En 5 día(s), 6 hora(s) y 30 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Diseño de un sistema transceptor para comunicaciones usando una multiplexación para 5G sobre Radio definido por software

dc.contributor.advisorAraque, Javier Leonardospa
dc.contributor.authorCepeda Solarte, Juan Davidspa
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)spa
dc.date.accessioned2020-05-19T20:32:35Zspa
dc.date.available2020-05-19T20:32:35Zspa
dc.date.issued2019-12-13spa
dc.description.abstractEl trabajo realizado expone el estudio de una multiplexación candidata para 5G teniendo como objetivo su implementación en una plataforma de radio definido por software (SDR). Se define la forma de onda Universal Filtered Multi-carrier (UFMC) como el objeto de estudio y se realizan simulaciones sobre su desempeño. Adicionalmente se proponen métodos para la implementación en un sistema real como sincronización y estimación de canal. Se elige una plataforma de desarrollo de SDR conocida como GNU Radio y se trabaja con la API y bloques existentes para construir un prototipo de transceptor. Finalmente se selecciona el hardware USRP para la puesta prueba del sistema con un canal real y se realizan mediciones experimentales iniciales en laboratorio para contrastar los resultados con la teoría. Se comprueba el desempeño espectral de UFMC de forma experimental y se perfila como una candidata sucesora a OFDM. Se logra establecer que aunque los efectos de offset de frecuencia y tiempo, y canal deben compensarse, el efecto no lineal del amplificador de la mano con el alto PAPR de la señal son los principales contribuyentes en el desempeño de la transmisión y de las curvas de BER vs Eb/N0.spa
dc.description.abstractThe present work reports the study of a candidate waveform for 5G, aiming at its implementation in a software-defined radio platform (SDR). The Universal Filtered Multi-carrier (UFMC) waveform is selected as the object of this study, alongside which some simulations are carried out to verify its performance. Additionally, we propose methods for implementation in a real system such as synchronization and channel estimation. The GNU Radio SDR platform is chosen for development in order to work with its API and signal processing blocks to build a transceiver prototype. Finally, the USRP hardware is selected to test the system with a real channel and initial experimental measurements are made in the laboratory to contrast the results with the theory. The spectral efficiency of UFMC is verified experimentally and is outlined as a successor candidate to OFDM. It was possible to establish that although the effects of offset of frequency and time, and channel must be compensated, the non-linear effect of the amplifier alongside with the high PAPR of the signal are the main contributors in the performance of the transmission and the curves of BER vs Eb / N0.spa
dc.description.additionalMaestría en Ingeniería - Telecomunicacionesspa
dc.description.degreelevelMaestríaspa
dc.format.extent91spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationJ. Cepeda, "Diseño de un sistema transceptor para comunicaciones usando una multiplexación para 5G sobre Radio definido por software", 2019.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77536
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicacionesspa
dc.relation.references5GNOW, “Ufmc (matlab files),” in http: // www. 5gnow. eu/ ?page_ id= 424 .spa
dc.relation.references[1] F. Schaich and T. Wild, “Waveform contenders for 5g — ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 457–460, May 2014. [2] 5GNOW, “Ufmc (matlab files),” in http: // www. 5gnow. eu/ ?page_ id= 424 . [3] 3GPP (TS 25.401), “Utran overall description,” in Technical Specification, Sophia An- tipolis, France, 2002. [4] ITU, “5g basics,” p. 39, 2017.spa
dc.relation.references[5] M. M. et all, “5g ppp use cases and performance evaluation models,” pp. 1–10, Abril, 2016. [6] N. Alliance, “Ngmn 5g white paper,” p. 13, Febrero, 2015. [7] “5g and beyond waveforms,” in 2017 24th International Conference on Telecommuni- cations (ICT), pp. 1–42, May 2017.spa
dc.relation.references[8] M. Matthe, D. Zhang, F. Schaich, T. Wild, R. Ahmed, and G. Fettweis, “A reduced com- plexity time-domain transmitter for uf-ofdm,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2016. [9] N. Michailow, M. Matth´e, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, pp. 3045–3061, Sep. 2014. [10] Y. Qi and M. Al-Imari, “An enabling waveform for 5g — qam-fbmc: Initial analysis,” in 2016 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–6, Oct 2016. [11] J. P. L. Jim´enez, “Modulaci´on multiportadora ofdm”. Ingenier´ıa, 2001-00-00. Vol 6. Nu´mero 2,” in http: // revistas. udistrital. edu. co/ ojs/ index. php/ reving/ article/ view/ 2699/ 3891 , pp. 30–34.spa
dc.relation.references[12] F. Schaich, T. Wild, and Y. Chen, “Waveform contenders for 5g - suitability for short packet and low latency transmissions,” in 2014 IEEE 79th Vehicular Technology Con- ference (VTC Spring), pp. 1–5, May 2014.spa
dc.relation.references[13] G. P. Fettweis, “5g and the future of iot,” in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, pp. 21–24, Sep. 2016.spa
dc.relation.references[14] U. L. Rohde, A. K. Poddar, and S. K. Koul, “Modern radios: 5g and sdr emerging trends,” in 2016 Asia-Pacific Microwave Conference (APMC), pp. 1–4, Dec 2016.spa
dc.relation.references[15] ITU-R, “Imt vision - framework and overall objectives of the future development of imt for 2020 and beyond,” p. 13, Junio, 2015. [16] Y. S. et all, “Mimo-ofdm wireless communications with matlabⓍR ,” pp. 111–151, 2010. [17] K. Fazel and S. Kaiser, “Multi-carrier and spread spectrum systems,” pp. 25–34, 2004.spa
dc.relation.references[18] A. S. S. S. Kaur, C. Singh, “Effects and estimation techniques of symbol timing offset and carrier frequency offset in ofdm system: Simulation and analysis,” 2016. [19] E. McCune, “Practical digital wireless signals,” pp. 204–220, 2010.spa
dc.relation.references[20] P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5g networks: Who will be the heir of ofdm?: An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Proces- sing Magazine, vol. 31, pp. 80–93, Nov 2014.spa
dc.relation.references[21] G. M. Hassan, M. R. Mokhtar, and K. A. A. Bakar, “Symbol time offset synchroni- zation based on training sequence,” in 2018 International Conference on Advance of Sustainable Engineering and its Application (ICASEA), pp. 115–120, March 2018.spa
dc.relation.references[22] Juan Wei, Juanjuan Hu, and Jing Chen, “An improved algorithm based on training symbol for ofdm symbol synchronization,” in 10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014), pp. 105–108, Sep. 2014.spa
dc.relation.references[23] V. Savaux, “Contribution a` modulation ofdm,” 2013. l’estimation de canal multi-trajets dans un contexte despa
dc.relation.references[24] P. Cruz, N. Carvalho, and K. Remley, “Designing and Testing Software-Defined Radios,” IEEE Microwave Magazine, vol. 11, pp. 83–94, jun 2010. [25] E. McCune, Practical digital wireless signals. Cambridge University Press, 2010. [26] B. Farhang-Boroujeny and H. Moradi, “OFDM Inspired Waveforms for 5G,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2474–2492, 2016. [27] B. Farhang-Boroujeny, “Ofdm versus filter bank multicarrier,” IEEE Signal Processing Magazine, vol. 28, pp. 92–112, May 2011. 80 Bibliograf´ıaspa
dc.relation.references[28] N. Michailow, M. Matth´e, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, pp. 3045–3061, Sept 2014.spa
dc.relation.references[29] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J. F. Frigon, “Universal-filtered multi- carrier technique for wireless systems beyond lte,” in 2013 IEEE Globecom Workshops (GC Wkshps), pp. 223–228, Dec 2013.spa
dc.relation.references[30] F. Schaich and T. Wild, “Waveform contenders for 5g ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 457–460, May 2014.spa
dc.relation.references[31] T. Wild and F. Schaich, “A reduced complexity transmitter for uf-ofdm,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6, May 2015.spa
dc.relation.references[32] X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-ofdm - enabler for flexible wa- veform in the 5th generation cellular networks,” in 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec 2015.spa
dc.relation.references[33] Qualcomm, “Making 5g nr a reality,” in https: // www. qualcomm. com/ media/ documents/ files/ whitepaper-making-5g-nr-a-reality. pdf , 2016.spa
dc.relation.references[34] Huawei, “5g: New air interface and radio access virtualization,” in https: // www. huawei. com/ minisite/ has2015/ img/ 5g_ radio_ whitepaper. pdf , 2015.spa
dc.relation.references[35] S. G¨okceli, B. Canli, and G. K. Kurt, “Universal filtered multicarrier systems: Testbed deployment of a 5g waveform candidate,” in 2016 IEEE 37th Sarnoff Symposium, pp. 94– 99, Sept 2016.spa
dc.relation.references[36] X. Yu, T. Wild, and F. Schaich, “Impact of rf transmitter hardware on 5g waveforms: Signal conditionings for uf-ofdm,” in 2016 International Symposium on Wireless Com- munication Systems (ISWCS), pp. 153–157, Sept 2016.spa
dc.relation.references[37] D. Garcia-Roger, J. F. de Valgas, J. F. Monserrat, N. Cardona, and N. Incardona, “Hardware testbed for sidelink transmission of 5g waveforms without synchronization,” in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, Sept 2016.spa
dc.relation.references[38] P. Weitkemper, J. Koppenborg, J. Bazzi, R. Rheinschmitt, K. Kusume, D. Samardzija, R. Fuchs, and A. Benjebbour, “Hardware experiments on multi-carrier waveforms for 5g,” in 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6, April 2016.spa
dc.relation.references[39] J. J. H. Almeida, C. Akamine, and P. B. Lopes, “A proposal for the next generation of isdb-tb using fbmc in a sdr implementation on gnu radio environment,” in 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6, Nov 2016.spa
dc.relation.references[40] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Towards an open source ieee 802.11p stack: A full sdr-based transceiver in gnu radio,” in 2013 IEEE Vehicular Networking Conference, pp. 143–149, Dec 2013.spa
dc.relation.references[41] C. Pradhan and G. R. Murthy, “Analysis of path loss mitigation through dynamic spec- trum access: Software defined radio,” in 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), pp. 110–113, Dec 2015.spa
dc.relation.references[42] M. Danneberg, R. Datta, A. Festag, and G. Fettweis, “Experimental testbed for 5g cognitive radio access in 4g lte cellular systems,” in 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 321–324, June 2014.spa
dc.relation.references[43] J. Cepeda, “Comparaci´on de dos t´ecnicas de generaci´on de forma de onda ofdm y ufmc para un enlace de lte sobre fibra ´optica,” pp. 1–44, 2016. [44] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Transactions on Communications, vol. 42, pp. 2908–2914, Oct 1994.spa
dc.relation.references[45] G. Radio, “Outoftreemodules,” in https: // wiki. gnuradio. org/ index. php/ OutOfTreeModules# gr_ modtool_ -_ The_ swiss_ army_ knife_ of_ module_ editing , March, 2019. [46] G. Radio, “Gnu radio manual and c++ api reference,” in https: // www. gnuradio. org/ doc/ doxygen/ index. html , March, 2019. [47] Ettus Research, “Usrp b210 sdr kit,” in https: // www. ettus. com/ all-products/ ub210-kit/ .spa
dc.relation.references[48] E. research, “Usrp hardware driver and usrp manual,”spa
dc.relation.references[49] O. Olukoya and D. Budimir, “Evaluation of waveform candidates for 5g wireless com- munications,” in 2019 European Microwave Conference in Central Europe (EuMCE), pp. 347–349, May 2019.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.proposalSistemas multiportadoraspa
dc.subject.proposalMulticarrier systemseng
dc.subject.proposalUFMCspa
dc.subject.proposalUFMCeng
dc.subject.proposalSynchronizationeng
dc.subject.proposalSincronizaciónspa
dc.subject.proposalSDReng
dc.subject.proposalSDRspa
dc.subject.proposalUSRPeng
dc.subject.proposalUSRPspa
dc.titleDiseño de un sistema transceptor para comunicaciones usando una multiplexación para 5G sobre Radio definido por softwarespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032466278.2020.pdf
Tamaño:
9.3 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: