Schottky Problem

dc.contributor.advisorQuintero Vélez, Alexander
dc.contributor.authorEchavarría Arenas, Santiago
dc.date.accessioned2024-10-21T12:48:29Z
dc.date.available2024-10-21T12:48:29Z
dc.date.issued2023-08
dc.descriptionIlustracionesspa
dc.description.abstractAn accessible introduction to the Schottky problem is given, with explicit computations included. The Schottky problem asks what abelian varieties are jacobian varieties, where a jacobian variety is a certain complex torus constructed out from a Riemann surface, and abelian varieties are complex tori which can be embedded in projective space. Ideas around embeddings will be introduced. Fay’s trisecant identity, which is an identity that comes from generalizing the cross ratio of a Riemann sphere to higher genus via theta functions, will be the cornerstone pointing towards the statements that solved the Schottky problem in a concrete way in the 1980’s. (Tomado de la fuente)eng
dc.description.abstractSe dará una introducción accesible al problema de Schottky con cómputos explícitos. El problema de Schottky consiste en ver que variedades abelianas son variedades jacobianas, en donde una variedad jacobiana es un cierto toro complejo construido a través de una superficie de Riemann, y las variedades abelianas son toros complejos que se pueden embeber en el espacio proyectivo. Las ideas alrededor de los embebimientos serán introducidas. Explorar la identidad trisecante de Fay, que viene de una generalización de la razón cruzada de la esfera de Riemann a superficies de Riemann de géneros mayores a través de funciones theta, será la base para introducir los teoremas que solucionaron el problema de Schottky de forma concreta en la decada de 1980.spa
dc.description.curricularareaMatemáticas.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias-Matemáticasspa
dc.format.extent74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87014
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesEnrico Arbarello and Corrado De Concini. “On a set of equations characterizing Riemann matrices”. In: Annals of Mathematics (1984), pp. 119–140.spa
dc.relation.referencesEnrico Arbarello and Corrado De Concini. “Geometrical aspects of the KP equation”. In: Global Geometry and Mathematical Physics: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (CIME) held at Montecatini Terme, Italy, July 4–12, 1988. Springer. 1990, pp. 95– 137.spa
dc.relation.referencesArnaud Beauville. “Theta functions, old and new”. In: HAL 2013 (2013).spa
dc.relation.referencesChristina Birkenhake and Herbert Lange. Complex abelian varieties. Vol. 6. Springer, 2004.spa
dc.relation.referencesJean-Pierre Demailly. Complex analytic and differential geometry. Citeseer, 1997.spa
dc.relation.referencesBoris Anatol’evich Dubrovin. “Theta functions and non-linear equations”. In: Russian mathematical surveys 36.2 (1981), p. 11.spa
dc.relation.referencesJohn D Fay. Theta functions on Riemann surfaces. Vol. 352. Springer, 2006.spa
dc.relation.referencesHershel M Farkas and Irwin Kra. Riemann surfaces. Springer, 1992.spa
dc.relation.referencesPhillip Griffiths and Joseph Harris. Principles of algebraic geometry. John Wiley & Sons, 2014.spa
dc.relation.referencesRobert Clifford Gunning and Hugo Rossi. Analytic functions of several complex variables. Vol. 368. American Mathematical Soc., 2009.spa
dc.relation.referencesHans Grauert and Reinhold Remmert. Coherent analytic sheaves. Vol. 265. Springer Science & Business Media, 2012.spa
dc.relation.referencesRobert Clifford Gunning. “Some curves in abelian varities”. In: Inventiones mathematicae 66 (1982), pp. 377–389.spa
dc.relation.referencesDaniel Huybrechts. Complex geometry: an introduction. Vol. 78. Springer, 2005.spa
dc.relation.referencesJurgen Jost. Compact riemann surfaces. Springer, 2006.spa
dc.relation.referencesIgor Moiseevich Krichever. “Integration of nonlinear equations by the methods of algebraic geometry”. In: Funktsional’nyi Analiz i ego Prilozheniya 11.1 (1977), pp. 15–31.spa
dc.relation.referencesE. Keith Lloyd. Encyclopedia of Mathematics. Bell Polynomial. url: https: //encyclopediaofmath.org/wiki/Bell_polynomial.spa
dc.relation.referencesDavid Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory. Vol. 34. Springer Science & Business Media, 1994.spa
dc.relation.referencesDavid Mumford and C Musili. Tata lectures on theta. I (Modern Birkh¨auser classics). Birkh¨auser Boston Incorporated, 2007.spa
dc.relation.referencesDavid Mumford, Chidambaran Padmanabhan Ramanujam, and Jurij Ivanoviˇc Manin. Abelian varieties. Vol. 5. Oxford university press Oxford, 1974.spa
dc.relation.referencesMotohico Mulase. “Cohomological structure in soliton equations and Jacobian varieties”. In: Journal of Differential Geometry 19.2 (1984), pp. 403– 430.spa
dc.relation.referencesDavid Mumford et al. Tata Lectures on Theta II: Jacobian theta functions and differential equations, Modern Birkh¨auser Classics. 2012.spa
dc.relation.referencesCris Poor. “Fay’s trisecant formula and cross-ratios”. In: Proceedings of the American Mathematical Society 114.3 (1992), pp. 667–671.spa
dc.relation.referencesRyuji Sasaki. “Modular forms vanishing at the reducible points of the Siegel upper-half space.” In: (1983).spa
dc.relation.referencesTakahiro Shiota. “Characterization of Jacobian varieties in terms of soliton equations”. In: Inventiones mathematicae 83.2 (1986), pp. 333–382.spa
dc.relation.referencesHerbert Seifert and William Threlfall. Seifert and threlfal: A textbook of Topolog and Seifert: topology of 3-Dimensional Fibered Spaces. 1980.spa
dc.relation.referencesGerald E Welters. “On flexes of the Kummer variety (note on a theorem of RC Gunning)”. In: Indagationes Mathematicae (Proceedings). Vol. 86. 4. Elsevier. 1983, pp. 501–520.spa
dc.relation.referencesGerald E Welters. “A criterion for Jacobi varieties”. In: Annals of Mathematics 120.3 (1984), pp. 497–504.spa
dc.relation.referencesRaymond O’Neil Wells and Oscar Garc´ıa-Prada. Differential analysis on complex manifolds. Vol. 21980. Springer New York, 1980.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lembVariedades (Matemáticas)
dc.subject.lembVariedades diferenciales
dc.subject.lembVariedades de Riemann
dc.subject.lembFunciones theta
dc.subject.lembFunciones holomorfas
dc.subject.lembFunciones abelianas
dc.subject.lembFunciones de variable compleja
dc.subject.proposalAbelian varietyeng
dc.subject.proposalJacobian varietyeng
dc.subject.proposalTheta functionseng
dc.subject.proposalFay's trisecant identityeng
dc.subject.proposalVariedad abelianaspa
dc.subject.proposalVariedad Jacobianaspa
dc.subject.proposalfunciones thetaspa
dc.subject.proposalIdentidad trisecante de Fayspa
dc.titleSchottky Problemeng
dc.title.translatedProblema de Schottkyspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017247829.2024.pdf
Tamaño:
819.2 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: