141. Hoffenkamp HN, Tooten A, Hall RAS, Croon MA, Braeken J, Winkel FW, et al. The impact of premature childbirth on parental bonding. Evol Psychol. 2012;10(3):542–61.spa
dc.relation.references142. Joaquim RHVT, Wernet M, Leite AM, Fonseca LMM, Mello DF de. Interações Entre Mães E Bebês Prematuros: Enfoque Nas Necessidades Essenciais. Cad Bras Ter Ocup. 2018;26(3):580–9.spa
dc.relation.references143. Floccia C, Nazzi T, Bertoncini J. Unfamiliar voice discrimination for short stimuli in newborns. Dev Sci. 2000;3(3):333–43.spa
dc.relation.references144. Mira A, Coo S, Lemp RB, González R. Interactions between mothers and their moderate preterm babies during hospitalization. Andes Pediatr. 2022;93(6):889–97.spa
dc.relation.references145. Taheri L, Jahromi MK, Abbasi M, Hojat M. Effect of recorded male lullaby on physiologic response of neonates in NICU. Appl Nurs Res [Internet]. 2017;33:127–30. Available from: http://dx.doi.org/10.1016/j.apnr.2016.11.003spa
dc.relation.references146. Chorna OD, Slaughter JC, Wang L, Stark AR, Maitre NL. A pacifier-activated music player with mother’s voice improves oral feeding in preterm infants. Pediatrics. 2014;133(3):462–8.spa
dc.relation.references147. Krueger C, Horesh E, Crossland BA. Safe Sound Exposure in the Fetus and Preterm Infant. JOGNN - J Obstet Gynecol Neonatal Nurs. 2012;41(2):166–70.spa
dc.relation.references148. Fischel JE. The organization of human newborn sucking and movement during auditory stimulation. Infant Behav Dev. 1982;5(1):45–61.spa
dc.relation.references149. Floccia C, Christophe A, Bertoncini J. High-Amplitude Sucking and Newborns: The Quest for Underlying Mechanisms. J Exp Child Psychol. 1997;64(2):175–98.spa
dc.relation.references150. Asociación Colombiana de Neonatología (ASCON). Criterios de Ingreso y Egreso a las Unidades de Recién Naciodos en Colombia. 2020.spa
dc.relation.references151. Arrieta-Arrieta A, Herrera-Malambo D, Díaz-Vargas LC, Pérez-Yepes C, Dueñas-Castell C, Flórez-Tanus A, et al. Determinantes de la estancia prolongada de neonatos en una Unidad de Cuidados Intensivos. Rev Ceincias la Salud. 2019;17(2).spa
dc.relation.references152. Reisenzein R, Meyer WU, Niepel M. Surprise. Encycl Hum Behav Second Ed. 2012;564–70.spa
dc.relation.references153. Sameroff AJ. Changes in the nonnutritive sucking response to stimulation during infancy. J Exp Child Psychol. 1970;10(1):112–9.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatríaspa
dc.subject.decsRecien Nacido Prematurospa
dc.subject.decsInfant, Prematureeng
dc.subject.decsUnidades de Cuidado Intensivo Neonatalspa
dc.subject.decsIntensive Care, Neonataleng
dc.subject.decsTrastornos del Neurodesarrollospa
dc.subject.decsNeurodevelopmental Disorderseng
dc.subject.decsConducta en la Lactanciaspa
dc.subject.decsSucking Behavioreng
dc.subject.decsDegluciónspa
dc.subject.decsDeglutitioneng
dc.subject.proposalNeonato pretérminospa
dc.subject.proposalVoz maternaspa
dc.subject.proposalPatrón de succiónspa
dc.subject.proposalSaturación de oxígenospa
dc.subject.proposalNeurodesarrollospa
dc.subject.proposalPreterm newborneng
dc.subject.proposalMaternal voiceeng
dc.subject.proposalSucking patterneng
dc.subject.proposalOxygen saturationeng
dc.subject.proposalNeurodevelopmentspa
dc.titleFisiología del proceso succión:deglución:respiración durante exposición a la voz materna de neonatos pretérmino en la unidad de cuidado intensivo neonatalspa
dc.title.translatedPhysiology of the sucking:swallowing:breathing process during exposure to maternal voice in preterm neonates in the neonatal intensive care uniteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1073517813.2024.pdf
Tamaño:
9.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: