Diversidad morfológica y genética de Tetragonisca angustula (Hymenoptera: Apidae) en Cundinamarca, Colombia

dc.contributor.advisorBrochero, Helena Luisa Margarita
dc.contributor.advisorGarcía Morantes, Jenny Liliana
dc.contributor.authorGuzmán Rojas, Daniela
dc.coverage.temporalColombia
dc.date.accessioned2022-07-07T18:39:14Z
dc.date.available2022-07-07T18:39:14Z
dc.date.issued2022-05
dc.descriptionIlustracionesspa
dc.description.abstractTetragonisca angustula es una especie del Neotrópico, conocida como abeja angelita, que se ha adaptado a ambientes con alta presión antrópica por lo que es la especie más ampliamente utilizada para cría artificial. Es posible que su amplia distribución geográfica, desde México hasta Argentina, posibilite diferentes poblaciones con características genéticas distintivas que les permiten adaptarse a los ambientes naturales que ocupan. Se presentan aquí para ocho poblaciones de abejas forrajeras de Tetragonisca angustula de Colombia, los resultados de análisis utilizando morfometría lineal de caracteres morfológicos asociados con percepción visual, olfativa y de motricidad, así como los cambios en el tamaño y forma alar utilizando morfometría geométrica. Estos resultados se complementan con el análisis de secuencias de la región minibarcode de la subunidad I del gen citocromo oxidasa I para Colombia obtenidas en este estudio y las registradas para Brasil y Costa Rica. De manera general, se encontró que la longitud de la tibia posterior y la distancia interantenal constituyen caracteres robustos para discriminar entre poblaciones de la abeja angelita. De manera general, con todos los análisis, las poblaciones de Villavicencio, Meta y Medellín, Antioquia se caracterizaron particularmente y aparecen como poblaciones separadas de las demás y claramente distinguibles por rasgos morfológicos y moleculares, en tanto que las poblaciones de Cundinamarca, con excepción de Fusagasugá formaron un macro-grupo. Medellín fue la población con mayor riqueza genética seguida de Villavicencio, en tanto que Fusagasugá siempre estuvo separada de las demás poblaciones de Cundinamarca cuando se analizó el ADNmt de sus poblaciones. La altitud, el tipo de nido del cual provienen las abejas, ya sea natural o de caja racional, pero de manera particular, la ubicación geográfica de poblaciones separadas por las cordilleras, constituyeron factores fundamentales moldeando los caracteres morfológicos y genéticos de las poblaciones estudiadas. Debido a que se reconocieron poblaciones claramente diferenciadas, debe evitarse el traslado de nidos y preservar las poblaciones naturales de la abeja angelita en Colombia como parte de su soberanía en biodiversidad y territorio. (Texto tomado de la fuente)spa
dc.description.abstractTetragonisca angustula is a species of the neotropics, known as little angel bee, which has adapted to environments with high anthropic pressure making it the most widely used species for artificial breeding. It is possible that their wide geographical distribution, from Mexico to Argentina, allows different populations with distinctive genetic characteristics that allow them to adapt to the natural environments they occupy. Presented here for eight populations of forage bees of Tetragonisca angustula of Colombia, the results of analysis using linear morphometry of morphological characters associated with visual, olfactory and motor perception, as well as changes in size and wing shape using geometric morphometry. These results are complemented by the analysis of sequences of the minibarcode region of subunit I of cytochrome oxidase I gene for Colombia obtained in this study and those recorded for Brazil and Costa Rica. In general, it was found that the length of the posterior tibia and the interantenal distance constitute robust characters to discriminate between populations of the little angel bee In general, with all the analyses, the populations of Villavicencio, Meta and Medellín, Antioquia were particularly characterized and appear as separate populations from the others and clearly distinguishable by morphological and molecular traits, while the populations of Cundinamarca, with the exception of Fusagasugá, formed a macro-group. Medellin was the population with the highest genetic richness followed by Villavicencio, while Fusagasugá was always separated from the other populations of Cundinamarca when the mtDNA of its populations was analyzed. The altitude, the type of nest from which bees come, either natural or rational box, but in particular, the geographical location of populations separated by mountain ranges, were fundamental factors shaping the morphological and genetic characteristics of the populations studied. Because clearly differentiated populations were recognized, nest relocation should be avoided and the natural populations of the little angel bee in Colombia should be preserved as part of its sovereignty over biodiversity and territory.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.format.extent99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81692
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Entomologíaspa
dc.relation.references1. Ab Hamid, S., Sharifuddin, M., Thevan, K., y Hashim, N. 2016. Distribution and Morphometrical Variations of Stingless Bees (Apidae: Meliponini) In Urban and Forest Areas of Penang Island, Malaysia. Journal of Tropical Resources and Sustainable Science. (4): 1-5.spa
dc.relation.references2. Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., y Ronquist, F. (2004). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics. 20(3): 407–415. doi:10.1093/bioinformatics/btg42spa
dc.relation.references3. Arias, M. C., y Sheppard, W. S. 2005. Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular phylogenetics and evolution, 37(1): 25-35. Doi: https://doi.org/10.1016/j.ympev.2005.02.017spa
dc.relation.references4. Attasopa, K., Bänziger, H., Disayathanoowa, T. ,y Packer, L. 2018. A new species of Lepidotrigona (Hymenoptera: Apidae) from Thailand with the description of males of L. flavibasis and L. doipaensis and comments on asymmetrical genitalia in bees. Zootaxa 4442 (1): 063–082. https://doi.org/10.11646/zootaxa.4442.1.3spa
dc.relation.references5. Aytekin, M. A., Terzo, M., Rasmont, P., y Çağatay, N. 2007. Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). In Annales de la Société Entomologique de France. 43(1): 95-102. Doi: https://doi.org/10.1080/00379271.2007.10697499spa
dc.relation.references6. Azevedo, D. D. O., Matiello‐Guss, C. P., Rönnau, M., Zanuncio, J. C., y Serrão, J. E. 2008. Post‐embryonic development of the antennal sensilla in Melipona quadrifasciata anthidioides (Hymenoptera: Meliponini). Microscopy Research and Technique. 71(3): 196-200. Doi: https://doi.org/10.1002/jemt.20539spa
dc.relation.references7. Baitala, T. V., Mangolin, C. A., de Alencar, V., de Toledo, A., y Ruvolo-Takasusuki, M. C. C. 2006. RAPD polymorphism in Tetragonisca angustula (Hymenoptera; Meliponinae, Trigonini) populations. Sociobiology, 48(3): 861-874.spa
dc.relation.references8. Balbuena, M. S., y Farina, W. M. 2020. Chemosensory reception in the stingless bee Tetragonisca angustula. Journal of Insect Physiology.125. Doi: https://doi.org/10.1016/j.jinsphys.2020.104076spa
dc.relation.references9. Barbosa, F. M., Alves, R. M. D. O., Souza, B. D. A., y Carvalho, C. A. L. D. 2013. Nest architecture of the stingless bee Geotrigona subterranea (Friese, 1901)(Hymenoptera: Apidae: Meliponini). Biota Neotropica. 13(1)¨: 147-152. Doi:10.1590/S1676-06032013000100017spa
dc.relation.references10. Barbiéri, C., y Francoy, TM. 2020. Theoretical model for interdisciplinary analysis of human activities: Meliponiculture as an activity that promotes sustainability. Ambiente y Sociedade 23. https://doi.org/10.1590/1809-4422asoc20190020r2vu2020L4AOspa
dc.relation.references11. Barragán, H. 2020.Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera. Tesis de pregrado. Universidad del Rosario. Bogotá, Colombia. Pp 2-17.spa
dc.relation.references12. Barth, F. G., Hrncir, M., y Jarau, S. 2008. Signals and cues in the recruitment behavior of stingless bees (Meliponini). Journal of Comparative Physiology. 194(4): 313-327. Doi:10.1007/s00359-008-0321-7spa
dc.relation.references13. Barth A., Fernandes A., Pompolo Sd., y Costa M.A. 2011. Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): a new contribution to the cytotaxonomy of the genus. Genetics and Molecular Biology 34(1):77-9. doi.org/10.1590/S1415-47572010005000100spa
dc.relation.references14. Baudier, K. M., Ostwald, M. M., Grüter, C., Segers, F. H. I. D., Roubik, D. W., Pavlic, T. P., … y Fewell, J. H. 2019. Changing of the guard: mixed specialization and flexibility in nest defense (Tetragonisca angustula ). Behavioral Ecology 30(4):1041–1049. doi:10.1093/beheco/arz047spa
dc.relation.references15. Baudier, K. M., Bennett, M. M., Ostwald, M. M., Hart, S., Pavlic, T. P., y Fewell, J. H. 2020. Age-based changes in kairomone response mediate task partitioning in stingless bee soldiers (Tetragonisca angustula ). Behavioral Ecology and Sociobiology, 74(10). doi:10.1007/s00265-020-02902-4spa
dc.relation.references16. Beye, M., Hasselmann, M., Fondrk, M. K., Page Jr, R. E., y Omholt, S. W. 2003. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114(4): 419-429.Doi: https://doi.org/10.1016/S0092-8674(03)00606-8spa
dc.relation.references17. Bharath MP., Chinniah, C., Jayaraj, J., Suresh, K., Balamohan., TN., y Vellaikumar., S. 2019. Foraging performance of stingless bee, Tetragonula iridipennis Smith (Hymenoptera: Apidae) during winter season in Madurai, Tamil Nadu. International Journal of Chemical Studies 7(6): 360-364.spa
dc.relation.references18. Brochero, H., y García- Morantes, J. 2021. Importancia de la genética de las abejas en meliponicultura en La abeja angelita Tetragonisca angustula : biología, ecología, genética y potencial mercado de su miel en Colombia. En La abeja angelita Tetragonisca angustula: biología, ecología, genética y potencial mercado de su miel en Colombia.Centro Editorial Facultad de Ciencias Agrarias, Universidad Nacional de Colombia. Pp 27-44.spa
dc.relation.references19. Boomsma, J. J., Huszár, D. B., y Pedersen, J. S. 2014. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Animal Behaviour. 92: 241-252. Doi: https://doi.org/10.1016/j.anbehav.2014.03.005spa
dc.relation.references20. Boongird, S. 2011. Aspects of culturing, reproductive behavior, and colony formation in the stingless bee Tetragonula fuscobalteata (Hymenoptera: Apidae: Meliponini). Journal of the Kansas Entomological Society. 84(3): 190-196.Doi: https://doi.org/10.2317/JKES101108.1spa
dc.relation.references21. Bookstein F.L., 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge. Bookstein F.L., 1996. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology 58: 313–365.spa
dc.relation.references22. Bookstein, F. L. 1996. Combining the Tools of Geometric Morphometrics. Advances in Morphometrics, 131–151. doi:10.1007/978-1-4757-9083-2_12spa
dc.relation.references23. Brown, M. T., y Wicker, L. R. 2000. Discriminant Analysis. Handbook of Applied Multivariate Statistics and Mathematical Modeling, 209–235. doi:10.1016/b978-012691360-6/50009-4spa
dc.relation.references24. Byatt, M., Chapman, N., Latty, T. y Oldroyd, B. 2015. The genetic consequences ot the anthropogenic movement of social bees. Springer, Doi: 10.1007/s00040-015-0441-spa
dc.relation.references25. Camargo ,JMF., y Pedro, SRM. 2013. Meliponini Lepeletier, En: Moure JS, Urban D, Melo GAR, Orgs. Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. 1836. Online version. URL: http://moure.cria.org.br/catalogue?id=34135spa
dc.relation.references26. Carvalho, C. A., Sodré, G. S., Fonseca, A. A., Alves, R. M., Souza, B. A., y Clarton, L. 2009. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process. Anais da Academia Brasileira de Ciências, 81(1): 143-149.Doi: DOI:10.1590/S0001-37652009000100015spa
dc.relation.references27. Castanheira, E. B., Contel, E. P. B. 2005. Geographic variation in Tetragonisca angustula (Hymenoptera, Apidae, Meliponinae). Journal of apicultural research, 44(3): 101-105. Doi: https://doi.org/10.1080/00218839.2005.11101157spa
dc.relation.references28. Singh, H. K., y Chauhan, A. 2020. Beekeeping in Nagaland with Stingless Bees: Present and Future. RASSA Journal of Science for Society. 2(1): 41-45.spa
dc.relation.references29. Chuttong, B., Chanbang, Y., y Burgett, M. 2014. Meliponiculture: Stingless bee beekeeping in Thailand. Bee world. 91(2): 41-45.Doi: https://doi.org/10.1080/0005772X.2014.11417595spa
dc.relation.references30. Cortopassi-Laurino M., Imperatriz-Fonseca V.L., Roubik D.W., Dollin A., Heard T., Aguilar I., Venturieri G., Nogueira-Neto P. 2006. Global meliponiculture: challenges and opportunities. Apidologie 37:275-92. doi:10.1051/apido:2006027spa
dc.relation.references31. De Maesschalck, R., Jouan-Rimbaud, D., y Massart, D. L. 2000. The mahalanobis distance. Chemometrics and intelligent laboratory systems. 50(1): 1-18. Doi: https://doi.org/10.1016/S0169-7439(99)00047-7spa
dc.relation.references32. Deora, T., Gundiah, N., y Sane, S. P. 2017. Mechanics of the thorax in flies. Journal of Experimental Biology.220(8): 1382-1395. Doi: https://doi.org/10.1242/jeb.128363spa
dc.relation.references33. Desjardins, P., y Conklin, D. 2010. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments. 45. doi: 10.3791/2565spa
dc.relation.references34. Dobson, H. E., y Bergström, G. 2000. The ecology and evolution of pollen odors. Plant Systematics and Evolution. 222(1): 63-87. Doi: 10.1007/978-3-7091-6306-1_4spa
dc.relation.references35. Dos Santos, C. F., Menezes, C., Imperatriz-Fonseca, V. L., y Arias, M. C. 2013. A scientific note on diploid males in a reproductive event of a eusocial bee. Apidologie, 44(5): 519-521.spa
dc.relation.references36. Dos Santos, C. F., Imperatriz-Fonseca, V. L., y Arias, M. C. 2016. Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomological Science 19(3): 245–254. doi:10.1111/ens.12195spa
dc.relation.references37. Dos Santos, C. F. 2018. Cooperation and antagonism over time: a conflict faced by males of Tetragonisca angustula in nests. Insectes Sociaux 65(3): 465–471. doi:10.1007/s00040-018-0633-8spa
dc.relation.references38. Dötterl, S., y Jürgens, A. 2005. Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides?. Plant Systematics and Evolution. 255(1): 99-109. Doi:10.1007/s00606-005-0344-2spa
dc.relation.references39. Dyer, A. G., Streinzer, M., y Garcia, J. 2016. Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm. Journal of Comparative Physiology. 202(9): 629-639. Doi:10.1007/s00359-016-1107-yspa
dc.relation.references40. Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., y Jermiin, L. S. 2020. Sensitivity and specificity of information criteria. Briefings in bioinformatics. 21(2): 553-565. https://doi.org/10.1093/bib/bbz016spa
dc.relation.references41. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research. 32(5), 1792-1797.Doi: https://doi.org/10.1093/nar/gkh340spa
dc.relation.references42. Efin, A., Atmowidi, T., Sri Prawasti, T. 2019. Short Communication: Morphological characteristics and morphometric of Stingless Bee (Apidae: Hymenoptera) from Banten Province, Indonesia. Biodiversitas. 20(6): 1693-1698. DOI: 10.13057/biodiv/d200627spa
dc.relation.references43. Engel, M. S. 2001. Monophyly and extensive extinction of advanced eusocial bees: Insights from an unexpected Eocene diversity. Proceedings of the National Academy of Sciences 98(4): 1661–1664. doi:10.1073/pnas.98.4.1661spa
dc.relation.references44. Engel, M. S., Herhold, H., Davis, S., Wang, B., y Thomas, J. 2021. Stingless bees in Miocene amber of southeastern China (Hymenoptera: Apidae). Journal of Melittology, (105): 1–83. https://doi.org/10.17161/jom.i105.15734spa
dc.relation.references45. Engel, M. S., Rasmussen, C. 2019. Corbiculate Bees. Encyclopedia of Social Insects. Doi: 10.1007/978-3-319-90306-4_30-1spa
dc.relation.references46. Fierro, M. M., Cruz-Lopez, L., Sanchez, D., Villanueva-Gutierrez, R., y Vandame, R. (2012). Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotropical Entomology. 41(2): 95-104. Doi:10.1007/s13744-011-0009-5spa
dc.relation.references47. Fisher, R. A. 1930. Inverse probability. Mathematical Proceedings of the Cambridge Philosophical Society 26(4): 528-535.spa
dc.relation.references48. Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals Eugen. 7:179–188.spa
dc.relation.references49. Francisco, F. O., Nunes-Silva, P., Francoy, T. M., Wittmann, D., Imperatriz-Fonseca, V. L., Arias, M. C., y Morgan, E. D. 2008. Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903)(Apidae, Meliponini). Insectes Sociaux, 55(3): 231-237.spa
dc.relation.references50. Francisco, F. D. O., Santiago, L. R., y Arias, M. C. 2013. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study. Genetics and molecular biology. 36(1): 118-123. DOI:10.1590/S1415-47572013000100017spa
dc.relation.references51. Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC .2014. Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9spa
dc.relation.references52. Francisco, F. O., Santiago, L. R., Mizusawa, Y. M., Oldroyd, B. P., Arias, M. C. 2015. Genetic structure of the stingless bee Tetragonisca angustula. bioRxiv. Doi: https://doi.org/10.1101/026740.spa
dc.relation.references53. Francisco F., Santiago L., Mizusawa Y., Oldroyd B., y Arias M.C. 2017. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers. Insect Science 24(5):877-90. doi: 10.1111/17447917.12371spa
dc.relation.references54. Françoso, E., y Arias, M. C. 2013. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini‐barcode. Molecular ecology resources, 13(5): 844-850. Doi: https://doi.org/10.1111/1755-0998.12135spa
dc.relation.references55. Francoy, T. M., Grassi, M. L., Imperatriz-Fonseca, V. L., de Jesús May-Itzá, W., y Quezada-Euán, J. J. G. 2011. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie, 42(4): 499-507. DOI:10.1007/s13592-011-0013-0spa
dc.relation.references56. Francoy T.M., Bonatti V., Viraktamath S., y Rajankar B. 2016. Wing morphometrics indicates the existence of two distinct phenotypic clusters within population of Tetragonula iridipennis (Apidae: Meliponini) from India. Insectes Sociaux 63:109-15. doi:10.1007/s00040-015-0442-2spa
dc.relation.references57. Fruciano C. 2016. Measurement error in geometric morphometrics. Development Genes and Evolution (226);139–58. doi:10.1007/s00427-016-0537-4spa
dc.relation.references58. Fuenmayor, C. A., Díaz-Moreno, A. C., Zuluaga-Domínguez, C. M., y Quicazán, M. C. 2013.Honey of Colombian stingless bees: Nutritional characteristics and physicochemical quality indicators. In Pot-Honey (pp. 383-394). Springer, New York, NY.spa
dc.relation.references59. Galvani, G. L., Soto, E. M., Canavoso, L. E., y Settembrini, B. P. 2019. Fat body morphology, but not body size, changes in forager bees of Scaptotrigona jujuyensis (Apidae: Meliponini) during foraging season. Zoologischer Anzeiger,. 283: 142-149. Doi: https://doi.org/10.1016/j.jcz.2019.09.006spa
dc.relation.references60. Geladi, P., Linderholm, J. 2020. Principal Component Analysis.spa
dc.relation.references61. Gerth, M., GEIßLER, A. N. N. E. M. A. R. I. E., y Bleidorn, C. 2011. Wolbachia infections in bees (Anthophila) and possible implications for DNA barcoding. Systematics and Biodiversity. 9(4): 319-327. Doi: https://doi.org/10.1080/14772000.2011.627953spa
dc.relation.references62. Ghosh, D., Vogt, A. 2012. Outliers: An evaluation of methodologies. Joint statistical meetings.spa
dc.relation.references63. Grimaldi D., Engel M. 2005. Evolution of the insects. Cambridge University Press. Pp 754-755.spa
dc.relation.references64. Grüter, C., Menezes, C., Imperatriz-Fonseca, V. L., y Ratnieks, F. L. 2012. A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences, 109(4): 1182-1186.spa
dc.relation.references65. Grüter, C. (2020). Stingless Bees. Cham, Switzerland: Springer International Publishing. 109 (4): 1182-1186. Doi: https://doi.org/10.1073/pnas.1113398109spa
dc.relation.references66. Hammel B, Vollet-Neto A., Menezes C., Nascimento F.S., Engels W., y Grüter C. 2016. Soldiers in a stingless bee: work rate and task repertoire suggest they are an elite force. The American Naturalist 187(1):120-9.spa
dc.relation.references67. Hammer O., Harper D.A.T., y Ryan P.D. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Versión 4.02. Consultado en: https://www.nhm.uio.no/english/research/infrastructure/past/spa
dc.relation.references68. Herbert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., y Hallwachs, W. 2004 Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences.101 (41): 14812–14817. Doi: https://doi.org/10.1073/pnas.0406166101spa
dc.relation.references69. Hrncir, M., Maia-Silva, C., da Silva Teixeira-Souza, V. H., y Imperatriz-Fonseca, V. L. 2019. Stingless bees and their adaptations to extreme environments. Journal of Comparative Physiology A, 205(3): 415-426. DOI:10.1007/s00359-019-01327-3spa
dc.relation.references70. Hrncir, M., Maia-Silva, C., y Farina, W. M. 2019. Honey bee workers generate low-frequency vibrations that are reliable indicators of their activity level. Journal of Comparative Physiology. 205(1): 79-86. Doi: 10.1007/s00359-018-1305-xspa
dc.relation.references71. Husson, F., Josse, J., y Le, S. 2008. FactoMineR: An R package for multivariate analysis: Journal of Statistical Software. 25: 1–18.spa
dc.relation.references72. Jezeera, M., Tichit, P., Balamurali, G. S., Baird, E., Kelber, A., y Somanathan, H. 2021. Spatial resolution and sensitivity of the eyes of the stingless bee, Tetragonula iridipennis. Journal of Comparative Physiology. 1-14. Doi:10.1007/s00359-021-01521-2spa
dc.relation.references73. Jolliffe, I. 2005. Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science (3): 1580–1584. doi:10.1002/0470013192.bsa501spa
dc.relation.references74. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. Mammalian protein metabolism (3): 21-132.spa
dc.relation.references75. Karthick, K. S., Chinniah, C., Parthiban, P., y Ravikumar, A. 2018. Prospects and challenges in Meliponiculture in India. International Journal of Research Studies in Zoology. 41: 29-38. Doi:dx.doi.org/10.20431/2454-941X.0401005spa
dc.relation.references76. Kaufmann, C., Reim, C., y Blanckenhorn, W. U. 2013. Size-dependent insect flight energetics at different sugar supplies. Biological Journal of the Linnean Society. 108(3): 565-578. Doi: https://doi.org/10.1111/j.1095-8312.2012.02042.xspa
dc.relation.references77. Kataguiri V.S. 2003. Aspectos adaptativos e morfométricos da abelha jataí Tetragonisca angustula Latreille, 1811 (Hymenoptera: Melliponinae). Trabajo de grado. Instituto de Biología. Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil. 40pp.spa
dc.relation.references78. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... y Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop 106 software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647-1649. Doi: https://doi.org/10.1093/bioinformatics/bts199spa
dc.relation.references79. Kelly, N., Farisya, M. S. N., Kumara, T. K., y Marcela, P. 2014. Species Diversity and External Nest Characteristics of Stingless Bees in Meliponiculture. Pertanika Journal of Tropical Agricultural Science. 37(3):spa
dc.relation.references80. Kelemen, E. P., & Rehan, S. M. (2021). Opposing pressures of climate and land‐use change on a native bee. Global Change Biology, 27(5), 1017-1026. Doi: https://doi.org/10.1111/gcb.15468spa
dc.relation.references81. Kimura, M.1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution, 16(2), 111-120.spa
dc.relation.references82. Klingenberg C.P., y Monteiro L.R. 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology 54(4):678-88. doi:10.1080/10635150590947258spa
dc.relation.references83. Koling, D. F., y Moretto, G. 2010. Mitochondrial discrimination of stingless bees Tetragonisca angustula (Apidae: Meliponini) from Santa Catarina state, Brazil. Apidologie, 41(4), 454-462.Doi:10.1051/apido/2009082spa
dc.relation.references84. Körner, C. 2007. The use of ‘altitude’in ecological research. Trends in ecology and evolution. 22(11): 569-574. Doi: https://doi.org/10.1016/j.tree.2007.09.006spa
dc.relation.references85. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260): 583-621.spa
dc.relation.references86. Kumar, S., Stecher, G., Li, M., Knyaz, C., y Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution. 35(6): 1547-1549. Doi: 10.1093/molbev/msy096spa
dc.relation.references87. Levene, H.1960. Robust Tests for Equality of Variances en Contributions to Probability and Statistics. Stanford: Stanford University Press. Chapter 25. pp. 278-292.spa
dc.relation.references88. Leigh, J. W., y Bryant, D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9): 1110-1116. Doi:10.1111/2041-210X.12410spa
dc.relation.references89. Librado, P., y Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25(11): 1451-1452. Doi: https://doi.org/10.1093/bioinformatics/btp187spa
dc.relation.references90. Lima, C. D. S., Nunes, L. A., de Carvalho, C. A. L., Alves, R. D. O., y Ribeiro, M. D. F. 2014. Morfometria geométrica de uma população de Melipona subnitida (Hymenoptera: Meliponini) proveniente de uma comunidade rural em Alagoas. Congresso Nordestino de Produção Animal.spa
dc.relation.references91. Macías-Macías, J. O., Quezada-Euán, J. J. G., y González, J. M. T. 2011. Effect of lodging type on the internal temperature and humidity of colonies of Melipona colimana (Hymenoptera: Meliponini) from a Mexican temperate zone. Journal of Apicultural Research. 50(3): 235-241. Doi: https://doi.org/10.3896/IBRA.1.50.3.08spa
dc.relation.references92. Maia-Silva, C., Imperatriz-Fonseca, V. L., Silva, C. I., y Hrncir, M. 2014. Environmental windows for foraging activity in stingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology. 61(4): 378-385. Doi:https://doi.org/10.13102/sociobiology.v61i4.378-385spa
dc.relation.references93. Makarova, A., Polilov, A., y Fischer, S. 2015. Comparative morphological analysis of compound eye miniaturization in minute Hymenoptera. Arthropod Structure & Development. 44(1): 21-32. Doi: https://doi.org/10.1016/j.asd.2014.11.001spa
dc.relation.references94. Matan S. 2012. Where are we now? Bergmann’s Rule sensu lato in insects. The American Society of Naturalists180(4):511-19. doi:10.1086/667595spa
dc.relation.references95. May-Itzá, W., Lóriga, W., De la Rúa, P., y Quezada-Eúan, J. 2019. A genetic and morphological survey to trace the origin of Melipona beecheii (Apidae: Meliponini) from Cuba. Journal of Apidologie. 50: 859-870. DOI: 10.1007/s13592-019-00696-7spa
dc.relation.references96. Melo, G. A. R. 2020. Stingless Bees (Meliponini). Encyclopedia of Social Insects. doi:10.1007/978-3-319-90306-4_117-1spa
dc.relation.references97. Michener, D. 2000. The bees of the world. Estados Unidos, The Johns Hopkins University Press.spa
dc.relation.references98. Miller, M.A., Pfeiffer, W., y Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans. pp 1 – 8spa
dc.relation.references99. Miller, N., Thomas, M. A., Eichel, J. A., y Mishra, A. 2015. A Hidden Markov Model for Vehicle Detection and Counting. 2015 12th Conference on Computer and Robot Vision. doi:10.1109/crv.2015.42.spa
dc.relation.references100. Miranda, E. A., Batalha-Filho, H., Congrains, C., Carvalho, A. F., Ferreira, K. M., y Del Lama, M. A. 2016. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an endemic stingless bee from the Neotropical dry forest diagonal. PLoS One. 11(10). Doi: https://doi.org/10.1371/journal.pone.0164441spa
dc.relation.references101. Nates-Parra G. 2001. Guía para la cría y manejo de la abeja angelita o virginita Tetragonisca angustula Illiger. Convenio Andrés Bello, Serie Ciencia y Tecnología No. 84; Bogotá. Pp 43.spa
dc.relation.references102. Nates-Parra, G. 2005. Cría y manejo de la abeja angelita (Tetragonisca angustula ). Serie Ciencia y Tecnología. 84 (43).spa
dc.relation.references103. Nates-Parra G., Rosso-Londono J. 2013. Diversidad de abejas sin aguijón (Hymenoptera: Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana 18(3):415-25.spa
dc.relation.references104. Nates-Parra., 2021. La abeja angelita, Tetragonisca angustula (Latreille, 1811) (Hymenoptera: Apidae: Meliponini). En La abeja angelita Tetragonisca angustula: biología, ecología, genética y potencial mercado de su miel en Colombia.Centro Editorial Facultad de Ciencias Agrarias, Universidad Nacional de Colombia.pp 18-26.spa
dc.relation.references105. Nunes, L. A., Pinto, M. D. F. F. D. C., Carneiro, P., Pereira, D. G., y Waldschmidt, A. M. 2007. Divergência genética em Melipona scutellaris Latreille (Hymenoptera: Apidae) com base em caracteres morfológicos. Bioscience journal.23(1): 1-9.spa
dc.relation.references106. Nunes L.A., Passos G.B., Carvalho C.A.L., Araújo E.D. 2013. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hym.; Meliponini). Brazilian Journal of Biology 73:887-93. doi:10.1590/S1519-69842013000400027spa
dc.relation.references107. Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.spa
dc.relation.references108. Obregon, D. 2011. Origen botánico de la miel y el polen provenientes de nidos de Melipona eburnea Friese, 1900 y Tetragonisca angustula (Latreille, 1811), (Apidae: Meliponini) para estimar su potencial polinizador. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia.spa
dc.relation.references109. O'neill, M., McPartlin, J., Arthure, K., Riedel, S., & McMillan, N. D. (2011, August). Comparison of the TLDA with the Nanodrop and the reference Qubit system. In Journal of Physics: Conference Series. 307: 1.spa
dc.relation.references110. Oliveira, R. D. C., Nunes, F. D. M. F., Campos, A. P. S., Vasconcelos, S. M. D., Roubik, D., Goulart, L. R., y Kerr, W. E. 2004. Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini) based on RAPD markers. Genetics and Molecular Biology, 27(2): 181-186.spa
dc.relation.references111. Oliveira, M. O., Brito, T. F., Campbell, A. J., y Contrera, F. A. 2019. Body size and corbiculae area variation of the stingless bee Melipona fasciculata Smith, 1854 (Apidae, Meliponini) under different levels of habitat quality in the eastern Amazon. Entomología Generalis. 39(1): 45-52. Doi: 10.1093/jisesa/iez032spa
dc.relation.references112. Pacheco M., Gonzalez R., y Brochero H. 2017. Anopheles darlingi Root 1926 (Diptera: Culicidae): variaciones morfométricas en alas y patas de poblaciones de Colombia. Biomedica 37(Supl 2): 124-34. doi:10.7705/biomedica.v34i2.3492spa
dc.relation.references113. Pacheco M., Gonzalez R., y Brochero H. 2018. Morphometric variations of two populations of Anopheles albitarsis F (Diptera: Culicidae) in the Orinoquia region, Colombia. Revista de la Facultad de Medicina 66(2):201-8. doi:10.15446/revfacmed.v66n2.61071spa
dc.relation.references114. Packer, L., Zayed, A., Grixti, J. C., Ruz, L., Owen, R. E., Vivallo, F., y Toro, H. 2005. Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conservation Biology, 19(1): 195-202. Doi: https://doi.org/10.1111/j.1523-1739.2005.00601.xspa
dc.relation.references115. Padial, J. M., y De La Riva, I. 2010. A response to recent proposals for integrative taxonomy. Biological Journal of the Linnean Society, 101(3): 747-756. Doi: https://doi.org/10.1111/j.1095-8312.2010.01528.xspa
dc.relation.references116. Pagès, J., 2004. Analyse factorielle de données mixtes, Revue de Statistique Appliquée. 93-111.spa
dc.relation.references117. Pauly, A., y Hora, Z. A. 2013. Apini and Meliponini from Ethiopia (Hymenoptera: Apoidea: Apidae: Apinae). Belgian Journal of Entomology, 16: 1-35.spa
dc.relation.references118. Paz, A., Colla, M., y Arnaut, V. 2008. análise da genética de populações em abelhas jataí (Tetragonisca angustula Latreille) por meio de isoenzimas. Magistra, Cruz das Almas-BA, v. 20, n. 1, p. 68-77.spa
dc.relation.references119. Perl, C. D., Johansen, Z. B., Jie, V. W., Moradinour, Z., Guiraud, M., Restrepo, C. E., ... y Baird, E. 2022. Substantial variability in morphological scaling among bumblebee colonies. Royal Society Open Science. 9(1). Doi: https://doi.org/10.1098/rsos.211436spa
dc.relation.references120. Porto, D. S., Almeida, E. A., y Vilhelmsen, L. 2017. Comparative morphology of internal structures of the mesosoma of bees with an emphasis on the corbiculate clade (Apidae: Apini). Zoological Journal of the Linnean Society, 179(2): 303-337. Doi: https://doi.org/10.1111/zoj.12466spa
dc.relation.references121. Porto, D. S., y Almeida, E. A. 2021. Corbiculate bees (Hymenoptera:Apidae): Exploring the limits of morphological data to solve a hard phylogenetic problem. Insect Systematics and Diversity, 5(3): 1-40. Doi: https://doi.org/10.1093/isd/ixab008spa
dc.relation.references122. Posada, D., y Buckley, T. R.2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic biology. 53(5): 793-808. https://doi.org/10.1080/10635150490522304spa
dc.relation.references123. Purwanto, H., y Trianto, M. 2021. Species description, morphometric measurement and molecular identification of stingless bees (Hymenoptera: Apidae: Meliponini) in meliponiculture industry in west Java Province, Indonesia. Serangga 2021, 26 (1): 13-33spa
dc.relation.references124. Grüter, C., Segers, F. H., Menezes, C., Vollet-Neto, A., Falcón, T., von Zuben, L., ... y Almeida, E. A. 2017. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nature communications. 8(1): 1-8. Doi: 10.1038/s41467-016-0012-yspa
dc.relation.references125. Quezada-Euán, J., Paxtonb, R., Palmerc, K., May Itzáa,W., Tek Tayd, W., Oldroydc,B. 2007. Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie: 38, 247-258. DOI: 10.1051/apido:2007006spa
dc.relation.references126. Quezada-Euán, J. J. G., May-Itzá, W. de J., Rincón, M., De La Rúa, P., y Paxton, R. J. 2011. Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conservation and Diversity 5(6): 433–443. doi:10.1111/j.1752-4598.2011.00179.xspa
dc.relation.references127. Quezada-Euán, J. J. G., López-Velasco, A., Pérez-Balam, J., Moo-Valle, H., Velazquez-Madrazo, A., y Paxton, R. J. 2011. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Sociaux, 58(1), 31-38. Doi: 10.1007/s13592-011-0074-0spa
dc.relation.references128. Ramadhan, R., Kusuma, I. W., Egra, S., Shimizu, K., Kanzaki, M., y Tangkearung, E. 2020. Diversity and honey properties of stingless bees from meliponiculture in East and North Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity.21(10): 4623-4630. Doi: 10.13057/biodiv/d211021spa
dc.relation.references129. Ramalho, M., Imperatriz-Fonseca, V. L., y Giannini, T. C. 1998. Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie. 29(3): 221-228. Doi: https://doi.org/10.1051/apido:19980302spa
dc.relation.references130. Rambaut, A. 2010. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/spa
dc.relation.references131. Rambaut, A., Drummond, A. J., Xie, D., Baele, G., y Suchard, M. A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic biology. 67(5): 901-904. https://doi.org/10.1093/sysbio/syy032spa
dc.relation.references132. Rasmussen, C., y Cameron, S. A. 2010. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society, 99(1): 206–232. doi:10.1111/j.1095-8312.2009.01341.xspa
dc.relation.references133. Rattanawannee, A., Chanchao, C., y Wongsiri, S. 2012. Geometric morphometric analysis of giant honeybee (Apis dorsata Fabricius, 1793) populations in Thailand. Journal of Asia-Pacific Entomology, 15(4), 611-618. Doi: https://doi.org/10.1016/j.aspen.2012.07.001spa
dc.relation.references134. Rattanawannee, A., Jeratthitikul, E., Duangpakdee, O y Oldroyd, B. 2017. Mitochondrial sequencing and geometric morphometrics suggest two clades in the Tetragonilla collina (Apidae: Meliponini) population of Thailand. Apidologie: 48, 719-731. DOI: 10.1007/s13592-017-0517-3spa
dc.relation.references135. R Core Team. 2018. R: A language and environment for statistical computing: R Foundation for Statistical Computing. Vienna, Austria. Disponible en: https://www.R-project.org/.spa
dc.relation.references136. Reyes-González, A., Camou-Guerrero, A., y Gómez-Arreola, S. 2016. From extraction to meliponiculture: A case study of the management of stingless bees in the West-central region of Mexico. Beekeeping and Bee Conservation: Advances in Research. pp 201-223.spa
dc.relation.references137. Reinhard, J., y Srinivasan, M. V. 2009. The role of scents in honey bee foraging and recruitment. Food exploitation by social insects: ecological, behavioral, and theoretical approaches. 1, 165-182.spa
dc.relation.references138. Ribeiro, M., y Alves, D. 2001. Size Variation in Schwarziana quadripunctata Queens (Hymenoptera, Apidae, Meliponini). Revista de Etologia 2001. 3(1): 59-65.spa
dc.relation.references139. Ribeiro, M., Aguiar, W. M., Nunes, L. A., y da Silva Carneiro, L. 2019. Morphometric changes in three species of Euglossini (Hymenoptera: Apidae) in response to landscape structure. Sociobiology, 66(2): 339-347. DOI: https://doi.org/10.13102/sociobiology.v66i2.3779spa
dc.relation.references140. Rohlf J.F. 2015. TPSDig2, version 2.18. [Software] New York: State University of New York at Stony Brook.spa
dc.relation.references141. Rohlf, F. J., Loy, A., y Corti, M. 1996. Morphometric Analysis of Old World Talpidae (Mammalia, Insectivora) Using Partial-Warp Scores. Systematic Biology 45(3): 344–362. doi:10.1093/sysbio/45.3.344.spa
dc.relation.references142. Ronqui, L., Santos, S. A., Araujo, K. F., Mangolin, C. A., Toledo, V. A. A., y Ruvolo-Takasusuki, M. C. C. 2020. Mitochondrial polymorphism in Tetragonisca angustula and Tetragonisca weyrauchi (Apidae) in northern Brazil. Doi: http://dx.doi.org/10.4238/gmr18495spa
dc.relation.references143. Roubik, D. W. (2006). Stingless bee nesting biology. Apidologie. 37(2): 124-143.Doi: https://doi.org/10.1051/apido:2006026spa
dc.relation.references144. Roubik, D. W. 2013. Why do they keep changing the names of our stingless bees (Hymenoptera: Apidae; Meliponini)? A little history and guide to taxonomy. Stingless bees process honey and pollen in cerumen pots.spa
dc.relation.references145. Rubin, D. B. 1981. The bayesian bootstrap. The annals of statistics, 9(1): 130-134.spa
dc.relation.references146. Rueden C.T., Schindelin J., Hiner M.C., DeZonia B., Walter A., Arena E., y Eliceiri K. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. doi:10.1186/s12859-017-1934-zspa
dc.relation.references147. Saitou, N., y Imanishi, T. 1989. Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree.spa
dc.relation.references148. Saitou, N., y Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 4(4): 406-425.Doi: https://doi.org/10.1093/oxfordjournals.molbev.a040454spa
dc.relation.references149. Salazar, E., Crespo, V., Manrique, A. J., Castro, L., Vallejo, E., y Torrealba, M. 2014. Preliminary molecular characterization of Angelita bees (Tetragonisca angustula) from Guarico State through RAPD markers. Zootecnia Tropical, 32(3): 247-255.spa
dc.relation.references150. Santiago, L. 2013. Variabilidade genética de Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) de meliponários. Universidad de Sao Paulo, Brasil. Tesis de maestríaspa
dc.relation.references151. Santiago, L.R., Francisco, F.O., Jaffe, R., y Arias, M. C. 2016. Genetic variability in captive populations of the stingless bee Tetragonisca angustula . Genética 144:397–405. doi:10.1007/s10709-016-9908-zspa
dc.relation.references152. Saufi, N. F. M., y Thevan, K. 2015. Characterization of nest structure and foraging activity of stingless bee, Geniotrigona thoracica (Hymenopetra: Apidae; Meliponini). Jurnal Teknologi. 77(33). Doi: https://doi.org/10.11113/jt.v77.7007spa
dc.relation.references153. Schmitt, U., y Bertsch, A. 1990. Do foraging bumblebees scent-mark food sources and does it matter?. Oecologia. 82(1): 137-144. Doi:spa
dc.relation.references154. Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., y Crozier, R. H. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annual review of entomology, 55: 421-438. Doi: https://doi.org/10.1146/annurev-ento-112408-085432spa
dc.relation.references155. Shapiro, S.S., y Wilks, M.B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611spa
dc.relation.references156. Shanas, S., y Faseeh, P. 2019. A new subgenus and three new species of stingless bees (Hymenoptera: Apidae: Apinae: Meliponini) from India. Entomon 44(1): 33-48. DOI:10.33307/entomon.v44i1.424spa
dc.relation.references157. Shelomi, M. 2012. Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist. 180(4): 511-519.Doi: 10.1007/BF00318545spa
dc.relation.references158. Simon, C., Frati, F., Becknbach, A., Crespi, B., Liu, H., y Flook, P. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6): 651–701. Doi: https://doi.org/10.1093/aesa/87.6.651spa
dc.relation.references159. Silva, T.H., Prasanga, G.C., Inoka, W.A., Karunaratne, P., y Edirisingue, J. 2018. Rediscovery of Tetragonula praeterita after 1860: an unremarked common stingless bee endemic to Sri Lanka. Journal of the National Science Foundation of Sri. 46(1): 109-113. DOI:10.4038/jnsfsr.v46i1.8271spa
dc.relation.references160. Sikes, D. S., y Lewis, P. O. 2001. Software manual for PAUPRat: A tool to implement Parsimony Ratchet searches using PAUP.spa
dc.relation.references161. Somanathan, H., Kelber, A., Borges, R. M., Wallén, R., y Warrant, E. J. 2009. Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles A Neuroethology, sensory, neural, and behavioral physiology.Journal of comparative physiology.195(6): 571-583. Doi: 10.1007/s00359-009-0432-9spa
dc.relation.references162. Spaethe, J., Brockmann, A., Halbig, C., y Tautz, J. 2007. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften. 94(9): 733-739. Doi:10.1007/s00114-007-0251-1spa
dc.relation.references163. Spaethe, J., y Chittka, L. 2003. Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology. 206(19): 3447-3453.Doi: https://doi.org/10.1242/jeb.00570spa
dc.relation.references164. Spaethe, J., Streinzer, M., y Sommerlandt, F. 2019. Current state and future directions of research on stingless bees in La Gamba. Acta ZooBot Austria. 156: 145-157.spa
dc.relation.references165. Steel, M., y Bocker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology. 49(2), 363-368.spa
dc.relation.references166. Streinzer, M., Kelber, C., Pfabigan, S., Kleineidam, C. J., y Spaethe, J. 2013. Sexual dimorphism in the olfactory system of a solitary and a eusocial bee species. Journal of Comparative Neurology. 521(12): 2742-2755. Doi: https://doi.org/10.1002/cne.23312spa
dc.relation.references167. Streinzer, M., Huber, W., y Spaethe, J. 2016. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini). Journal of Comparative Physiology A. 202(9): 643-655. Doi:10.1007/s00359-016-1118-8spa
dc.relation.references168. Stuchi, A. L. P. B., de Toledo, V. D. A. A., Lopes, D. A., Cantagalli, L. B., y Ruvolo-Takasusuki, M. C. C. 2012. Molecular marker to identify two stingless bee species: Tetragonisca angustula and Tetragonisca fiebrigi (Hymenoptera, Meliponinae). Sociobiology, 59(1): 123-134.Doi: https://doi.org/10.13102/sociobiology.v59i1.671spa
dc.relation.references169. Szyszka, P., Gerkin, R. C., Galizia, C. G., y Smith, B. H. 2014. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proceedings of the National Academy of Sciences, 111(47), 16925-16930. Doi: https://doi.org/10.1073/pnas.1412051111spa
dc.relation.references170. Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105(2): 437–60. https://doi.org/10.1093/genetics/105.2.437spa
dc.relation.references171. Tavaré S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures on mathematics in the life sciences. 17(2): 57-86.spa
dc.relation.references172. Theobald, J. C., Greiner, B., Wcislo, W. T., y Warrant, E. J. 2006. Visual summation in night-flying sweat bees: a theoretical study. Vision research.46(14):2298-2309. Doi: https://doi.org/10.1016/j.visres.2006.01.002spa
dc.relation.references173. Toro M., Manrique G., Galdames I. 2010. Morfometria geometrica y el estudio de las formas biologicas: De la morfología descriptiva a la morfologia cuantitativa. International Journal of Morphology 28(4):977-90. doi:10.4067/ S0717-95022010000400001spa
dc.relation.references174. Torres, A., Hoffmann, W., Lamprecht, I. 2007. Thermal investigations of a nest of the stingless bee Tetragonisca angustula Illiger in Colombia. Thermochimica Acta, 458(1-2), 118–123. doi:10.1016/j.tca.2007.01.024spa
dc.relation.references175. Trianto, M., Purwanto, H. 2020. Morphological characteristics and morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia. Biodiversitas 21(6): 2619-2628. https://doi.org/10.13057/biodiv/d210633.spa
dc.relation.references176. Tukey, J. 1953. Multiple comparisons. Journal of the American Statistical Association, 48(263): 624-625.spa
dc.relation.references177. Veiga, J. C., Menezes, C., Venturieri, G. C., y Contrera, F. A. 2013. The bigger, the smaller: relationship between body size and food stores in the stingless bee Melipona flavolineata. Apidologie, 44(3), 324-333. DOI:10.1007/s13592-012-0183-4spa
dc.relation.references178. Virkar, P., Shrotriya, S., y Uniyal, V. P. 2014. Splitting nests: what decides eduction in stingless bees.spa
dc.relation.references179. Vollet-Neto, A., Fernando dos Santos, C., Rodrigues Santiago, L., de Araujo Alves, D., Pinheiro de Figueiredo, J., Nanzer, M., ... y Imperatriz-Fonseca, V. L. 2015. Diploid males of Scaptotrigona depilis are able to join reproductive aggregations (Apidae, Meliponini). Journal of Hymenoptera Research, (45): 125–130. Doi: DOI:10.3897/jhr.42.4769spa
dc.relation.references180. Vollet-Neto, A., Imperatriz-Fonseca, V. L., y Ratnieks, F. L. 2019. Queen execution, diploid males, and selection for and against polyandry in the Brazilian stingless bee Scaptotrigona depilis. The American Naturalist, 194(5): 725-735. DOI:10.1086/705393spa
dc.relation.references181. Wilgenbusch, J. C., y Swofford, D. 2003. Inferring evolutionary trees with PAUP. Current protocols in bioinformatics. (1): 6-4. Doi: https://doi.org/10.1002/0471250953.bi0604s00spa
dc.relation.references182. Whitman, D. W., y Agrawal, A. A. 2009. What is phenotypic plasticity and why is it important. Phenotypic plasticity of insects: Mechanisms and consequences. pp 1-63.spa
dc.relation.references183. Wray, J. C., Neame, L. A., y Elle, E. 2014. Floral resources, body size, and surrounding landscape influence bee community assemblages in oak‐savannah fragments. Ecological Entomology. 39(1). 83-93. Doi:https://doi.org/10.1111/een.12070spa
dc.relation.references184. Yu, S., Wang, Y., Li, X., Yu, F., & Li, W. (2017). The factors affecting the reproducibility of micro-volume DNA mass quantification in Nanodrop 2000 spectrophotometer. Optik. 145: 555-560.Doi: https://doi.org/10.1016/j.ijleo.2017.08.031spa
dc.relation.references185. Zanella, F. C. 2000. The bees of the Caatinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution. Apidologie, 31(5): 579-592. Doi: https://doi.org/10.1051/apido:2000148spa
dc.relation.references186. Zayed, A. 2009. Bee genetics and conservation. Apidologie, 40(3): 237-262. Doi: https://doi.org/10.1051/apido/2009026spa
dc.relation.references187. Zelditch, M.L., Swiderski, D.L., Sheets, H.D. & Fink, W.L. 2004. Geometric morphometrics for biologists. Elsevier Academic Press, Londonspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocTetragonisca angustula (Hymenoptera: Apidae)
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animales::595 - Artrópodosspa
dc.subject.ddc590 - Animales::592 - Invertebradosspa
dc.subject.ddc570 - Biología::578 - Historia natural de los organismos y temas relacionadosspa
dc.subject.otherMeliponini
dc.subject.proposalMorfometría
dc.subject.proposalAbejas sin aguijónspa
dc.subject.proposalMeliponiculturaspa
dc.subject.proposalMorphometriceng
dc.subject.proposalStingless beeseng
dc.subject.proposalMeliponicultureeng
dc.subject.proposalLittle angeleng
dc.titleDiversidad morfológica y genética de Tetragonisca angustula (Hymenoptera: Apidae) en Cundinamarca, Colombiaspa
dc.title.translatedMorphological and genetic diversity of Tetragonisca angustula (Hymenoptera: Apidae) in Cundinamarca, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018448785.2022.pdf
Tamaño:
4.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: