Análisis genómico comparativo de aislamientos clínicos de Klebsiella pneumoniae productores de carbapenemasas en pacientes con y sin SARS-CoV2 de la ciudad de Bogotá durante el periodo de pandemia

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.advisorLeal Castro, Aura Lucía
dc.contributor.authorHernández Páez, Alexandra
dc.contributor.researchgroupBioinformáticaspa
dc.contributor.researchgroupEpidemiología molecularspa
dc.coverage.cityBogotáspa
dc.date.accessioned2023-08-01T18:05:42Z
dc.date.available2023-08-01T18:05:42Z
dc.date.issued2023-01-31
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDurante la pandemia de COVID-19 se detectaron en los pacientes afectados por SARS-CoV-2 K. pneumoniae resistentes a carbapenémicos, lo que conduce a desenlaces fatales y desafíos para la resistencia antimicrobiana. En nuestro estudio, realizado en un hospital durante un periodo de la pandemia, se obtuvo la comparación epidemiológica y genómica de dos grupos de CRKP: 14 y 25, aisladas respectivamente de 10 y 19 pacientes COVID-19 y sin COVID-19; resaltando que las primeras CRKP fueron más resistentes frente a β-lactámicos como cefoxitina, pero menos resistentes frente a trimetoprim/sulfametoxazol y ciprofloxacina que las segundas CRKP. Fueron detectados 75 genes en todos los aislamientos del estudio; se presentaron coproducciones de genes relacionados con carbapenemasas en algunos de los genomas, la Kp082 tenía: NDM-1, KPC-3, GES-2, OXA-2 una combinación no reportada en K. pneumoniae. Se observó la diversidad genética de los dos grupos de aislamientos del estudio, dada por la presencia de variedad de STs y el árbol filogenético basado en los SNPs del core, donde se evidenció que 43,6% de las CRKP pertenecientes a los dos grupos de estudio presentes en el clado IV se asignaron a ST1082. Además, reveló que los pacientes 7, 19 y 8 presentaban aislamientos distribuidos en diferentes clados y como el resistoma presente en las CRKP aun de un mismo clon era variable. Estos hallazgos resaltan la necesidad de dirigir acciones para mejorar continuamente los protocolos de prevención, control de infecciones y programas de administración de antimicrobianos a fin de frenar la expansión de CRKP. (Texto tomado de la fuente)spa
dc.description.abstractDuring the COVID-19 pandemic, carbapenem-resistant K. pneumoniae were detected in SARS-CoV-2-affected patients, leading to fatal outcomes and challenges to antimicrobial resistance. In our study, carried out in a hospital during a period of the pandemic, the epidemiological and genomic comparison of two groups of CRKP was obtained: 14 and 25, isolated respectively from 10 and 19 COVID-19 and non-COVID-19 patients; highlighting that the first CRKPs were more resistant against β-lactams such as cefoxitin, but less resistant against trimethoprim/sulfamethoxazole and ciprofloxacin than the second CRKPs. 75 genes were detected in all the study isolates; co-productions of genes related to carbapenemases were present in some of the genomes, Kp082 had: NDM-1, KPC-3, GES-2, OXA-2, a combination not reported in K. pneumoniae. The genetic diversity of the two groups of isolates in the study was observed, given the presence of a variety of STs and the phylogenetic tree based on the SNPs of the core, where it was evidenced that 43.6% of the CRKPs belonging to the two groups of study present in clade IV were assigned to ST1082. In addition, it revealed that patients 7, 19 and 8 had isolates distributed in different clades and that the resistome present in the CRKP even from the same clone was variable. These findings highlight the need for targeted actions to continually improve infection prevention, control protocols, and antimicrobial stewardship programs to curb the spread of CRKP.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.methodsEste es un estudio de corte trasversal, a partir del cual se seleccionaron aislamientos de K. pneumoniae resistentes a carbapenémicos (CRKP) de 29 pacientes, los cuales ingresaron entre el 02 de enero del 2020 y el 10 de julio del 2021, en un hospital de tercer nivel de la ciudad de Bogotá D.C. Los pacientes correspondían a dos grupos, un grupo conformado por pacientes que hubieran ingresado al hospital con diagnóstico clínico de COVID-19 y/o con una prueba de PCR o Ag positivo para SARS-CoV-2 o que hubieran desarrollado esta enfermedad de manera intrahospitalaria posterior a su admisión; mientras que el otro grupo comprendía aquellos pacientes negativos para COVID-19 desde el ingreso y hasta la recolección del aislamiento.spa
dc.description.researchareaBiología Molecular de Agentes Infecciososspa
dc.format.extentxvii, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84398
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogota, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAdler, A., Hussein, O., Ben-david, D., Masarwa, S., Navon-venezia, S., Schwaber, M. J., Carmeli, Y., Setton, E., Golan, S., Brill, S., Lipkin, V., Frodin, E., Mendelson, G., Rave, R., Yehuda, N., Aizen, I., Kaganski, M., Gershkovich, P., Sasson, A., … Charish, L. (2015). Persistence of Klebsiella pneumoniae ST258 as the predominant clone of carbapenemase-producing Enterobacteriaceae in post-acute-care hospitals in Israel, 2008-13. Journal of Antimicrobial Chemotherapy, 70(1), 89–92. https://doi.org/10.1093/jac/dku33spa
dc.relation.referencesAlcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. L. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H. K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., … McArthur, A. G. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517–D525. https://doi.org/10.1093/nar/gkz935spa
dc.relation.referencesAmarsy, R., Jacquier, H., Munier, A. L., Merimèche, M., Berçot, B., & Mégarbane, B. (2021). Outbreak of NDM-1-producing Klebsiella pneumoniae in the intensive care unit during the COVID-19 pandemic: Another nightmare. American Journal of Infection Control, 49(10), 1324–1326. https://doi.org/10.1016/j.ajic.2021.07.004spa
dc.relation.referencesAndrews, S. (2013). FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/spa
dc.relation.referencesArabaghian, H., Salloum, T., Alousi, S., Panossian, B., Araj, G. F., & Tokajian, S. (2019). Molecular Characterization of Carbapenem Resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae Isolated from Lebanon. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-018-36554-2spa
dc.relation.referencesArcari, G., Raponi, G., Sacco, F., Bibbolino, G., Di Lella, F. M., Alessandri, F., Coletti, M., Trancassini, M., Deales, A., Pugliese, F., Antonelli, G., & Carattoli, A. (2021). Klebsiella pneumoniae infections in COVID-19 patients: a 2-month retrospective analysis in an Italian hospital. International Journal of Antimicrobial Agents, 57(1), 106245. https://doi.org/10.1016/j.ijantimicag.2020.106245spa
dc.relation.referencesArteaga-Livias, K., Pinzas-Acosta, K., Perez-Abad, L., Panduro-Correa, V., Rabaan, A. A., Pecho-Silva, S., & Dámaso-Mata, B. (2022). A multidrug-resistant Klebsiella pneumoniae outbreak in a Peruvian hospital: Another threat from the COVID-19 pandemic. Infection Control and Hospital Epidemiology, 43(2), 267–268. https://doi.org/10.1017/ice.2020.1401spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBioptic. (2020). Qsep100. https://www.bioptic.com.tw/product/instruments/qsep100- series/qsep100spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09spa
dc.relation.referencesCantón, R., Gijón, D., & Ruiz-Garbajosa, P. (2020). Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Current Opinion in Critical Care, 26(5), 433–441. https://doi.org/10.1097/MCC.0000000000000755spa
dc.relation.referencesCataño-Correa, J. C., Cardona-Arias, J. A., Mancilla, J. P. P., & García, M. T. (2021). Bacterial superinfection in adults with COVID-19 hospitalized in two clinics in Medellín-Colombia, 2020. PLoS ONE, 16(7 July), 1–12. https://doi.org/10.1371/journal.pone.0254671spa
dc.relation.referencesCDC. (2019). Antibiotic Resistance Threats in the United States. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdfspa
dc.relation.referencesCLSI. (2020). M100-S30: Performance Standards for Antimicrobial Susceptibility Testing; 30th ed. Informational Supplement. https://www.nih.org.pk/wp content/uploads/2021/02/CLSI-2020.pdfspa
dc.relation.referencesCuriao, T., Marchi, E., Viti, C., Oggioni, M. R., Baquero, F., Martinez, J. L., & Coque, T. M. (2015). Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrobial Agents and Chemotherapy, 59(6), 3413–3423. https://doi.org/10.1128/AAC.00187-15spa
dc.relation.referencesDe Angelis, G., Giacomo, P. Del, Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in enterobacteriaceae. In International Journal of Molecular Sciences (Vol. 21, Issue 14, pp. 1–22). MDPI AG. https://doi.org/10.3390/ijms21145090spa
dc.relation.referencesDhanoa, A., Fang, N. C., Hassan, S. S., Kaniappan, P., & Rajasekaram, G. (2011). Epidemiology and clinical characteristics of hospitalized patients with pandemic influenza A (H1N1) 2009 infections: The effects of bacterial coinfection. Virology Journal, 8(1), 501. https://doi.org/10.1186/1743-422X-8-501spa
dc.relation.referencesDong, N., Zhang, R., Liu, L., Li, R., Lin, D., Chan, E. W. C., & Chen, S. (2018). Genome analysis of clinical multilocus sequence Type 11 Klebsiella Pneumoniae from China. Microbial Genomics, 4(2). https://doi.org/10.1099/mgen.0.000149spa
dc.relation.referencesDortet, L., Girlich, D., Virlouvet, A. L., Poirel, L., Nordmann, P., Iorga, B. I., & Naas, T. (2017). Characterization of BRPMBL, the bleomycin resistance protein associated with the carbapenemase NDM. Antimicrobial Agents and Chemotherapy, 61(3). https://doi.org/10.1128/AAC.02413-16spa
dc.relation.referencesECDC. (2018). Vigilancia de Resistencia Antimicrobiana en Europa. https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial resistance-Europe-2018.pdfspa
dc.relation.referencesFounou, R. C., Founou, L. L., Allam, M., Ismail, A., & Essack, S. Y. (2019). Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-42672-2spa
dc.relation.referencesGarcía-Betancur, J. C., Appel, T. M., Esparza, G., Gales, A. C., Levy-Hara, G., Cornistein, W., Vega, S., Nuñez, D., Cuellar, L., Bavestrello, L., Castañeda-Méndez, P. F., Villalobos-Vindas, J. M., & Villegas, M. V. (2021). Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti Infective Therapy, 19(2), 197–213. https://doi.org/10.1080/14787210.2020.1813023spa
dc.relation.referencesGarcía-Meniño, I., Forcelledo, L., Rosete, Y., García-Prieto, E., Escudero, D., & Fernández, J. (2021). Spread of OXA-48-producing Klebsiella pneumoniae among COVID-19-infected patients: The storm after the storm. Journal of Infection and Public Health, 14(1), 50–52. https://doi.org/10.1016/j.jiph.2020.11.001spa
dc.relation.referencesGhosh, S., Bornman, C., & Zafer, M. M. (2021). Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? Journal of Infection and Public Health, 14(5), 555–560. https://doi.org/10.1016/j.jiph.2021.02.011spa
dc.relation.referencesGomez-Simmonds, A., Annavajhala, M. K., McConville, T. H., Dietz, D. E., Shoucri, S. M., Laracy, J. C., Rozenberg, F. D., Nelson, B., Greendyke, W. G., Furuya, E. Y., Whittier, S., & Uhlemann, A.-C. (2020). Carbapenemase-producing Enterobacterales causing secondary infections during the COVID-19 crisis at a New York City hospital. Journal of Antimicrobial Chemotherapy, November 2020, 380–384. https://doi.org/10.1093/jac/dkaa466spa
dc.relation.referencesGuo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. Sen, Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. Military Medical Research, 7(1), 1–10. https://doi.org/10.1186/s40779-020-00240-0spa
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086spa
dc.relation.referencesHernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Bioinformatics of next generation sequencing in clinical microbiology diagnosis. Revista Argentina de Microbiologia, 52(2), 150–161. https://doi.org/10.1016/j.ram.2019.06.003spa
dc.relation.referencesHolt, K. E., Wertheim, H., Zadoks, R. N., Baker, S., Whitehouse, C. A., Dance, D., Jenney, A., Connor, T. R., Hsu, L. Y., Severin, J., Brisse, S., Cao, H., Wilksch, J., Gorrie, C., Schultz, M. B., Edwards, D. J., Van Nguyen, K., Nguyen, T. V., Dao, T. T., … Thomson, N. R. (2015). Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences of the United States of America, 112(27), E3574–E3581. https://doi.org/10.1073/pnas.1501049112spa
dc.relation.referencesHoque, M. N., Akter, S., Mishu, I. D., Islam, M. R., Rahman, M. S., Akhter, M., Islam, I., Hasan, M. M., Rahaman, M. M., Sultana, M., Islam, T., & Hossain, M. A. (2021). Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microbial Pathogenesis, 156(April), 104941. https://doi.org/10.1016/j.micpath.2021.104941spa
dc.relation.referencesHoward-Jones, A. R., Sandaradura, I., Robinson, R., Orde, S. R., Iredell, J., Ginn, A., van Hal, S., & Branley, J. (2022). Multidrug-resistant OXA-48/CTX-M-15 Klebsiella pneumoniae cluster in a COVID-19 intensive care unit: salient lessons for infection prevention and control during the COVID-19 pandemic. Journal of Hospital Infection, 126, 64–69. https://doi.org/10.1016/j.jhin.2022.05.001spa
dc.relation.referencesHuang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5spa
dc.relation.referencesIllumina. (2020). Illumina DNA Prep Reference Guide. www.illumina.com/company/legal.html.%0Ahttps://support.illumina.com/content/dam/ illumina-support/documents/documentation/chemistry_documentation/illumina_prep/illumina- dna-prep-reference-guide-1000000025416-09.pdfspa
dc.relation.referencesINS. (2019). Informe de Resultados de la Vigilancia por Laboratorio de Resistencia Antimicrobiana en Infecciones Asociadas a La Atención en Salud (IAAS) 2018. https://www.ins.gov.co/buscador-eventos/Informacin de laboratorio/Informe vigilancia-por-laboratorio-resistencia-antimicrobiana-y-whonet-IAAS-2018.pdfspa
dc.relation.referencesInstituto Nacional de Salud [INS]. (2022). COVID-19 en Colombia. https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxspa
dc.relation.referencesInvitrogen. (2020). PureLink® Genomic DNA Kits. https://assets.thermofisher.com/TFS Assets/LSG/ manuals/purelink_genomic_man.pdfspa
dc.relation.referencesKieffer, N., Aires-de-Sousa, M., Nordmann, P., & Poirel, L. (2017). High rate of MCR-1– producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. Emerging Infectious Diseases, 23(12), 2023–2029. https://doi.org/10.3201/eid2312.170883spa
dc.relation.referencesKrapp, F., Morris, A. R., Ozer, E. A., & Hauser, A. R. (2017). Virulence Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Strains from Patients with Necrotizing Skin and Soft Tissue Infections. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-13524-8spa
dc.relation.referencesLee, Y. J., Huang, C. H., Ilsan, N. A., Lee, I. H., & Huang, T. W. (2021). Molecular epidemiology and characterization of carbapenem-resistant klebsiella pneumoniae isolated from urine at a teaching hospital in Taiwan. Microorganisms, 9(2), 1–15. https://doi.org/10.3390/microorganisms9020271spa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293– W296. https://doi.org/10.1093/nar/gkab301spa
dc.relation.referencesLi, J., Zhang, H., Ning, J., Sajid, A., Cheng, G., Yuan, Z., & Hao, H. (2019). The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrobial Resistance and Infection Control, 8(1), 1–13. https://doi.org/10.1186/s13756-019-0489-3spa
dc.relation.referencesLomonaco, S., Crawford, M. A., Lascols, C., Timme, R. E., Anderson, K., Hodge, D. R., Fisher, D. J., Pillai, S. P., Morse, S. A., Khan, E., Hughes, M. A., Allard, M. W., & Sharma, S. K. (2018). Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. PLoS ONE, 13(6), 1–23. https://doi.org/10.1371/journal.pone.0198526spa
dc.relation.referencesManohar, P., Loh, B., Nachimuthu, R., Hua, X., Welburn, S. C., & Leptihn, S. (2020). Secondary Bacterial Infections in Patients With Viral Pneumonia. Frontiers in Medicine, 7(August), 2013–2016. https://doi.org/10.3389/fmed.2020.00420spa
dc.relation.referencesMartin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8(JAN), 1–15. https://doi.org/10.3389/fcimb.2018.00004spa
dc.relation.referencesMędrzycka-Dabrowska, W., Lange, S., Zorena, K., Dabrowski, S., Ozga, D., & Tomaszek, L. (2021). Carbapenem-resistant klebsiella pneumoniae infections in icu covid-19 patients—a scoping review. Journal of Clinical Medicine, 10(10), 1–13. https://doi.org/10.3390/jcm10102067spa
dc.relation.referencesMeir-Gruber, L., Manor, Y., Gefen-Halevi, S., Hindiyeh, M. Y., Mileguir, F., Azar, R., Smollan, G., Belausov, N., Rahav, G., Shamiss, A., Mendelson, E., & Keller, N. (2016). Population screening using sewage reveals pan-resistant bacteria in hospital and community samples. PLoS ONE, 11(10), 1–13. https://doi.org/10.1371/journal.pone.0164873spa
dc.relation.referencesMendes, G., Ramalho, J. F., Duarte, A., Pedrosa, A., Silva, A. C., Méndez, L., & Caneiras, C. (2022). First Outbreak of NDM-1-Producing Klebsiella pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms, 10(2), 1–14. https://doi.org/10.3390/microorganisms10020251spa
dc.relation.referencesNavon-Venezia, S., Kondratyeva, K., & Carattoli, A. (2017). Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiology Reviews, 41(3), 252–275. https://doi.org/10.1093/femsre/fux013spa
dc.relation.referencesNori, P., Cowman, K., Chen, V., Bartash, R., Szymczak, W., Madaline, T., Punjabi Katiyar, C., Jain, R., Aldrich, M., Weston, G., Gialanella, P., Corpuz, M., Gendlina, I., & Guo, Y. (2020). Bacterial and fungal co-infections in COVID-19 patients hospitalized during the New York city pandemic surge. Infection Control and Hospital Epidemiology, 2020, 1–5. https://doi.org/10.1017/ice.2020.368spa
dc.relation.referencesOECD. (2018). Stemming the Superbug Tide: Just A Few Dollars More. https://www.oecd.org/els/health-systems/Stemming-the-Superbug-Tide-Policy-Brief 2018.pdfspa
dc.relation.referencesOMS. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb ET_NM_WHO.pdf?ua=1spa
dc.relation.referencesOrganización Mundial de la Salud [OMS]. (2022). Panel de la OMS sobre la enfermedad por coronavirus (COVID-19). https://covid19.who.int/spa
dc.relation.referencesÖsterblad, M., Kirveskari, J., Hakanen, A. J., Tissari, P., Vaara, M., & Jalava, J. (2012). Carbapenemase-producing enterobacteriaceae in Finland: The first years (2008-11). Journal of Antimicrobial Chemotherapy, 67(12), 2860–2864. https://doi.org/10.1093/jac/dks299spa
dc.relation.referencesPintado, V., Ruiz-Garbajosa, P., Escudero-Sanchez, R., Gioia, F., Herrera, S., Vizcarra, P., Fortún, J., Cobo, J., Martín-Dávila, P., Morosini, M. I., Cantón, R., & Moreno, S. (2022). Carbapenemase-producing Enterobacterales infections in COVID-19 patients. Infectious Diseases, 54(1), 36–45. https://doi.org/10.1080/23744235.2021.1963471spa
dc.relation.referencesPitout, J. D. D., Nordmann, P., & Poirel, L. (2015). Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. In Antimicrobial Agents and Chemotherapy (Vol. 59, Issue 10, pp. 5873–5884). American Society for Microbiology. https://doi.org/10.1128/AAC.01019-15spa
dc.relation.referencesPrezioso, S. M., Brown, N. E., & Goldberg, J. B. (2017). Elfamycins: inhibitors of elongation factor-Tu. Molecular Microbiology, 106(1), 22–34. https://doi.org/10.1111/mmi.13750spa
dc.relation.referencesPubMLST. (2022). Bases de datos públicas para tipificación molecular y diversidad del genoma microbiano. https://pubmlst.org/spa
dc.relation.referencesPulzova, L., Navratilova, L., & Comor, L. (2017). Alterations in Outer Membrane Permeability Favor Drug-Resistant Phenotype of Klebsiella pneumoniae. Microbial Drug Resistance, 23(4), 413–420. https://doi.org/10.1089/mdr.2016.0017spa
dc.relation.referencesRemolina Granados, S. A., & Escobar Castaño, C. J. (2017). Descripción de Tipos de Carbapenemasas Expresadas en Klebsiella sp. y Pseudomonas aeruginosa en Hospitales de Tercer Nivel de la Ciudad de Bogotá, Estudio Descriptivo. Parte 1 [Tesis de Especialización, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/62824/SergioA.RemolinaGrana dos.2017.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesRojas, L. J., Weinstock, G. M., De La Cadena, E., Diaz, L., Rios, R., Hanson, B. M., Brown, J. S., Vats, P., Phillips, D. S., Nguyen, H., Hujer, K. M., Correa, A., Adams, M. D., Perez, F., Sodergren, E., Narechania, A., Planet, P. J., Villegas, M. V., Bonomo, R. T. A., & Arias, C. A. (2018). An analysis of the epidemic of klebsiella pneumoniae carbapenemase-producing k. pneumoniae: Convergence of two evolutionary mechanisms creates the “perfect storm.” Journal of Infectious Diseases, 217(1), 82–92. https://doi.org/10.1093/infdis/jix524spa
dc.relation.referencesSaavedra, S. Y., Bernal, J. F., Montilla-Escudero, E., Arévalo, S. A., Prada, D. A., Valencia, M. F., Moreno, J., Hidalgo, A. M., Garciá-Vega, Á. S., Abrudan, M., Argimón, S., Kekre, M., Underwood, A., Aanensen, D. M., Duarte, C., Donado Godoy, P., Abudahab, K., Harste, H., Muddyman, D., … Vegvari, C. (2021). Complexity of Genomic Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Colombia Urges the Reinforcement of Whole Genome Sequencing-Based Surveillance Programs. Clinical Infectious Diseases, 73(Suppl 4), S290–S299. https://doi.org/10.1093/cid/ciab777spa
dc.relation.referencesSaini, V., Jain, C., Singh, N. P., Alsulimani, A., Gupta, C., Dar, S. A., Haque, S., & Das, S. (2021). Paradigm shift in antimicrobial resistance pattern of bacterial isolates during the covid-19 pandemic. Antibiotics, 10(8), 1–11. https://doi.org/10.3390/antibiotics10080954spa
dc.relation.referencesSamanta, I., & Bandyopadhyay, S. (2020). Klebsiella. Antimicrobial Resistance in Agriculture, 258, 153–169. https://doi.org/10.1016/b978-0-12-815770-1.00014-6spa
dc.relation.referencesSeemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153spa
dc.relation.referencesSepandi, M., Taghdir, M., Alimohamadi, Y., Afrashteh, S., & Hosamirudsari, H. (2020). Factors associated with mortality in COVID-19 patients: A systematic review and meta-analysis. Iranian Journal of Public Health, 49(7), 1211–1221. https://doi.org/10.18502/ijph.v49i7.3574spa
dc.relation.referencesShelburne, S. A., Kim, J., Munita, J. M., Sahasrabhojane, P., Shields, R. K., Press, E. G., Li, X., Arias, C. A., Cantarel, B., Jiang, Y., Kim, M. S., Aitken, S. L., & Greenberg, D. E. (2017). Whole-genome sequencing accurately identifies resistance to extended spectrum β-lactams for major gram-negative bacterial pathogens. Clinical Infectious Diseases, 65(5), 738–745. https://doi.org/10.1093/cid/cix417spa
dc.relation.referencesShelenkov, A., Petrova, L., Mironova, A., Zamyatin, M., Akimkin, V., & Mikhaylova, Y. (2022). Long-Read Whole Genome Sequencing Elucidates the Mechanisms of Amikacin Resistance in Multidrug-Resistant Klebsiella pneumoniae Isolates Obtained from COVID-19 Patients. Antibiotics, 11(10). https://doi.org/10.3390/antibiotics11101364spa
dc.relation.referencesShon, A. S., Bajwa, R. P. S., & Russo, T. A. (2013). Hypervirulent (hypermucoviscous) Klebsiella Pneumoniae: A new and dangerous breed. Virulence, 4(2), 107–118. https://doi.org/10.4161/viru.22718spa
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033spa
dc.relation.referencesSuárez, C., & Gudiol, F. (2009). Beta-lactam antibiotics. Enfermedades Infecciosas y Microbiologia Clinica, 27(2), 116–129. https://doi.org/10.1016/j.eimc.2008.12.001spa
dc.relation.referencesTalero Osorio, D. C. (2022). Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae. Universidad Nacional de Colombia. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/81811spa
dc.relation.referencesT.Seemann. (2022a). mlst Github. https://github.com/tseemann/mlstspa
dc.relation.referencesT.Seemann. (2022b). snippy. https://github.com/tseemann/snippyspa
dc.relation.referencesThermo ScientificTM OxoidTM. (2020). Medios deshidratados. http://www.analisisavanzados.com/index.php/catalogo-general-de-productos oxoid?article=&id=119spa
dc.relation.referencesTiri, B., Sensi, E., Marsiliani, V., Cantarini, M., Priante, G., Vernelli, C., Martella, L. A., Costantini, M., Mariottini, A., Andreani, P., Bruzzone, P., Suadoni, F., Francucci, M., Cirocchi, R., & Cappanera, S. (2020). Antimicrobial Stewardship Program, COVID 19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? Journal of Clinical Medicine, 9(9), 2744. https://doi.org/10.3390/jcm9092744spa
dc.relation.referencesWilson, H., & Török, M. E. (2018). Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microbial Genomics, 4(7). https://doi.org/10.1099/mgen.0.000197spa
dc.relation.referencesWorld Health Organization. (2020). Coronavirus disease 2019 (COVID-19): situation report, 51. World Health Organization. https://apps.who.int/iris/handle/10665/331475spa
dc.relation.referencesWu, H., Li, D., Zhou, H., Sun, Y., Guo, ling, & Shen, D. (2017). Bacteremia and other body site infection caused by hypervirulent and classic Klebsiella pneumoniae. Microbial Pathogenesis, 104, 254–262. https://doi.org/10.1016/j.micpath.2017.01.049spa
dc.relation.referencesZhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/nejmoa2001017spa
dc.relation.referencesZhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., & Cui, L. (2020). Co infection with respiratory pathogens among COVID-2019 cases Xiaojuan. Virus Research, 285. https://doi.org/https://doi.org/10.1016/j.virusres.2020.198005spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.decsKlebsiella pneumoniaeother
dc.subject.decsAislamiento de Pacientesspa
dc.subject.proposalResistencia antimicrobianaspa
dc.subject.proposalCarbapenemasasspa
dc.subject.proposalCOVID-19eng
dc.subject.proposalClonesspa
dc.subject.proposalKlebsiella pneumoniaeother
dc.subject.proposalSecuenciación de genoma completospa
dc.subject.proposalInfecciones intrahospitalariasspa
dc.subject.proposalAntimicrobial resistanceeng
dc.subject.proposalCarbapenemaseseng
dc.subject.proposalClusterseng
dc.subject.proposalNosocomial infectionseng
dc.subject.proposalWhole genome sequencingeng
dc.titleAnálisis genómico comparativo de aislamientos clínicos de Klebsiella pneumoniae productores de carbapenemasas en pacientes con y sin SARS-CoV2 de la ciudad de Bogotá durante el periodo de pandemiaspa
dc.title.translatedComparative genomic analysis of clinical isolates of Carbapenemase-producing Klebsiella pneumoniae in patients with and without SARS-CoV2 in the city of Bogotá during the pandemic periodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
38291096.2023.pdf
Tamaño:
3.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: