Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal

dc.contributor.advisorHuertas Campos, Jaime Abel
dc.contributor.authorSalazar García, Adriana Marcela
dc.date.accessioned2021-10-12T17:13:33Z
dc.date.available2021-10-12T17:13:33Z
dc.date.issued2021-10
dc.descriptionilustraciones, gráficasspa
dc.description.abstractModelar datos de supervivencia de riesgos en competencia con covariantes basales y longitudinales, no es apropiado hacerlo mediante modelos clásicos de supervivencias. Para este propósito, Begg y Gray (1984) incluyen directamente la información longitudinal dentro de un modelo logístico, y Luo et al. (2016), mejoran la bondad de ajuste de la función de riesgo de dicha propuesta, con la inclusión de un spline dependiente del tiempo al evento. En el presente trabajo se propone una extensión al modelo anterior mediante la modelación conjunta, donde el proceso de supervivencia corrige sesgos en el modelo longitudinal por causa de retiros informativos, y el modelo longitudinal estimado apropiadamente, se incluye en el modelo logístico para servir como marcador al evento de interés. Ilustramos la aplicación de la propuesta con una base crediticia de datos. (Texto tomado de la fuente).spa
dc.description.abstractModeling survival data of competing risk with baseline and longitudinal covariates, it is not appropriate to do so using classical survival models. For this purpose, Begg and Gray (1984) directly include longitudinal information within a logistic model, and Luo et al. (2016), improve the goodness of fit of the risk function of such proposal, with the inclusion of a spline dependent on the time to the event. In the present work, an extension to the previous model is proposed through the joint modeling, where the survival process corrects biases in the longitudinal model due to informative dropout, and the appropriately estimated longitudinal model is included in the logistic model to serve as marker to the event of interest. We illustrate the application of the proposal with a data credit base.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaModelos de supervivenciaspa
dc.format.extentiv, 26 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80516
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAnnesi, I., Moreau, T. and Lellouch, J. (1989). Efficiency of the logistic regression and cox proportional hazards models in longitudinal studies. Statistics in Medicine, 8, 1515 - 1521.spa
dc.relation.referencesBegg, C. B. and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika, 71(1), 11-18.spa
dc.relation.referencesBowman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. The Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series.spa
dc.relation.referencesCox, D. R. (1972). Regression Models and Life Tables (with discussion). Journal of the Royal Statistical Society, Series B ; 34, 187-220.spa
dc.relation.referencesDobson, A. J. (1945). An introduction to generalized linear models. 2nd ed. Chapman hall/CRCspa
dc.relation.referencesElandt-Johnson, R. C. (1980). Time dependent logistic models in follow-up studies and clinical trials, I. Binary data. Institute of Statistics Mimeo Series, University of North Carolina 1310.spa
dc.relation.referencesElashoff, R. M., Li, G. and Li, N. (2007). An approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 26, 2813 - 2835.spa
dc.relation.referencesElashoff, R. M., Li, G. and Li, N. (2008). A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types. Biometrics 64, 762 - 771.spa
dc.relation.referencesGreen, M. S. and Symon, M. J. (1983). A comparison of the logistic risk function and the proportional hazards model in prospective epidemiologic studies. Journal of Clinical Epidemiology, 36, 715-723.spa
dc.relation.referencesGuo, X. and Carlin, B. P. (2004). Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages. The American Statistician, 58, 16 - 24.spa
dc.relation.referencesHenderson, R., Diggle, P. and Dobson, A. (2000). Joint Modelling of Longitudinal Measurements and Event Time Data. Biostatistics, 4, 465 - 480.spa
dc.relation.referencesHougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag New York.spa
dc.relation.referencesKlein, J. P. and Moeschberger, M. L. (2003). Survival Analysis. Techniques for Censored and Truncated Data. 2nd ed. New York: Springer-Verlag.spa
dc.relation.referencesKlein, J. P. and Moeschberger, M. L. (2005). Survival Analysis: Techniques for Censored and Truncated Data. 3rd ed. Springer.spa
dc.relation.referencesKleinbaum, D. G. and Klein, M. (2002). Logistic Regression. 2nd ed. Springer.spa
dc.relation.referencesLawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed. Hobo- ken:Wiley.spa
dc.relation.referencesLi, N., Elashoff, R.M. and Li, G.(2009). Robust joint modeling of longitudinal measurements and competing risks failure time data, Biometrical Journal, 51, 19-30.spa
dc.relation.referencesLin H., McCulloch, C.E. and Mayne, S.T. (2002). Maximum Likelihood Estimation in the Joint Analysis of Time-to-Event and Multiple Longitudinal Variables. Statistics in Medicine, 21, 2369-82.spa
dc.relation.referencesLiu, L. and Huang, X. (2009). Joint Analysis of Correlated Repeated Measures and Recurrent Events Processes in the Presence of Death, with Application to a Study on Acquired Immune Deficiency Syndrome. Journal of the Royal Statistical Society, 58, 65-81.spa
dc.relation.referencesLuo, S., Kong, X. and Nie, T. (2016). Spline based survival model for credit risk modeling. European Journal of Operational Research, 253, 257 - 269.spa
dc.relation.referencesMyers, M. H., Hankey, B. F. and Mantel, N. A. (1973). Logistic-exponential model for use with response time data involving regression variables. Biometrics, 29, 257-296.spa
dc.relation.referencesSAS Institute. (2005). SAS/STAT 9.1. Cary, North Caroline, US: SAS Institute Inc.spa
dc.relation.referencesTeixeira, L., Sousa, I., Rodriguez, A. and Mendonca, D. (2019). Joint Modelling of Longitudinal and competing risk data in clinical research. REVSTAT - Statistical Journal, 17, 245 - 264.spa
dc.relation.referencesTherneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.spa
dc.relation.referencesTsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Timeto- Event Data: An Overview. Statistica Sinica, 14, 809 - 834.spa
dc.relation.referencesVerbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag .spa
dc.relation.referencesWilliamson, P. R., Kolamunnage - Dona, R., Philipson, P. and Marson, A. G. (2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine 27, 6426 - 6438.spa
dc.relation.referencesWu, M. and Carroll, R. (1988). Estimation and Comparison of Changes in the Presence of Informative Right Censoring by Modelling the Censoring Process. Biometrics, 44, 175 - 188.spa
dc.relation.referencesWulfsohn, M. and Tsiatis, A.A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330 - 339.spa
dc.relation.referencesZeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The Annals of Statistics, 33, 2132{2163.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.decsAnálisis de Supervivenciaspa
dc.subject.decsSurvival Analysiseng
dc.subject.lembNumerical analysiseng
dc.subject.lembAnálisis numéricospa
dc.subject.lembLogistic regression analysiseng
dc.subject.lembAnálisis de regresión logísticaspa
dc.subject.proposalModelo Conjuntospa
dc.subject.proposalModelo de supervivenciaspa
dc.subject.proposalModelo Longitudinalspa
dc.subject.proposalRegresión Logísticaspa
dc.subject.proposalModelo de Coxspa
dc.subject.proposalJoint modeleng
dc.subject.proposalSurvival modeleng
dc.subject.proposalLongitudinal modeleng
dc.subject.proposalLogistic regressioneng
dc.subject.proposalCox modeleng
dc.titleUn modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinalspa
dc.title.translatedA model of competitive risks in discrete time based on the spline regression and longitudinal informationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10154131232021.pdf
Tamaño:
844.8 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: