Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R

dc.contributor.advisorGómez Alegría, Claudio Jaimespa
dc.contributor.advisorGonzález Beltrán, Martha Margaritaspa
dc.contributor.authorArévalo Corredor, Luis Fernandospa
dc.contributor.cvlacAREVALO CORREDOR, LUIS FERNANDOspa
dc.contributor.researchgroupUnimolspa
dc.date.accessioned2024-02-05T20:43:16Z
dc.date.available2024-02-05T20:43:16Z
dc.date.issued2023-12
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractIntroducción: La insulina glargina se une a receptores de la familia IR-IGF1R, incluyendo al receptor de insulina (IR) y de IGF1 (IGF1R) que regulan metabolismo, división y diferenciación celular. Las células también expresan receptores híbridos IR/IGF1R que se han asociado con efectos mitogénicos in vitro. Aunque existe bastante información de la estructura y mecanismo de activación de los receptores IR e IGF1R, se conoce muy poco del reconocimiento y activación de los receptores híbridos. Objetivo: Mediante acercamiento In silico, proponer un hipotético modelo estructural del receptor híbrido IR/IGF1R y estudiar la interacción glargina-receptor en dicho modelo. Metodología: Se utilizaron herramientas bioinformáticas (Swiss-model, ClusPro, LZerD y HADDOCK) para construir modelos computacionales del receptor híbrido. Resultados: Se obtuvo un total de 182 modelos computacionales del receptor híbrido IR/IGF1R, seleccionado finalmente un modelo del receptor libre (sin glargina o Apo-receptor) y otro del receptor con glargina unida (Holo-receptor), y se analizaron las interacciones ligando-receptor involucradas. Las afinidades teóricas calculadas (Kd) para el complejo glargina-receptor presentaron valores de 1.4 y 7.0 nM para los protómeros IR e IGF1R, respectivamente, lo que concuerda relativamente bien con datos experimentales reportados por otros autores. Conclusiones: Se proponen dos modelos computacionales de la estructura 3D del receptor híbrido IR/IGF1R, uno en su estado apo-y otro en su estado holo-receptor, describiendo las interacciones ligando-receptor encontradas. (Texto tomado de la fuente)spa
dc.description.abstractIntroduction: Insulin glargine binds to the IR-IGF1R family of receptors, which include the insulin receptor (IR) and the IGF1 receptor (IGF1R) governing cell metabolism, cell division, and differentiation. Cells also express hybrid IR/IGF1R receptors that have been associated with mitogenic effects in vitro. Although there is considerable information on the structure and activation mechanism of IR and IGF1R receptors, very little is known about the recognition and activation of the hybrid receptors. Aims: Using an in silico approach, to propose a hypothetical structural model of the hybrid IR/IGF1R receptor and to study the glargine-receptor interaction in this model. Methods: Bioinformatics tools (Swiss-model, ClusPro, LZerD and HADDOCK) were used to build computational models of the hybrid receptor. Results: A total of 182 computational models of the hybrid IR/IGF1R receptor were obtained, finally selecting a model of the free receptor without glargine (Apo-receptor) and another of the receptor with glargine bound (Holo-receptor), and the ligand-receptor interactions involved were analyzed. The calculated theoretical affinities (Kd) for the glargine-receptor complex presented values of 1.4 and 7.0 nM for the IR and IGF1R protomers, respectively, which agrees relatively well with experimental data reported by other authors. Conclusions: Two computational models for the 3D structure of the hybrid IR/IGF1R receptor are proposed, one for its apo-and the other for its holo-receptor state, and we describe the ligand-receptor interactions found.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.methodsSe utilizaron herramientas bioinformáticas (Swiss-model, ClusPro, LZerD y HADDOCK) para construir modelos computacionales del receptor híbrido.spa
dc.description.researchareaFarmacología Molecularspa
dc.description.sponsorshipno aplicaspa
dc.format.extent125 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85626
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesAbbott, A. M., Bueno, R., Pedrini, M. T., Murray, J. M., & Smith, R. J. (1992). Insulin- like growth factor I receptor gene structure. Journal of Biological Chemistry, 267(15), 10759–10763. https://doi.org/10.1016/S0021-9258(19)50083-7spa
dc.relation.referencesAdams, G. G., Meal, A., Morgan, P. S., Alzahrani, Q. E., Zobel, H., Lithgo, R., Samil Kok, M., Besong, D. T. M., Jiwani, S. I., Ballance, S., Harding, S. E., Chayen, N., & Gillis, R. B. (2018). Characterisation of insulin analogues therapeutically available to patients. PLOS ONE, 13(3), e0195010. https://doi.org/10.1371/JOURNAL.PONE.0195010spa
dc.relation.referencesAdams, T. E., Epa, V. C., Garrett, T. P. J., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences : CMLS, 57(7), 1050–1093. https://doi.org/10.1007/PL00000744spa
dc.relation.referencesAgrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G. I., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 19(S13). https://doi.org/10.1186/s12859-018-2449-yspa
dc.relation.referencesAlberto, J., Reyes, O., & Plancarte, A. A. (2008). BASES MOLECULARES DE LAS ACCIONES DE LA INSULINA*. Revista de Educación Bioquímica, 27(1), 03–01. https://www.redalyc.org/pdf/490/49011452003.pdfspa
dc.relation.referencesAlphaFold Data Copyright (2022) DeepMind Technologies Limited. (2022). AlphaFold Protein Structure Database. Created with the AlphaFold Monomer v2.0 Pipeline. https://alphafold.ebi.ac.uk/entry/P06213spa
dc.relation.referencesAnnunziata, M., Granata, R., & Ghigo, E. (2011). The IGF system. Acta Diabetologica, 48(1), 1–9. https://doi.org/10.1007/S00592-010-0227-Zspa
dc.relation.referencesBacker, J. M., Myers Jnr., M. G., Shoelson, S. E., Chin, D. J., Sun, X. J., Miralpeix, M., Hu, P., Margolis, B., Skolnik, E. Y., Schlessinger, J., & White, M. F. (1992). Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. The EMBO Journal, 11(9), 3469–3479. https://doi.org/10.1002/J.1460-2075.1992.TB05426.Xspa
dc.relation.referencesBaker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science (New York, N.Y.), 294(5540), 93–96. https://doi.org/10.1126/SCIENCE.1065659spa
dc.relation.referencesBastard, K., Saladin, A., & Prévost, C. (2011). Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking. International Journal of Molecular Sciences 2011, Vol. 12, Pages 1316-1333, 12(2), 1316–1333. https://doi.org/10.3390/ IJMS12021316spa
dc.relation.referencesBelfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/ER.2008- 004spa
dc.relation.referencesBello, L. G., Salinas, J. T., Belén Giménez, M., Flores, L. E., Gómez De Ruiz, N., Centurión, A., & Centurión, O. A. (2016). El riesgo de los que cuidan el riesgo: FINDRISK en personal de blanco The risk of those who care for risk: FIDRISK in healthcare personnel Autores: ARTÍCULO ORIGINAL. Rev. Virtual Soc. Parag. Med. Int. Setiembre, 3(2), 71–76. https://doi.org/10.18004/rvspmi/2016.03(02)71-076spa
dc.relation.referencesBenkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510. https://doi.org/10.1093/NAR/GKP322spa
dc.relation.referencesBentham Science Publisher (2006). Scoring functions for protein-ligand docking. Current Protein & Peptide Science, 7(5), 407–420. https://doi.org/10.2174/138920306778559395spa
dc.relation.referencesBenyoucef, S., Surinya, K. H., Hadaschik, D., & Siddle, K. (2007). Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. The Biochemical Journal, 403(3), 603–613. https://doi.org/10.1042/BJ20061709spa
dc.relation.referencesBiasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). OpenStructure: an integrated software framework for computational structural biology. Acta Crystallographica Section D, Structural Biology, 69(Pt 5), 701–709. https://doi.org/10.1107/S0907444913007051spa
dc.relation.referencesBlanquart, C., Achi, J., & Issad, T. (2008). Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochemical Pharmacology, 76(7), 873–883. https://doi.org/10.1016/J.BCP.2008.07.027spa
dc.relation.referencesBlundell, T., Dodson, G., Hodgkin, D., & Mercola, D. (1972). Insulin: The Structure in the Crystal and its Reflection in Chemistry and Biology by. Advances in Protein Chemistry, 26(C), 279–402. https://doi.org/10.1016/S0065-3233(08)60143-6spa
dc.relation.referencesBlyth, A. J., Kirk, N. S., & Forbes, B. E. (2020). Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells, Vol. 9, Page 2276, 9(10), 2276. https://doi.org/10.3390/CELLS9102276spa
dc.relation.referencesBolli, G. B., di Marchi, R. D., Park, G. D., Pramming, S., & Koivisto, V. A. (1999). Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia, 42(10), 1151–1167. https://doi.org/10.1007/S001250051286spa
dc.relation.referencesBordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2008). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols 2009 4:1, 4(1), 1–13. https://doi.org/10.1038/nprot.2008.197spa
dc.relation.referencesBrown, J., Delaine, C., Zaccheo, O. J., Siebold, C., Gilbert, R. J., van Boxel, G., Denley, A., Wallace, J. C., Hassan, A. B., Forbes, B. E., & Jones, E. Y. (2008). Structure and functional analysis of the IGF-II/IGF2R interaction. The EMBO Journal, 27(1), 265. https://doi.org/10.1038/SJ.EMBOJ.7601938spa
dc.relation.referencesChen, G., Seukep, A. J., & Guo, M. (2020). Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Marine Drugs, 18(11). https://doi.org/10.3390/MD18110545spa
dc.relation.referencesChen, R., & Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins, 47(3), 281–294. https://doi.org/10.1002/PROT.10092spa
dc.relation.referencesChisalita, S. I., & Arnqvist, H. J. (2005). Expression and function of receptors for insulin-like growth factor-I and insulin in human coronary artery smooth muscle cells. Diabetologia, 48(10), 2155–2161. https://doi.org/10.1007/S00125-005-1890-4spa
dc.relation.referenceshristoffer, C., Chen, S., Bharadwaj, V., Aderinwale, T., Kumar, V., Hormati, M., & Kihara, D. (2021). LZerD webserver for pairwise and multiple protein-protein docking. Nucleic Acids Research, 49(W1), W359–W365. https://doi.org/10.1093/NAR/GKAB336spa
dc.relation.referencesCiaraldi, T. P., & Sasaoka, T. (2011). Review on the in vitro interaction of insulin glargine with the insulin/insulin-like growth factor system: potential implications for metabolic and mitogenic activities. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 43(1), 1–10. https://doi.org/10.1055/S-0030-1267203spa
dc.relation.referencesComeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004a). ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Research, 32(Web Server issue). https://doi.org/10.1093/NAR/GKH354spa
dc.relation.referencesComeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004b). ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics (Oxford, England), 20(1), 45–50. https://doi.org/10.1093/BIOINFORMATICS/BTG371spa
dc.relation.referencesCosto, F. C. de emfermedades de alto (CAC). (2020). Enfermedad renal crónica. FMC Formacion Medica Continuada En Atencion Primaria, SUPPL. 4, 1–33spa
dc.relation.referencesde Luis, D. A., & Romero, E. (2013). Análogos de insulina: modificaciones en la estructura, consecuencias moleculares y metabólicas. SEMERGEN - Medicina de Familia, 39(1), 34–40. https://doi.org/10.1016/J.SEMERG.2012.04.010spa
dc.relation.referencesde Meyts, P. (1994). The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia, 37 Suppl 2(2 Supplement). https://doi.org/10.1007/BF00400837spa
dc.relation.referencesde Meyts, P., & Whittaker, J. (2002). Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery 2002 1:10, 1(10), 769–783. https://doi.org/10.1038/nrd917spa
dc.relation.referencesDe Meyts, P. (2004). Insulin and its receptor: structure, function and evolution. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 26(12), 1351–1362. https://doi.org/10.1002/BIES.20151spa
dc.relation.referencesde Pagter-Holthuizen, P., van Schaik, F. M. A., Verduijn, G. M., van Ommen, G. J. B., Bouma, B. N., Jansen+, M., & Sussenbach, J. S. (1986). Organization of the human genes factors I and for insulin-like growth II. 195(1). https://doi.org/10.1016/0014-5793(86)80156-9spa
dc.relation.referencesDekker Nitert, M., Chisalita, S. I., Olsson, K., Bornfeldt, K. E., & Arnqvist, H. J. (2005). IGF-I/insulin hybrid receptors in human endothelial cells. Molecular and Cellular Endocrinology, 229(1–2), 31–37. https://doi.org/10.1016/J.MCE.2004.10.003spa
dc.relation.referencesDenley, A., Cosgrove, L. J., Booker, G. W., Wallace, J. C., & Forbes, B. E. (2005). Molecular interactions of the IGF system. Cytokine & Growth Factor Reviews, 16(4–5), 421–439. https://doi.org/10.1016/J.CYTOGFR.2005.04.004spa
dc.relation.referencesDHHS. (2020). Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020. National Diabetes Statistics Report, 2. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdfspa
dc.relation.referencesDominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/JA026939Xspa
dc.relation.referencesDrejer, K. (1992). The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/Metabolism Reviews, 8(3), 259–285. https://doi.org/10.1002/DMR.5610080305spa
dc.relation.referencesDu, Z., & Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer 2018 17:1, 17(1), 1–13. https://doi.org/10.1186/S12943-018-0782-4spa
dc.relation.referencesgan, A. M., & Dinneen, S. F. (2014). What is diabetes? Medicine (United Kingdom), 42(12), 679–681. https://doi.org/10.1016/j.mpmed.2014.09.005spa
dc.relation.referencesEsquivel-Rodriguez, J., Filos-Gonzalez, V., Li, B., & Kihara, D. (2014). Pairwise and multimeric protein–protein docking using the lzerd program suite. Methods in Molecular Biology, 1137, 209–234. https://doi.org/10.1007/978-1-4939-0366-5_15spa
dc.relation.referencesFan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83–89. https://doi.org/10.1007/S40484-019-0172-Yspa
dc.relation.referencesFederici, M., Giaccari, A., Hribal, M. L., Giovannone, B., Lauro, D., Morviducci, L., Pastore, L., Tamburrano, G., Lauro, R., & Sesti, G. (1999). Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly. Diabetes, 48(12), 2277–2285. https://doi.org/10.2337/DIABETES.48.12.2277spa
dc.relation.referencesFernandez-Fuentes, N., Rai, B. K., Madrid-Aliste, C. J., Eduardo Fajardo, J., & Fiser, A. (2007). Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics (Oxford, England), 23(19), 2558–2565. https://doi.org/10.1093/BIOINFORMATICS/BTM37spa
dc.relation.referencesFerreira, L. G., dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384. https://doi.org/10.3390/MOLECULES200713384spa
dc.relation.referencesFischer, D. (2006). Servers for protein structure prediction. Current Opinion in Structural Biology, 16(2), 178–182. https://doi.org/10.1016/J.SBI.2006.03.004spa
dc.relation.referencesFiser, A. (2010). Template-Based Protein Structure Modeling. Methods in Molecular Biology (Clifton, N.J.), 673, 73. https://doi.org/10.1007/978-1-60761-842-3_6spa
dc.relation.referencesGonzález-Beltrán, M., & Gómez-Alegría, C. (2021). Molecular Modeling and Bioinformatics Analysis of Drug-Receptor Interactions in the System Formed by Glargine, Its Metabolite M1, the Insulin Receptor, and the IGF1 Receptor. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211046403spa
dc.relation.referencesGoodsell, D. S., & Olson, A. J. (1990). Automated docking of substrates to proteins by simulated annealing. Proteins, 8(3), 195–202. https://doi.org/10.1002/PROT.340080302spa
dc.relation.referencesGrassot, J., Mouchiroud, G., & Perrière, G. (2003). RTKdb: database of receptor tyrosine kinase. Nucleic Acids Research, 31(1), 353–358. https://doi.org/10.1093/NAR/GKG036spa
dc.relation.referencesGuedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor-ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/S12551-013-0130-2spa
dc.relation.referencesHaddad, Y., Adam, V., & Heger, Z. (2020). Ten quick tips for homology modeling of high-resolution protein 3D structures. PLOS Computational Biology, 16(4), e1007449. https://doi.org/10.1371/journal.pcbi.1007449spa
dc.relation.referencesHarris, R., Olson, A. J., & Goodsell, D. S. (2008). Automated prediction of ligand-binding sites in proteins. Proteins, 70(4), 1506–1517. https://doi.org/10.1002/PROT.21645spa
dc.relation.referencesHedeskov, C. J. (1980). Mechanism of glucose-induced insulin secretion. Physiological Reviews, 60(2), 442-509. https://doi.org/10.1152/physrev.1980.60.2.442spa
dc.relation.referencesHeise, T., Nosek, L., Roønn, B. B., Endahl, L., Heinemann, L., Kapitza, C., & Draeger, E. (2004). Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes, 53(6), 1614–1620. https://doi.org/10.2337/DIABETES.53.6.1614spa
dc.relation.referencesHonorato, R. V., Koukos, P. I., Jiménez‐García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. (2021). Structural biology in the clouds: the WENMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.729513spa
dc.relation.referencesHua, Q. (2010). Insulin: a small protein with a long journey. Protein & Cell, 1(6), 537–551. https://doi.org/10.1007/S13238-010-0069-Zspa
dc.relation.referencesHubbard, S. R. (1999). Structural analysis of receptor tyrosine kinases. Progress in Biophysics and Molecular Biology, 71(3–4), 343–358.https://doi.org/10.1016/S0079- 6107(98)00047-9spa
dc.relation.referencesHubbard, S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbor Perspectives in Biology, 5(3). https://doi.org/10.1101/CSHPERSPECT.A008946spa
dc.relation.referencesInternational Diabetes Federation. (2019). IDF Diabetes Atlas, 9th edn. Brussels, Belgium. In Atlas de la Diabetes de la FID. http://www.idf.org/sites/default/files/Atlas-poster-2014_ES.pdfspa
dc.relation.referencesJanin, J., Henrick, K., Moult, J., Eyck, L. ten, Sternberg, M. J. E., Vajda, S., Vakser, I., & Wodak, S. J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins, 52(1), 2–9. https://doi.org/10.1002/PROT.10381spa
dc.relation.referencesJarosinski, M. A., Dhayalan, B., Chen, Y. S., Chatterjee, D., Varas, N., & Weiss, M. A. (2021). Structural principles of insulin formulation and analog design: A century of innovation. Molecular Metabolism, 52, 101325. https://doi.org/10.1016/J.MOLMET.2021.101325spa
dc.relation.referencesJoshi, S., Parikh, R., & Das, A. (2007). Insulin--history, biochemistry, physiology and pharmacology. The Journal of the Association of Physicians of India, 55(Supp), 19–25spa
dc.relation.referencesumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583. https://doi.org/10.1038/s41586-021-03819-2spa
dc.relation.referencesKavran, J. M., McCabe, J. M., Byrne, P. O., Connacher, M. K., Wang, Z., Ramek, A., Sarabipour, S., Shan, Y., Shaw, D. E., Hristova, K., Cole, P. A., & Leahy, D. J. (2014). How IGF-1 activates its receptor. ELife, 3. https://doi.org/10.7554/ELIFE.03772spa
dc.relation.referencesKim, J. J., & Accili, D. (2002). Signalling through IGF-I and insulin receptors: where is the specificity? Growth Hormone & IGF Research, 12, 84–90. https://doi.org/10.1054/ghir.2002.0265spa
dc.relation.referencesKnudsen, L., de Meyts, P., & Kiselyov, V. v. (2011). Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms. The Biochemical Journal, 440(3), 397–403. https://doi.org/10.1042/BJ20110550spa
dc.relation.referencesKoukos, P. I., Faro, I., van Noort, C. W., & Bonvin, A. M. J. J. (2018). A Membrane Protein Complex Docking Benchmark. Journal of Molecular Biology, 430(24), 5246–5256. https://doi.org/10.1016/J.JMB.2018.11.005spa
dc.relation.referencesKozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: an FFT-based protein docking program with pairwise potentials. Proteins, 65(2), 392–406. https://doi.org/10.1002/PROT.21117spa
dc.relation.referencesKozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255. https://doi.org/10.1038/NPROT.2016.169spa
dc.relation.referencesKuerzel, G. U., Shukla, U., Scholtz, H. E., Pretorius, S. G., Wessels, D. H., Venter, C., Potgieter, M. A., Lang, A. M., Koose, T., & Bernhardt, E. (2003). Biotransformation of insulin glargine after subcutaneous injection in healthy subjects. Current Medical Research and Opinion, 19(1), 34–40. https://doi.org/10.1185/030079902125001416spa
dc.relation.referencesLawrence, M. C. (2021). Understanding insulin and its receptor from their three-dimensional structures. Molecular Metabolism, 52, 101255. https://doi.org/10.1016/J.MOLMET.2021.101255spa
dc.relation.referencesLee, J., Miyazaki, M., Romeo, G. R., & Shoelson, S. E. (2014). Insulin receptor activation with transmembrane domain ligands. The Journal of Biological Chemistry, 289(28), 19769–19777. https://doi.org/10.1074/JBC.M114.578641spa
dc.relation.referencesLeis, S., & Zacharias, M. (2011). Efficient inclusion of receptor flexibility in grid-based protein–ligand docking*. Journal of Computational Chemistry, 32(16), 3433–3439. https://doi.org/10.1002/JCC.21923spa
dc.relation.referencesLemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/J.CELL.2010.06.011spa
dc.relation.referencesLensink, M. F., Velankar, S., & Wodak, S. J. (2016). Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins: Structure, Function and Bioinformatics, 85(3), 359–377. https://doi.org/10.1002/PROT.25215spa
dc.relation.referencesLi, J., Choi, E., Yu, H., & Bai, X. chen. (2019). Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications 2019 10:1, 10(1), 1–11. https://doi.org/10.1038/s41467-019-12564-0spa
dc.relation.referencesLucas Morante, T., Aragón Alonso, A., Oliván Palacios, B., & Manzano Arroyo, P. (2004). Las nuevas insulinas: Revisión. Información Terapéutica Del Sistema Nacional de Salud, ISSN 1130-8427, Vol. 28, No. 2, 2004, Págs. 41-49, 28(2), 41–49. https://dialnet.unirioja.es/servlet/articulo?codigo=914248&info=resumen&idioma=SP Aspa
dc.relation.referencesMa, B., Tromp, J., & Li, M. (2002). PatternHunter: faster and more sensitive homology search. Bioinformatics (Oxford, England), 18(3), 440–445. https://doi.org/10.1093/BIOINFORMATICS/18.3.440spa
dc.relation.referencesMadeira, F., Pearce, M., Tivey, A., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276–W279. https://doi.org/10.1093/NAR/GKAC240spa
dc.relation.referencesMalaguarnera, R., & Belfiore, A. (2011). The insulin receptor: a new target for cancer therapy. Frontiers in Endocrinology, 2, 93. https://doi.org/10.3389/FENDO.2011.00093spa
dc.relation.referencesMandell, J. G., Roberts, V. A., Pique, M. E., Kotlovyi, V., Mitchell, J. C., Nelson, E., Tsigelny, I., & ten Eyck, L. F. (2001). Protein docking using continuum electrostatics and geometric fit. Protein Engineering, 14(2), 105–113. https://doi.org/10.1093/PROTEIN/14.2.105spa
dc.relation.referencesManning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934. https://doi.org/10.1126/SCIENCE.1075762spa
dc.relation.referencesMarsh, J. A., & Teichmann, S. A. (2015). Structure, dynamics, assembly, and evolution of protein complexes. Annual Review of Biochemistry, 84, 551–575. https://doi.org/10.1146/ANNUREV-BIOCHEM-060614-034142spa
dc.relation.referencesMenting, J. G., Whittaker, J., Margetts, M. B., Whittaker, L. J., Kong, G. K. W., Smith, B. J., Watson, C. J., Žáková, L., Kletvíková, E., Jiráček, J., Chan, S. J., Steiner, D. F., Dodson, G. G., Brzozowski, A. M., Weiss, M. A., Ward, C. W., & Lawrence, M. C. (2013). How insulin engages its primary binding site on the insulin receptor. Nature 2013 493:7431, 493(7431), 241–245. https://doi.org/10.1038/nature11781spa
dc.relation.referencesMenting, J. G., Yang, Y., Chan, S. J., Phillips, N. B., Smith, B. J., Whittaker, J., Wickramasinghe, N. P., Whittaker, L. J., Pandyarajan, V., Wan, Z. L., Yadav, S. P., Carroll, J. M., Strokes, N., Roberts, C. T., Ismail-Beigi, F., Milewski, W., Steiner, D. F., Chauhan, V. S., Ward, C. W., … Lawrence, M. C. (2014). Protective hinge in insulin opens to enable its receptor engagement. Proceedings of the National Academy of Sciences of the United States of America,111(33). https://doi.org/10.1073/PNAS.1412897111spa
dc.relation.referencesMenting, J. G., Lawrence, C. F., Kong, G. K. W., Margetts, M. B., Ward, C. W., & Lawrence, M. C. (2015). Structural Congruency of Ligand Binding to the Insulin and Insulin/Type 1 Insulin-like Growth Factor Hybrid Receptors. Structure, 23(7), 1271–1282. https://doi.org/10.1016/J.STR.2015.04.016spa
dc.relation.referencesMichalska, K., & Joachimiak, A. (2021). Structural genomics and the Protein Data Bank. The Journal of Biological Chemistry, 296. https://doi.org/10.1016/J.JBC.2021.100747spa
dc.relation.referencesMorris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R., & Olson, A. (1999, January 6). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function - Morris - 1998 - Journal of Computational Chemistry - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096- 987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-Bspa
dc.relation.referencesMuhammed, M. T., & Aki-Yalcin, E. (2019). Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical Biology & Drug Design, 93(1), 12–20. https://doi.org/10.1111/CBDD.13388spa
dc.relation.referencesMynarcik, D. C., Yu, G. Q., & Whittaker, J. (1996). Alanine-scanning Mutagenesis of a C-terminal Ligand Binding Domain of the Insulin Receptor α Subunit (*). Journal of Biological Chemistry, 271(5), 2439–2442. https://doi.org/10.1074/JBC.271.5.2439spa
dc.relation.referencesNagel, N., Graewert, M. A., Gao, M., Heyse, W., Jeffries, C. M., Svergun, D., & Berchtold, H. (2019). The quaternary structure of insulin glargine and glulisine under formulation conditions. Biophysical Chemistry, 253, 106226. https://doi.org/10.1016/J.BPC.2019.106226spa
dc.relation.referencesNational Institute of Diabetes and Digestive and Kidney Diseases. (2022, January 24). Diabetes Gestacional. https://www.niddk.nih.gov/health-information/informacion-de-la-salud/diabetes/informacion-general/que-es/gestacionalspa
dc.relation.referencesNooren, I. M. A., & Thornton, J. M. (2003). Diversity of protein-protein interactions. The EMBO Journal, 22(14), 3486–3492. https://doi.org/10.1093/EMBOJ/CDG359spa
dc.relation.referencesOrganización Mundial de la Salud. (2020). INFORME MUNDIAL SOBRE LA DIABETES. Retrieved January 23, 2022, from www.who.intspa
dc.relation.referencesOrganización Mundial de la Salud. (2022, September 16). Diabetes. https://www.who.int/es/news-room/fact-sheets/detail/diabetesspa
dc.relation.referencesOrganización Mundial de la Salud. (2022, September 16). Enfermedades no transmisibles. 16 septiembre. https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseasesspa
dc.relation.referencesPagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/S12551-016-0247-1spa
dc.relation.referencesPandini, G., Frasca, F., Mineo, R., Sciacca, L., Vigneri, R., & Belfiore, A. (2002). Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. The Journal of Biological Chemistry, 277(42), 39684–39695. https://doi.org/10.1074/JBC.M202766200spa
dc.relation.referencesParodi, K., & José, S. (2016). Diabetes y embarazo. Rev. Fac. Cienc. Méd. (Impr.), 27–35. http://www.bvs.hn/RFCM/pdf/2016/pdf/RFCMVol13-1-2016-5.pdfspa
dc.relation.referencesPierre-Eugene, C., Pagesy, P., Nguyen, T. T., Neuillé, M., Tschank, G., Tennagels, N., Hampe, C., & Issad, T. (2012). Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PloS One, 7(7). https://doi.org/10.1371/JOURNAL.PONE.0041992spa
dc.relation.referencesPlank, J., Bodenlenz, M., Sinner, F., Magnes, C., Görzer, E., Regittnig, W., Endahl, L. A., Draeger, E., Zdravkovic, M., & Pieber, T. R. (2005). A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care, 28(5), 1107–1112. https://doi.org/10.2337/DIACARE.28.5.1107spa
dc.relation.referencesPrieto Martínez Fernando D., & Medina Franco José L. (2018). Diseño de fármacos asistido por computadora: cuando la informática, la química y el arte se encuentran. TIP Revista Especializada En Ciencias Químico-Biológicas, 21(2), 124–134. https://doi.org/10.22201/fesz.23958723e.2018.2.139spa
dc.relation.referencesPrieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. TIP Revista Especializada En Ciencias Químico-Biológicas, 21, 65–87. https://doi.org/10.22201/fesz.23958723e.2018.0.143spa
dc.relation.referencesPuche, J. E., & Castilla-Cortázar, I. (2012). Human conditions of insulin-like growth factor-I (IGF-I) deficiency. Journal of Translational Medicine, 10(1), 1–29. https://doi.org/10.1186/1479-5876-10-224spa
dc.relation.referencesRCSB PDB - 7V3P: Cryo-EM structure of the IGF1R/insulin complex. (2022, August 17). https://www.rcsb.org/structure/7V3Pspa
dc.relation.referencesReyes, J.; R. A. (2017, August 17). RCSB PDB - 5VIZ: X-Ray structure of Insulin Glargine. 2017-10-18. https://www.rcsb.org/structure/5VIZspa
dc.relation.referencesRobinson, D. R., Wu, Y. M., & Lin, S. F. (2000). The protein tyrosine kinase family of the human genome. Oncogene, 19(49), 5548–5557. https://doi.org/10.1038/SJ.ONC.1203957spa
dc.relation.referencesRoy, A., & Zhang, Y. (2012). Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure (London, England: 1993), 20(6), 987–997. https://doi.org/10.1016/J.STR.2012.03.009spa
dc.relation.referencesSaltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799Aspa
dc.relation.referencesSaltiel, A. R., & Pessin, J. E. (2002). Insulin signaling pathways in time and space. Trends in Cell Biology, 12(2), 65–71. https://doi.org/10.1016/S0962-8924(01)02207-3spa
dc.relation.referencesSánchez e Islas. (2016). Bases moleculares de la diabetes mellitus tipo 2 | Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud, 2e | AccessMedicina | McGraw Hill Medical. In R. A. B. J. eds. Montes A (Ed.), Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud (2nd ed., Vol. 1). McGraw-Hill Education. https://accessmedicina.mhmedical.com/content.aspx?bookid=1803&sectionid=124156562spa
dc.relation.referencesSaponaro, A., Maione, V., Bonvin, A. M. J. J., & Cantini, F. (2020). Understanding Docking Complexes of Macromolecules Using HADDOCK: The Synergy between Experimental Data and Computations. Bio-Protocol, 10(20). https://doi.org/10.21769/BIOPROTOC.3793spa
dc.relation.referencesSaxena, A., Sangwan, R. S., & Mishra, S. (2013). Fundamentals of Homology Modeling Steps and Comparison among Important Bioinformatics Tools: An Overview. Science International, 1(7), 237–252. https://doi.org/10.17311/SCIINTL.2013.237.252spa
dc.relation.referencesSchäffer, L., & Ljungqvist, L. (1992). Identification of a disulfide bridge connecting the alpha-subunits of the extracellular domain of the insulin receptor. Biochemical and Biophysical Research Communications, 189(2), 650–653. https://doi.org/10.1016/0006-291X(92)92250-2spa
dc.relation.referencesSciacca, L., le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3(FEB), 21. https://doi.org/10.3389/FENDO.2012.00021spa
dc.relation.referencesSciacca, L., Cassarino, M. F., Genua, M., Vigneri, P., Giovanna Pennisi, M., Malandrino, P., Squatrito, S., Pezzino, V., & Vigneri, R. (2014). Biological Effects of Insulin and Its Analogs on Cancer Cells With Different Insulin Family Receptor Expression. Journal of Cellular Physiology, 229(11), 1817–1821. https://doi.org/10.1002/JCP.24635spa
dc.relation.referencesSciacca, L., Vella, V., Frittitta, L., Tumminia, A., Manzella, L., Squatrito, S., Belfiore, A., & Vigneri, R. (2018). Long-acting insulin analogs and cancer. Nutrition, Metabolism and Cardiovascular Diseases, 28(5), 436–443. https://doi.org/10.1016/J.NUMECD.2018.02.010spa
dc.relation.referencesShooter, G. K., Magee, B., Soos, M. A., Francis, G. L., Siddle, K., & Wallace, J. C. (1996). Insulin-like growth factor (IGF)-I A- and B-domain analogues with altered type 1 IGF and insulin receptor binding specificities. Journal of Molecular Endocrinology, 17(3), 237–246. https://doi.org/10.1677/JME.0.0170237spa
dc.relation.referencesSiebenmorgen, T., & Zacharias, M. (2019). Computational prediction of protein–protein binding affinities. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(3), e1448. https://doi.org/10.1002/WCMS.1448spa
dc.relation.referencesSingh, P., Alex, J. M., & Bast, F. (2013). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Medical Oncology 2013 31:1, 31(1), 1–14. https://doi.org/10.1007/S12032-013-0805-3spa
dc.relation.referencesSlaaby, R., Schäffer, L., Lautrup-Larsen, I., Andersen, A. S., Shaw, A. C., Mathiasen, I. S., & Brandt, J. (2006). Hybrid Receptors Formed by Insulin Receptor (IR) and Insulin-like Growth Factor I Receptor (IGF-IR) Have Low Insulin and High IGF-1 Affinity Irrespective of the IR Splice Variant *. Journal of Biological Chemistry, 281(36), 25869–25874. https://doi.org/10.1074/JBC.M605189200spa
dc.relation.referencesSlaaby, R. (2015). Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Scientific Reports 2015 5:1, 5(1), 1–5. https://doi.org/10.1038/srep07911spa
dc.relation.referencesSmith, B. J., Huang, K., Kong, G., Chan, S. J., Nakagawa, S., Menting, J. G., Hu, S. Q., Whittaker, J., Steiner, D. F., Katsoyannis, P. G., Ward, C. W., Weiss, M. A., & Lawrence, M. C. (2010). Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proceedings of the National Academy of Sciences, 107(15), 6771–6776. https://doi.org/10.1073/PNAS.1001813107spa
dc.relation.referencesSmith, G. D., Pangborn, W. A., & Blessing, R. H. (2003). The structure of T6 human insulin at 1.0 A resolution. Acta Crystallographica. Section D, Biological Crystallography, 59(Pt 3), 474–482. https://doi.org/10.1107/S0907444902023685spa
dc.relation.referencesSommerfeld, M. R., Müller, G., Tschank, G., Seipke, G., Habermann, P., Kurrle, R., & Tennagels, N. (2010). In Vitro Metabolic and Mitogenic Signaling of Insulin Glargine and Its Metabolites. PLOS ONE, 5(3). https://doi.org/10.1371/JOURNAL.PONE.0009540spa
dc.relation.referencesSoos, M. A., Whittaker, J., Lammers, R., Ullrich, A., & Siddle, K. (1990). Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochemical Journal, 270(2), 383. https://doi.org/10.1042/BJ2700383spa
dc.relation.referencesSoos, M. A., Field, C. E., & Siddle, K. (1993). Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal, 290(Pt 2), 419. https://doi.org/10.1042/BJ2900419spa
dc.relation.referencesSparrow, L. G., McKern, N. M., Gorman, J. J., Strike, P. M., Robinson, C. P., Bentley, J. D., & Ward, C. W. (1997). The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. The Journal of Biological Chemistry, 272(47), 29460–29467. https://doi.org/10.1074/JBC.272.47.29460spa
dc.relation.referencesStuder, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2019). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 1765–1771. https://doi.org/10.1093/bioinformatics/btz828spa
dc.relation.referencesStuder, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homology modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/JOURNAL.PCBI.1008667spa
dc.relation.referencesTHE MOLECULAR BASIS OF INSULIN ACTION. (2002). Insulin Signaling, 82–118. https://doi.org/10.1201/B12794-13spa
dc.relation.referencesUchikawa, E., Choi, E., Shang, G., Yu, H., & Xiao-Chen, B. (2019). Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. ELife, 8. https://doi.org/10.7554/ELIFE.48630spa
dc.relation.referencesUllrich, A., Gray, A., Tam, A. W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., le Bon, T., Kathuria, S., & Chen, E. (1986). Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. The EMBO Journal, 5(10), 2503. https://doi.org/10.1002/j.1460-2075.1986.tb04528.xspa
dc.relation.referencesVaradi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/NAR/GKAB1061spa
dc.relation.referencesVarewijck, A. J., Goudzwaard, J. A., Brugts, M. P., Lamberts, S. W. J., Hofland, L. J., & Janssen, J. A. M. J. L. (2010). Insulin glargine is more potent in activating the human IGF-I receptor than human insulin and insulin detemir. Growth Hormone and IGF Research, 20(6), 427–431. https://doi.org/10.1016/J.GHIR.2010.10.002spa
dc.relation.referencesVarewijck, A. J., & Janssen, J. A. M. J. L. (2012). Insulin and its analogues and their affinities for the IGF1 receptor. Endocrine-Related Cancer, 19(5), F63–F75. https://doi.org/10.1530/ERC-12-0026spa
dc.relation.referencesVega Castro, N., & Reyes, E. (2020). Introducción al análisis estructural de proteínas y glicoproteínas (Coordinación de publicaciones - Facultad de Ciencias coorpub_fcbog@unal.edu.c, Ed.; 1st ed.). Centro Editorial de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá, Editado por la Centro Editorial de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá,spa
dc.relation.referencesVenkatraman, V., Yang, Y. D., Sael, L., & Kihara, D. (2009). Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics, 10. https://doi.org/10.1186/1471-2105-10-407spa
dc.relation.referencesVigneri, R., Sciacca, L., & Vigneri, P. (2020). Rethinking the Relationship between Insulin and Cancer. Trends in Endocrinology & Metabolism, 31(8), 551–560. https://doi.org/10.1016/J.TEM.2020.05.004spa
dc.relation.referencesWang, F., Carabino, J. M., & Vergara, C. M. (2003). Insulin glargine: a systematic review of a long-acting insulin analogue. Clinical Therapeutics, 25(6), 1541–1577. https://doi.org/10.1016/S0149-2918(03)80156-Xspa
dc.relation.referencesWard, Garrett, & Lou, et al. (2013). The Structure of the Type 1 Insulin-Like Growth Factor Receptor - Madame Curie Bioscience Database - NCBI Bookshelf. Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6216/spa
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427spa
dc.relation.referencesWebb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1-5.6.37. https://doi.org/10.1002/CPBI.3spa
dc.relation.referencesWerner, T., Morris, M. B., Dastmalchi, S., & Church, W. B. (2012). Structural modelling and dynamics of proteins for insights into drug interactions. Advanced Drug Delivery Reviews, 64(4), 323–343. https://doi.org/10.1016/J.ADDR.2011.11.011spa
dc.relation.referencesWhite, M. F., & Kahn, C. R. (2021). Insulin action at a molecular level – 100 years of progress. Molecular Metabolism, 52, 101304. https://doi.org/10.1016/J.MOLMET.2021.101304spa
dc.relation.referencesWhittaker, J., Groth, A. v., Mynarcik, D. C., Pluzek, L., Gadsbøll, V. L., & Whittaker, L. J. (2001). Alanine Scanning Mutagenesis of a Type 1 Insulin-like Growth Factor Receptor Ligand Binding Site *. Journal of Biological Chemistry, 276(47), 43980–43986. https://doi.org/10.1074/JBC.M102863200spa
dc.relation.referencesWhittaker, J., & Whittaker, L. (2005). Characterization of the functional insulin binding epitopes of the full-length insulin receptor. The Journal of Biological Chemistry, 280(22), 20932–20936. https://doi.org/10.1074/JBC.M411320200spa
dc.relation.referencesWhittaker, L., Hao, C., Fu, W., & Whittaker, J. (2008). High-Affinity Insulin Binding: Insulin Interacts with Two Receptor Ligand Binding Sites†. Biochemistry, 47(48), 12900–12909. https://doi.org/10.1021/BI801693Hspa
dc.relation.referencesWilliams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/PRO.3330spa
dc.relation.referencesWilliams, P. F., Mynarcik, D. C., Gui Qin Yu, & Whittaker, J. (1995). Mapping of an NH--terminal Ligand Binding Site of the Insulin Receptor by Alanine Scanning Mutagenesis. Journal of Biological Chemistry, 270(7), 3012–3016. https://doi.org/10.1074/JBC.270.7.3012spa
dc.relation.referencesXu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. v., de Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications 2018, 9(1), 1–13. https://doi.org/10.1038/s41467-018-03219-7spa
dc.relation.referencesYamaguchi, Y., Flier, J. S., Benecke, H., Ransil, B. J., & Moller, D. E. (1993). Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 132(3), 1132–1138. https://doi.org/10.1210/EN.132.3.1132spa
dc.relation.referencesYe, L., Maji, S., Sanghera, N., Gopalasingam, P., Gorbunov, E., Tarasov, S., Epstein, O., & Klein-Seetharaman, J. (2017). Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discovery Today, 22(7), 1092–1102. https://doi.org/10.1016/J.DRUDIS.2017.04.011spa
dc.relation.referencesYuriev, E., & Ramsland, P. A. (2013). Latest developments in molecular docking: 2010-2011 in review. Journal of Molecular Recognition, 26(5), 215–239. https://doi.org/10.1002/JMR.2266spa
dc.relation.referencesZhang, L. I., & Skolnick, J. (1998). What should the Z-score of native protein structures be? Protein Science: A Publication of the Protein Society, 7(5), 1201. https://doi.org/10.1002/PRO.5560070515spa
dc.relation.referencesZhang, X., Yu, D., Sun, J., Wu, Y., Gong, J., Li, X., Liu, L., Liu, S., Liu, J., Wu, Y., Li, D., Ma, Y., Han, X., Zhu, Y., Wu, Z., Wang, Y., Ouyang, Q., & Wang, T. (2020). isualization of Ligand-Bound Ectodomain Assembly in the Full-Length Human IGF-1 Receptor by Cryo-EM Single-Particle Analysis. Structure, 28(5), 555-561.e4. https://doi.org/10.1016/J.STR.2020.03.007spa
dc.relation.referencesRuiter, R., Visser, L. E., P van Herk-Sukel, M. P., W Coebergh, J. W., Haak, H. R., Geelhoed-Duijvestijn, P. H., J M Straus, S. M., C Herings, R. M., Ch Stricker, B. H., & C Stricker, B. H. (2011). Risk of cancer in patients on insulin glargine and other insulin analogues in comparison with those on human insulin: results from a large population-based follow-up study. https://doi.org/10.1007/s00125-011-2312-4spa
dc.relation.referencesMannucci, E., Monami, M., Balzi, D., Cresci, B., Pala, L., Melani, C., Lamanna, C., Bracali, I., Bigiarini, M., Barchielli, A., Marchionni, N., & Rotella, C. M. (2010). Doses of Insulin and Its Analogues and Cancer Occurrence in Insulin-Treated Type 2 Diabetic Patients. Diabetes Care, 33(9), 1997. https://doi.org/10.2337/DC10-0476spa
dc.relation.referencesDaniecki, N. J., Bhatt, M. R., Yap, G. P. A., & Zondlo, N. J. (2022). Proline C−H Bonds as Loci for Proline Assembly via C−H/O Interactions. ChemBioChem, 23(24), e202200409. https://doi.org/10.1002/CBIC.202200409spa
dc.relation.referencesHobza, P., & Havlas, Z. (2000). Blue-shifting hydrogen bonds. Chemical Reviews, 100(11), 4253–4264. https://doi.org/10.1021/CR990050Qspa
dc.relation.referencesLarsson, P., Wallner, B., Lindahl, E., & Elofsson, A. (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Science : A Publication of the Protein Society, 17(6), 990. https://doi.org/10.1110/PS.073344908spa
dc.relation.referencesMoult, J. (2005). A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structural Biology, 15(3), 285–289. https://doi.org/10.1016/J.SBI.2005.05.011spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsInsulina glarginaspa
dc.subject.decsInsulin glargineeng
dc.subject.decsReceptor IGF Tipo 1spa
dc.subject.decsReceptor, IGF Type 1eng
dc.subject.decsReceptor de insulinaspa
dc.subject.decsReceptor, insulineng
dc.subject.proposalGlarginaspa
dc.subject.proposalReceptor Insulinaspa
dc.subject.proposalReceptor IGF1Rspa
dc.subject.proposalDocking molecularspa
dc.subject.proposalReceptoresspa
dc.subject.proposalInsulin glargineeng
dc.subject.proposalInsulin receptoreng
dc.subject.proposalIGF1R receptoreng
dc.subject.proposalMolecular dockingeng
dc.subject.proposalReceptorseng
dc.subject.wikidataDocking (molecular)eng
dc.subject.wikidataAcoplamiento molecularspa
dc.titleEstudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1Rspa
dc.title.translatedIn silico study of the interaction between insulin glargine and the hybrid IR/IGF1R receptor.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameNo aplicaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_final_Luis_Final.pdf
Tamaño:
2.73 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: