Microencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptido

dc.contributor.advisorVanegas Murcia, Magnolia
dc.contributor.advisorRosas Pérez, Jaiver Eduardo
dc.contributor.authorPabón Ardila, María Laura
dc.contributor.researchgroupGrupo Funcional de Síntesis Química – Fundación Instituto de Inmunología de Colombia –FIDICspa
dc.date.accessioned2021-09-24T19:39:54Z
dc.date.available2021-09-24T19:39:54Z
dc.date.issued2021-09-22
dc.descriptionimágenes, gráficas, tablasspa
dc.description.abstractEn el presente estudio se evaluó el efecto de la hidrofobicidad de péptidos sintéticos durante su microencapsulación en sistemas microparticulares elaborados con PLGA. De la base de datos de la Fundación Instituto de Inmunología de Colombia (FIDIC), fueron preseleccionadas 280 secuencias peptídicas diseñadas y evaluadas como potenciales candidatos en la búsqueda de una vacuna sintética contra la malaria, y se clasificaron en tres grupos, según su índice de hidropaticidad (hidrofílico, neutro e hidrofóbico). De estas, seis secuencias (dos por cada grupo) fueron seleccionadas y sintetizadas por síntesis de péptidos en fase sólida (SPPS) mediante la estrategia t-Boc/Bzl y fueron adecuadamente caracterizadas y purificadas. Posteriormente, estos péptidos se encapsularon en micropartículas elaboradas con el co-polímero PLGA 50:50 por la técnica de doble emulsión-evaporación del disolvente (W/O/W). Los sistemas microparticulares fueron evaluados en su tamaño, forma, carga, eficiencia de encapsulación y el perfil de liberación in vitro. Los resultados de este trabajo indicaron que independientemente del índice de hidropatía de las secuencias, fue posible obtener estos péptidos con alto grado de pureza mediante la metodología SPPS estrategia t-Boc/Bzl. Además, que el carácter hidrofóbico del péptido encapsulado afectó en mayor o menor proporción en cada una de las variables evaluadas en los sistemas microparticulares. (Texto tomado de la fuente)spa
dc.description.abstractIn the present study the effect of the hydrophobicity of synthetic peptides during microencapsulation in microparticulate systems based on PLGA was evaluated. From the database of the Fundación Instituto de Inmunología de Colombia (FIDIC) were preselected 280 peptide sequences designed and evaluated as potential candidates in the search for a synthetic vaccine against malaria and were classified into three groups, according to their hydropathic index (hydrophilic, neutral, and hydrophobic). Of these, six sequences (two for each group) were selected and synthesized by solid phase peptide synthesis (SPPS) using the t-Boc/Bzl strategy and were adequately characterized and purified. These peptides were subsequently encapsulated in microparticles prepared with the PLGA 50:50 copolymer by the double emulsion-solvent evaporation technique (W/O/W). The microparticulate systems were evaluated for size, shape, charge, encapsulation efficiency, and in vitro release profile. The results of this work indicated that regardless of the hydropathic index of the sequence it was possible to obtain these peptides with a high degree of purity by the SPPS methodology t-Boc/Bzl strategy. Furthermore, the hydrophobic character of the encapsulated peptides affected to a greater or lesser extent each of the variables evaluated in the microparticulate systems, being more relevant in the charge, encapsulation efficiency and in the release profile.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Microbiologíaspa
dc.description.researchareaBioprocesos y bioprospecciónspa
dc.format.extentxix, 100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80299
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología (IBUN)spa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesWagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018;8:147–64. https://doi.org/10.1016/j.apsb.2018.01.013.spa
dc.relation.referencesUhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, et al. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics 2014;4:58–69. https://doi.org/10.1016/j.euprot.2014.05.003.spa
dc.relation.referencesRojas M, Rojas M, Amador R, Posada MA, Patarroyo ME. Desarrollo y pruebas de campo de la vacuna sintética contra la malaria SPf66. Rev La Fac Med 1993;41:60–9.spa
dc.relation.referencesPatarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, Romero P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 1988;332:158–61. https://doi.org/10.1038/332158a0.spa
dc.relation.referencesRosas JE, Hernández RM, Gascón AR, Igartua M, Guzman F, Patarroyo ME, et al. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001;19:4445–51. https://doi.org/10.1016/S0264-410X(01)00192-X.spa
dc.relation.referencesCarcaboso AM, Hernández RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004;22:1423–32. https://doi.org/10.1016/j.vaccine.2003.10.020.spa
dc.relation.referencesRosas JE, Pedraz JL, Hernández RM, Gascón AR, Igartua M, Guzmán F, et al. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine 2002;20:1707–10. https://doi.org/10.1016/S0264-410X(01)00508-4.spa
dc.relation.referencesMerrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 1963;85:2149–54. https://doi.org/10.1021/ja00897a025.spa
dc.relation.referencesHoughten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A 1985;82:5131–5. https://doi.org/10.1073/pnas.82.15.5131.spa
dc.relation.referencesTam JP, Heath WF, Merrifiled RB. SN 1 and SN 2 mechanisms for the deprotection of synthetic peptides by hydrogen fluoride: Studies to minimize the tyrosine alkylation side reaction. Int J Pept Protein Res 1983;21:57–65. https://doi.org/10.1111/j.1399-3011.1983.tb03078.x.spa
dc.relation.referencesMoreno A, Patarroyo ME. Development of an asexual blood stage malaria vaccine. Blood 1989;74:537–46.spa
dc.relation.referencesValero M V., Amador LR, Galindo C, Figueroa J, Bello MS, Murillo LA, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. Lancet 1993;341:705–10. https://doi.org/10.1016/0140-6736(93)90483-W.spa
dc.relation.referencesNoya G O, Berti YG, Noya BA De, Borges R, Zerpa N, Urbáez JD, et al. A population-based clinical trial with the spf66 synthetic plasmodium falciparum malaria vaccine in venezuela. J Infect Dis 1994;170:396–402. https://doi.org/10.1093/infdis/170.2.396.spa
dc.relation.referencesSempértegui F, Estrella B, Moscoso J, Luis Piedrahita C, Hernández D, Gaybor J, et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodium falciparum infection in a randomized double-blind placebo-controlled field trial in an endemic area of Ecuador. Vaccine 1994;12:337–42. https://doi.org/https://doi.org/10.1016/0264-410X(94)90098-1.spa
dc.relation.referencesBeck H ‐P., Felger I, Huber W, Steiger S, Smith T, Weiss N, et al. Analysis of Multiple Plasmodium falciparum Infections in Tanzanian Children during the Phase III Trial of the Malaria Vaccine SPf66. J Infect Dis 1997;175:921–6. https://doi.org/10.1086/513991. D’Alessandro U, Leachspa
dc.relation.referencesA, Olaleye BO, Fegan GW, Jawara M, Langerock P, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995. https://doi.org/10.1016/S0140-6736(95)91321-1.spa
dc.relation.referencesNosten F, Luxemburger C, Kyle DE, Ballou WR, Wittes J, Wah E, et al. Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Lancet 1996. https://doi.org/10.1016/S0140-6736(96)04465-0.spa
dc.relation.referencesKyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105–32. https://doi.org/10.1016/0022-2836(82)90515-0.spa
dc.relation.referencesJain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21:2475–90. https://doi.org/10.1016/S0142-9612(00)00115-0.spa
dc.relation.referencesO’Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 1997;28:25–42. https://doi.org/10.1016/S0169-409X(97)00049-5.spa
dc.relation.referencesArshady R. Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters. J Control Release 1991;17:1–21. https://doi.org/10.1016/0168-3659(91)90126-X.spa
dc.relation.referencesMartín-Sabroso C, Fraguas-Sánchez AI, Aparicio-Blanco J, Cano-Abad MF, Torres-Suárez AI. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int J Pharm 2015;480:27–36. https://doi.org/10.1016/j.ijpharm.2015.01.008.spa
dc.relation.referencesZhang Z, Bi X, Li H, Huang G. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv 2011. https://doi.org/10.3109/10717544.2011.596584.spa
dc.relation.referencesAndreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomater 2011. https://doi.org/10.1016/j.actbio.2010.12.014.spa
dc.relation.referencesEdelman R, Russell RG, Losonsky G, Tall BD, Tacket CO, Levine MM, et al. Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide). Vaccine 1993;11:155–8. https://doi.org/10.1016/0264-410X(93)90012-M.spa
dc.relation.referencesHua FJ, Park TG, Lee DS. A facile preparation of highly interconnected macroporous poly(D,L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer (Guildf) 2003. https://doi.org/10.1016/S0032-3861(03)00025-9.spa
dc.relation.referencesWan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016. https://doi.org/10.1016/j.ijpharm.2015.12.025.spa
dc.relation.referencesGavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur J Pharm Biopharm 2004. https://doi.org/10.1016/j.ejpb.2003.10.018.spa
dc.relation.referencesPark K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release 2019. https://doi.org/10.1016/j.jconrel.2019.05.003.spa
dc.relation.referencesPicos D, Gómez M, Fernández D, Núñez L. Microesferas biodegradables de liberación controlada para administración parenteral. Control 2000.spa
dc.relation.referencesIqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015. https://doi.org/10.1016/j.ijpharm.2015.10.057.spa
dc.relation.referencesTaluja A, Youn YS, Bae YH. Novel approaches in microparticulate PLGA delivery systems encapsulating proteins. J Mater Chem 2007;17:4002. https://doi.org/10.1039/b706939a.spa
dc.relation.referencesAlonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 1994;12:299–306. https://doi.org/10.1016/0264-410X(94)90092-2.spa
dc.relation.referencesMakadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011;3:1377–97. https://doi.org/10.3390/polym3031377.spa
dc.relation.referencesKapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015. https://doi.org/10.4155/tde.14.91.spa
dc.relation.referencesAnderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012. https://doi.org/10.1016/j.addr.2012.09.004.spa
dc.relation.referencesLü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:325–41. https://doi.org/10.1586/erm.09.15.spa
dc.relation.referencesD’Avila Carvalho Erbetta C. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J Biomater Nanobiotechnol 2012. https://doi.org/10.4236/jbnb.2012.32027.spa
dc.relation.referencesKricheldorf HR, Jonté JM, Berl M. Polylactones 3. Copolymerization of glycolide with L, L-lactide and other lactones. Die Makromol Chemie 1985;12:25–38. https://doi.org/10.1002/macp.1985.020121985104.spa
dc.relation.referencesWashington MA, Swiner DJ, Bell KR, Fedorchak M V., Little SR, Meyer TY. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials 2017. https://doi.org/10.1016/j.biomaterials.2016.11.037.spa
dc.relation.referencesTamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 2005;57:357–76. https://doi.org/10.1016/j.addr.2004.09.002.spa
dc.relation.referencesPedraz JER y JL. Microesferas de PLGA: un sistema para la liberación controlada de moléculas con actividad inmunogénica. Rev Colomb Cienc Quím Farm 2007;36:134–53.spa
dc.relation.referencesFelnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004;15:518–29. https://doi.org/10.1016/j.copbio.2004.10.005.spa
dc.relation.referencesPagels RF, Prud’Homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 2015;219:519–35. https://doi.org/10.1016/j.jconrel.2015.09.001.spa
dc.relation.referencesPowles L, Xiang SD, Selomulya C, Plebanski M. The use of synthetic carriers in malaria vaccine design. Vaccines 2015;3:894–929. https://doi.org/10.3390/vaccines3040894.spa
dc.relation.referencesXiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M. Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 2008. https://doi.org/10.1586/14760584.7.7.1103.spa
dc.relation.referencesXiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, et al. Pathogen recognition and development of particulate vaccines: Does size matter? Methods 2006. https://doi.org/10.1016/j.ymeth.2006.05.016.spa
dc.relation.referencesBookstaver ML, Tsai SJ, Bromberg JS, Jewell CM. Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends Immunol 2018;39:135–50. https://doi.org/10.1016/j.it.2017.10.002.spa
dc.relation.referencesChiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine 2008;3:367–93. https://doi.org/10.2217/17435889.3.3.367.spa
dc.relation.referencesJorgensen L, Moeller EH, van de Weert M, Nielsen HM, Frokjaer S. Preparing and evaluating delivery systems for proteins. Eur J Pharm Sci 2006;29:174–82. https://doi.org/10.1016/j.ejps.2006.05.008.spa
dc.relation.referencesJohansen P, Men Y, Merkle HP, Gander B. Revisiting PLA/PLGA microspheres: An analysis of their potential in parenteral vaccination. Eur J Pharm Biopharm 2000;50:129–46. https://doi.org/10.1016/S0939-6411(00)00079-5.spa
dc.relation.referencesBarichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471–6. https://doi.org/10.1081/DDC-100102197.spa
dc.relation.referencesDyrberg T, Oldstone MB. Peptides as antigens. Importance of orientation. J Exp Med 1986;164:1344–9. https://doi.org/10.1084/jem.164.4.1344.spa
dc.relation.referencesBriand JP, Muller S, Van Regenmortel MH. Synthetic peptides as antigens: pitfalls of conjugation methods. J Immunol Methods 1985;78:59–69. https://doi.org/10.1016/0022-1759(85)90329-1.spa
dc.relation.referencesWischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008;364:298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042.spa
dc.relation.referencesDing D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C 2018;92:1041–60. https://doi.org/10.1016/j.msec.2017.12.036.spa
dc.relation.referencesEngineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 2011;25:79–85.spa
dc.relation.referencesHirota K, Ter H. Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment. Mol. Regul. Endocytosis, 2012. https://doi.org/10.5772/45820.spa
dc.relation.referencesSalvador A, Sandgren KJ, Liang F, Thompson EA, Koup RA, Pedraz JL, et al. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int J Pharm 2015. https://doi.org/10.1016/j.ijpharm.2015.10.037.spa
dc.relation.referencesSharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 2010;147:408–12. https://doi.org/10.1016/j.jconrel.2010.07.116.spa
dc.relation.referencesAbdelkader DH, El-Gizawy SA, Faheem AM, McCarron PA, Osman MA. Effect of process variables on formulation, in-vitro characterisation and subcutaneous delivery of insulin PLGA nanoparticles: An optimisation study. J Drug Deliv Sci Technol 2018. https://doi.org/10.1016/j.jddst.2017.10.004.spa
dc.relation.referencesFeczkó T, Tóth J, Gyenis J. Comparison of the preparation of PLGA-BSA nano- and microparticles by PVA, poloxamer and PVP. Colloids Surfaces A Physicochem Eng Asp 2008. https://doi.org/10.1016/j.colsurfa.2007.07.011.spa
dc.relation.referencesLiu J, Ren H, Xu Y, Wang Y, Liu K, Zhou Y, et al. Mechanistic Evaluation of the Opposite Effects on Initial Burst Induced by Two Similar Hydrophilic Additives From Octreotide Acetate–Loaded PLGA Microspheres. J Pharm Sci 2019. https://doi.org/10.1016/j.xphs.2019.02.012.spa
dc.relation.referencesMurty SB, Goodman J, Thanoo BC, DeLuca PP. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions. AAPS PharmSciTech 2003. https://doi.org/10.1208/pt040450.spa
dc.relation.referencesGasmi H, Siepmann F, Hamoudi MC, Danede F, Verin J, Willart JF, et al. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int J Pharm 2016. https://doi.org/10.1016/j.ijpharm.2016.08.032.spa
dc.relation.referencesFredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. Int J Pharm 2011;415:34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049.spa
dc.relation.referencesLucke A, Göpferich A. Acylation of peptides by lactic acid solutions. Eur J Pharm Biopharm 2003. https://doi.org/10.1016/S0939-6411(02)00138-8.spa
dc.relation.referencesLiu J, Xu Y, Wang Y, Ren H, Meng Z, Liu K, et al. Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci 2019. https://doi.org/10.1016/j.ejps.2019.04.017.spa
dc.relation.referencesSarin VK, Kent SBH, Tam JP, Merrifield RB. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 1981;117:147–57. https://doi.org/10.1016/0003-2697(81)90704-1.spa
dc.relation.referencesCarcaboso AM, Hernández RM, Igartua M, Gascón AR, Rosas JE, Patarroyo ME, et al. Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 2003;260:273–82. https://doi.org/10.1016/S0378-5173(03)00266-7.spa
dc.relation.referencesQuattrocchi, O., Laba, R. y Andrizzi S. Introducción A La Hplc. Aplicación y Práctica. 1st ed. Buenos Aires: 1992.spa
dc.relation.referencesKent SBH. Chemical synthesis of peptides and proteins. Annu Rev Biochem 1988. https://doi.org/10.1146/annurev.bi.57.070188.004521.spa
dc.relation.referencesL. Zhang, C. Goldammer, B. Henkel, G. Panhaus, F. Züohl, et al. Innovation and Perspectives in Solid Phase Synthesis 1994: Proceedings of the 3rd International Symposium, Oxford. In: Epton R, editor., Birmingham: Mayflower Worldwide; 1994, p. 711.spa
dc.relation.referencesLópez MC, Silva Y, Thomas M a. C, Garcia A, Faus MJ, Alonso P, et al. Characterization of SPf(66)n: a chimeric molecule used as a malaria vaccine. Vaccine 1994. https://doi.org/10.1016/0264-410X(94)90261-5.spa
dc.relation.referencesAmador R, Moreno A, Valero V, Murillo L, Mora AL, Rojas M, et al. The first field trials of the chemically synthesized malaria vaccine SPf66: safety, immunogenicity and protectivity. Vaccine 1992;10:179–84. https://doi.org/https://doi.org/10.1016/0264-410X(92)90009-9.spa
dc.relation.referencesLloyd-Williams P, Albericio F, Giralt E. Chemical Approaches to the Synthesis of Peptides and Proteins. 1997. https://doi.org/10.1201/9781003069225.spa
dc.relation.referencesRegenmortel. M.H.V. van, Briand J.P., Muller S. PS. Synthetic Polypeptides as Antigens, Volume 19. Elsevier Science; 1988.spa
dc.relation.referencesSantoveña A, Oliva A, Guzman F, Patarroyo ME, Llabrés M, Fariña JB. Chromatographic characterization of synthetic peptides: SPf66 malaria vaccine. J Chromatogr B Anal Technol Biomed Life Sci 2002. https://doi.org/10.1016/S0378-4347(01)00392-9.spa
dc.relation.referencesIto F, Fujimori H, Makino K. Incorporation of water-soluble drugs in PLGA microspheres. Colloids Surfaces B Biointerfaces 2007. https://doi.org/10.1016/j.colsurfb.2006.10.019.spa
dc.relation.referencesISO 22412. International Standard ISO22412 Particle Size Analysis - Dynamic Light Scattering. 2017.spa
dc.relation.referencesFreiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004. https://doi.org/10.1016/j.ijpharm.2004.04.013.spa
dc.relation.referencesSong X, Zhao Y, Hou S, Xu F, Zhao R, He J, et al. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm 2008. https://doi.org/10.1016/j.ejpb.2008.01.013.spa
dc.relation.referencesFeczkó T, Tóth J, Dósa G, Gyenis J. Influence of process conditions on the mean size of PLGA nanoparticles. Chem Eng Process Process Intensif 2011. https://doi.org/10.1016/j.cep.2011.05.006.spa
dc.relation.referencesGaignaux A, Réeff J, Siepmann F, Siepmann J, De Vriese C, Goole J, et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm 2012. https://doi.org/10.1016/j.ijpharm.2012.08.006.spa
dc.relation.referencesLiu R, Huang S-S, Wan Y-H, Ma G-H, Su Z-G. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B Biointerfaces 2006;51:30–8. https://doi.org/10.1016/j.colsurfb.2006.05.014.spa
dc.relation.referencesZhang C, Wu L, Tao A, Bera H, Tang X, Cun D, et al. Formulation and in vitro characterization of long-acting PLGA injectable microspheres encapsulating a peptide analog of LHRH. J Mater Sci Technol 2020. https://doi.org/10.1016/j.jmst.2020.04.020.spa
dc.relation.referencesYang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Control Release 2000. https://doi.org/10.1016/S0168-3659(00)00291-1.spa
dc.relation.referencesYang YY, Chung TS, Ping Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001. https://doi.org/10.1016/S0142-9612(00)00178-2.spa
dc.relation.referencesMao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 2007. https://doi.org/10.1016/j.ijpharm.2006.10.036.spa
dc.relation.referencesDing S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J Control Release 2019. https://doi.org/10.1016/j.jconrel.2018.12.037.spa
dc.relation.referencesMata E, Igartua M, Patarroyo ME, Pedraz JL, Hernández RM. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur. J. Pharm. Sci., 2011. https://doi.org/10.1016/j.ejps.2011.05.015.spa
dc.relation.referencesLiu J, Xu Y, Liu Z, Ren H, Meng Z, Liu K, et al. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur J Pharm Biopharm 2019. https://doi.org/10.1016/j.ejpb.2019.09.022.spa
dc.relation.referencesHan FY, Thurecht KJ, Lam AL, Whittaker AK, Smith MT. Novel Polymeric Bioerodable Microparticles for Prolonged-Release Intrathecal Delivery of Analgesic Agents for Relief of Intractable Cancer-Related Pain. J Pharm Sci 2015;104:2334–44. https://doi.org/10.1002/jps.24497.spa
dc.relation.referencesRosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 2004;99:271–80. https://doi.org/10.1016/j.jconrel.2004.07.007.spa
dc.relation.referencesMüller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001. https://doi.org/10.1016/S0169-409X(00)00118-6.spa
dc.relation.referencesvan Oss CJ, Absolom DR, Neumann AW. INTERACTION OF PHAGOCYTES WITH OTHER BLOOD CELLS AND WITH PATHOGENIC AND NONPATHOGENIC MICROBES. Ann N Y Acad Sci 1983. https://doi.org/10.1111/j.1749-6632.1983.tb35197.x.spa
dc.relation.referencesKim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, et al. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 2011. https://doi.org/10.1016/j.biomaterials.2010.08.086.spa
dc.relation.referencesAndreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomater 2011. https://doi.org/10.1016/j.actbio.2010.12.014.spa
dc.relation.referencesBhattacharjee S. Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2021. https://doi.org/10.4155/tde-2020-0099.spa
dc.relation.referencesKohno M, Andhariya J V., Wan B, Bao Q, Rothstein S, Hezel M, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm 2020. https://doi.org/10.1016/j.ijpharm.2020.119339.spa
dc.relation.referencesCrotts G, Sah H, Park TG. Adsorption determines in-vitro protein release rate from biodegradable microspheres: Quantitative analysis of surface area during degradation. J Control Release 1997. https://doi.org/10.1016/S0168-3659(96)01624-0.spa
dc.relation.referencesLu W, Park TG. Protein release from poly(lactic-co-glycolic acid) microspheres: Protein stability problems. PDA J Pharm Sci Technol 1995;49:13–9.spa
dc.relation.referencesKim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: Protein aggregation stability and incomplete release mechanism. Biotechnol Bioeng 1999;65:659–67. https://doi.org/10.1002/(SICI)1097-0290(19991220)65:6<659::AID-BIT6>3.0.CO;2-9.spa
dc.relation.referencesPaillard-Giteau A, Tran VT, Thomas O, Garric X, Coudane J, Marchal S, et al. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an S/O/W emulsion technique. Eur J Pharm Biopharm 2010;75:128–36. https://doi.org/10.1016/j.ejpb.2010.03.005.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembVacunasspa
dc.subject.lembVaccineseng
dc.subject.proposalMicroencapsulaciónspa
dc.subject.proposalPLGAspa
dc.subject.proposalHidrofobicidadspa
dc.subject.proposalDoble emulsión-evaporación del disolventespa
dc.subject.proposalSPPSeng
dc.subject.proposalPéptidos sintéticosspa
dc.titleMicroencapsulación de péptidos sintéticos en co-polímeros de poli(láctico-co-glicólico) (PLGA): Efecto de la hidrofobicidad del péptidospa
dc.title.translatedMicroencapsulation of synthetic peptides in poly (lactic-co-glycolic) copolymers (PLGA): Effect of peptide hydrophobicityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015405564.2021.pdf
Tamaño:
7.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: