Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein

dc.contributor.advisorSánchez Duque, Luis Alberto
dc.contributor.authorZuluaga Giraldo, Fabián Humberto
dc.date.accessioned2023-02-06T19:06:47Z
dc.date.available2023-02-06T19:06:47Z
dc.date.issued2022-10-26
dc.descriptionIlustraciones a colorspa
dc.description.abstractEsta tesis tuvo como objetivo identificar posibles efectos cuántico-gravitacionales al estudiar sistemas astrofísicos, en el contexto de un marco teórico estructurado idealizado para someter al escrutinio de la naturaleza el proceso de acreción (captura de materia por un objeto compacto central) por agujeros negros, de forma que éste ofrezca indicios de como construir caminos para validar la propuesta a teoría cuántica de la gravitación llamada Seguridad Asintótica (AS); también conocida como Gravedad Cuántica de Einstein (EQG). En adelante, en este trabajo, deberá entenderse por Seguridad Asintótica un programa en teoría cuántica de campos que tiene como objetivo explorar implicaciones del denominado grupo de renormalización funcional que gobierna la dependencia con la escala de energía de los parámetros de un modelo de interacciones fundamentales, igualmente referidos como constantes de acoplamiento. Para la gravedad, en el contexto de esta propuesta, es fundamental la existencia de puntos fijos no triviales tanto en el infra-rojo (IR) como en el ultra-violeta (UV), a los cuales deben converger un número finito de parámetros (constantes de Newton, cosmológica, etc) que caracterizan la interacción gravitacional, de forma a garantizar que la teoría sea renormalizable por métodos no perturbativos. En astrofísica, cuando la materia cae hacia un agujero negro siguiendo una trayectoria en forma de espiral se forma una estructura denominada disco de acreción. En la descripción de la dinámica gravitacional de estos discos juegan un papel fundamental los denominados coeficientes métricos del modelo de gravitacion; que informan sobre la curvatura del espacio-tiempo en la vecindad, en este caso, del agujero negro. La conjetura AS predice la modificación de esos coeficientes, dando lugar a las llamadas métricas AS mejoradas; modificaciones que describen efectos cuántico-gravitacionales que deberían generar cambios, potencialmente medibles, en la dinámica de estos discos. Ejemplo, las observaciones realizadas por el Event Horizon Telescope (EHT). Este instrumento fue diseñado para observar fenómenos que pueden ocurrir en la vecindad del horizonte, un radio del orden del radio de Schwarzschild. La medición de esos efectos permitiría confrontar la teoría con los datos observacionales, de tal manera que esta pueda ser descartada o seguir siendo considerada como una propuesta teórica viable. En esta tesis se estudia la dinámica de la acreción esféricamente simétrica hacia un agujero negro de Schwarzschild AS mejorado resolviendo las ecuaciones obtenidas usando la gravitacion a lá Einstein (campo metrico, tensor energia-momento, hidrodinamica, etc.), y recurriendo a la técnica de sistemas dinámicos vía formulación basada en un hamiltoniano propio para la física del sistema astrofísico. Un resultado notable que se obtuvo es que la acreción isotérmica de materia ultra-relativística es posible y que se da tanto en régimen subsónico como supersónico. Este resultado es opuesto al obtenido por otros investigadores x quienes concluyen que la acreción isotérmica ultra-relativística no es posible en su enfoque de seguridad asintótica con derivadas de orden superior. En el mismo marco de esta tesis se estudian los efectos sobre la estabilidad de la acreción. El analisis indica que ésta resulta poco alterada por los efectos cuántico-gravitacionales en comparación con la conocida estabilidad en GR. Un análisis similar se hizo para el estudio de efectos cuántico-gravitacionales sobre la acreción hacia agujero negro de AS mejorado de Schwarzschild-de Sitter, y para la geometría denominada Schwarzschild anti-de-Sitter. Adicionalmente, y por primera vez en el contexto de la hipótesis AS, se hace el estudio de los efectos cuántico-gravitacionales sobre las propiedades térmicas observables de la materia en acreción en forma de disco delgado hacia un agujero negro de Schwarzschild mejorado. Debido al fenómeno de anti-apantallamiento de la interacción gravitacional a energías planckianas, es de esperarse que el radio de la órbita interna más estable (ISCO) del disco de acreción sea mayor que en el caso relativista. Se encontró, por el contrario, que el efecto cuántico-gravitacional sobre el momento angular de las partículas en el disco juega un papel fundamental haciendo que la ISCO, de hecho, disminuya forzando que las propiedades térmicas del disco sean modificadas en comparación con la predicción de la GR: mayor flujo de energía, mayor temperatura, mayor luminosidad y mayor eficiencia de la acreción. En particular, se mostró que discos de acreción alrededor de agujeros negros que rotan muy lentamente, como la fuente astrofisca conocida como Black Hole Candidate (BHC) Large Magellanic Cloud (LMC) X–3, puedan considerarse como descritos, consistentemente, por la hipótesis AS. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis aimed to identify possible quantum-gravitational effects by studying astro-physical systems, in the context of an idealized structured theoretical framework to leading the accretion process (capture of matter by the central compact object) by black holes, to the scrutiny of nature, so that it offers indications of how to build paths to validate theoretical proposal to quantum field theory of gravitation called Asymptotic Safety (AS); also known as Einstein Quantum Gravity (EQG). From now on, in this work, Asymptotic Safety should be understood as a program in quantum field theory that aims to explore the implications of the so-called functional renormalization group; that governs the dependency with the xi energy scale of a model parameters of fundamental interactions, also known as coupling constants. To gravity, in the context of this proposal, the existence of non- fixed points in both the infrared (IR) and the ultraviolet (UV) is fundamental, in which the constants (Newton, cosmological, etc) that characterize the fundamental interactions assume specific values towards which they trend to, in order to guarantee that the theoty is renormalizable by non-perturbative methods. In astrophysics, as matter falls towards a black hole, it follows a spiral path, forming a structure called an accretion disk. In the description of the gravitational dynamics of these disks, the so-called metric coefficients of the model of gravitation play a fundamental role; that tells about the curvature of space-time in the vicinity, in this case, of the black hole. The AS conjecture predicts that these coefficients are modified by way of describing quantumgravitational effects which will generate potentially measurable changes in the dynamics of these disks. Example, the observations made by the Event Horizon Telescope (EHT). This instrument was designed to observe phenomena that can occur in the vicinity of the horizon, a radius of the order of the horizon radius. The measurement of these effects would allow the theory to be confronted with the observational data, in such a way that the quantum gravity model can be discarded or continued to be considered as a viable theoretical proposal. In this thesis, the dynamics of spherically symmetric accretion towards a improved Schwarzschild black hole are studied by solving the equations obtained using Einsteinian gravitation (metric field, energy-momentum tensor, hydrodynamics, etc.), and using the Hamiltonian dynamical system via formulation based on a Hamiltonian suitable to describe the physics of the astrophysical system. A remarkable result was obtained in which the isothermal accretion of ultra relativistic matter is shown to be really possible, and that it occurs in both subsonic and supersonic regimes. Such a result is opposed to the one obtained in former researches that included higher order derivatives reaching to the conclusion that ultrarelativistic isothermal accretion of matter is not possible in their AS approach. In the same framework of this thesis, the effects on the stability of the accretion process are studied. Such analysis indicates that it is a little altered by quantum-gravitational effects as compared to the known stability in GR. A similar analysis was performed for the study of quantumgravitational effects on accretion towards improved Schwarzschild-de Sitter black holes, and to the so-called anti-de-Sitter geometry. Additionally, and for the first time in the context of the AS hypothesis, the study of the quantum-gravitational effects on the observable thermal properties of matter accreting in the form of a thin disk towards a Schwarzschild black hole is made. Although due to the anti-screaning phenomenon of the gravitational interaction, it is expected that the radius of the innermost stable circular orbit (ISCO) of the accretion disk is greater than in the relativistic case. Otherwise, it was found that the quantum-gravitational effect on the an- xii gular momentum of the particles in the disk plays a fundamental role driving the ISCO to decrease, forcing the thermal properties of the disk to be modified as compared to the GR prediction: higher energy flux, higher temperature, higher luminosity and higher accretion efficiency. In particular, it was shown that accretion disks around very slowly rotating black holes, such as the astrophysical source known as the Black Hole Candidate (BHC) Large Magellanic Cloud (LMC) X–3, can be considered as consistently described by the AS hypothesis.eng
dc.description.curricularareaÁrea Curricular en Físicaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaGravitación cuánticaspa
dc.format.extentxi, 142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83326
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesG. ’t Hooft and M. Veltman, “An algorithm for the poles at dimension four in the dimensional regularization procedure,” Nuclear Physics B, vol. 62, p. 444–460, 1973.spa
dc.relation.referencesS. Deser and P. Nieuwenhuizen, “One-loop divergences of quantized einstein-maxwell fields,” Physical Review D, vol. 10, p. 2, 1974.spa
dc.relation.referencesS. Deser, H. Tsao, and P. Nieuwenhuizen, “One-loop divergences of the einstein-yangmills system,” Physical Review D, vol. 10, no. 10, p. 3337–3342, 1974.spa
dc.relation.referencesS. Deser, H. S. Tsao, and P. Nieuwenhuizen, “Nonrenormalizability of einstein-yangmills interactions at the one-loop level,” Physics Letters B, vol. 50, no. 4, p. 491–493, 1974.spa
dc.relation.referencesS. Weinberg, “Infrared photons and gravitons,” Physical Review, vol. 140, p. 2, 1965.spa
dc.relation.referencesR. Utiyama and S. Bryce, “Renormalization of a classical gravitational field interacting with quantized matter fields,” Journal of Mathematical Physics, vol. 3, p. 608, 1962.spa
dc.relation.referencesM. Reuter, “Nonperturbative evolution equation for quantum gravity,” Phys. Rev. D, vol. 57, 1998.spa
dc.relation.referencesS. W. Hawking and W. Israel, General Relativity, an Einstein Centenary Survey. Cambride University Press, 1979.spa
dc.relation.referencesS. de Haro, D. Dennis, G. ’t Hooft, and E. Verlinde, “Forty years of string theory reflecting on the foundations,” Foundations of Physics, vol. 43, 2013.spa
dc.relation.referencesJ. Maldacena, A. Strominger, and E. Witten, “Black hole entropy in m-theory,” Journal of High Energy Physics, vol. 12, 1997.spa
dc.relation.referencesH. Ooguri, A. Strominger, and C. Vafa, “Black hole attractors and the topological string,” Phys. Review D, vol. 70, 2004.spa
dc.relation.referencesA. Strominger, “Black hole entropy from near-horizon microstates,” Journal of High Energy Physics, vol. 2, 1998.spa
dc.relation.referencesM. Guica, T. Hartman, W. Song, and A. Strominger, “The kerr/cft correspondence,” Phys. Review D, vol. 80, 2009.spa
dc.relation.referencesA. Castro, A. Maloney, and A. Strominger, “Hidden conformal symmetry of the kerr black hole,” Phys. Review D, vol. 82, 2010.spa
dc.relation.referencesB. Zwiebach, A First Course in String Theory. Cambridge University Press, 2004.spa
dc.relation.referencesJ. Maldacena, “The illusion of gravity,” Scientific American, vol. 293, pp. 55–63, 2005.spa
dc.relation.referencesS. Hawking, “Information loss in black holes,” Phys. Review D, vol. 72, 2005.spa
dc.relation.referencesA.M.Polyakov, “Quantum geometry of bosonic strings,” Physics Letters B, vol. 103, no. 3, pp. 207–210, 1981.spa
dc.relation.referencesM. Green and J. Schwarz, “Anomaly cancellations in supersymmetric d = 10 gauge theory and superstring theory,” Physics Letters B, vol. 149, no. 1-3, 1984spa
dc.relation.referencesP. Candelas, G. Horowitz, A. Strominger, and E.Witten, “Vacuum configurations for superstrings,” Nucl. Phys.B, vol. 258, no. 46, pp. 46–74, 1985.spa
dc.relation.referencesN. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP, vol. 9, no. 32, 1999.spa
dc.relation.referencesJ. Polchinski, String Theory. Cambridge Monographs on Mathematical Physics (Vol 1,2). Cambridge University Press, 2005.spa
dc.relation.referencesB. Katrin, B. Melanie, and S. John, String theory and M-theory: A modern introduction. Cambridge University Press, 2007.spa
dc.relation.referencesJ. Barrett and L. Crane, “A lorentzian signature model for quantum general relativity,” Classical and Quantum Gravity, vol. 17, pp. 3101–3118, 2000.spa
dc.relation.referencesC. Rovelli, Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2004.spa
dc.relation.referencesA. Ashtekar, “New variables for classical and quantum gravity,” Phys. Rev. Lett., vol. 57, 1986.spa
dc.relation.referencesA. Ashtekar, “New hamiltonian formulation of general relativity,” Phys. Rev. D, vol. 36, 1987.spa
dc.relation.referencesA. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum geometry and black hole entropy,” Physics Review Letters, vol. 80, no. 5, pp. 904–907, 1998.spa
dc.relation.referencesC. Rovelli, “Loop quantum gravity,” Living Rev. Relativ., vol. 1, no. 1, 1987.spa
dc.relation.referencesA. Perez, “Spin foam models for quantum gravity,” Class. Quantum Gravity, vol. 20, 2003.spa
dc.relation.referencesJ. Baez, “An introduction to spin foam models of quantum gravity and bf theory,” Lecture Notes in Phyiscs, vol. 543, pp. 25–94, 2000.spa
dc.relation.referencesJ. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, “Nonperturbative lorentzian path integral for gravity,” Phys. Reports, vol. 519 (4-5), pp. 127–210, 2012.spa
dc.relation.referencesC. Rovelli, “Black hole entropy from loop quantum gravity,” Physics Review Letters, vol. 77, pp. 3288–3291, 2006.spa
dc.relation.referencesM. H. Ansari, “Generic degeneracy and entropy in loop quantum gravity,” Nucl. Phys. B, vol. 795, no. 3, pp. 635–644, 2008.spa
dc.relation.referencesM. H. Ansari, “Spectroscopy of a canonically quantized horizon,” Nucl. Phys. B, vol. 783, no. 3, pp. 179–212, 2007.spa
dc.relation.referencesC. Rovelli and F. Vidotto, “Planck stars,” International Journal of Modern Physics D., vol. 23, no. 12, 2014.spa
dc.relation.referencesP. Hořava, “Quantum gravity at a lifshitz point,” Phys. Rev. D, vol. 79, no. 8, 2009.spa
dc.relation.referencesP. Hořava, “Spectral dimension of the universe in quantum gravity at a lifshitz point,” Phys. Rev. Lett, vol. 102, 2009.spa
dc.relation.referencesC. Charmousis, G. Niz, A. Padilla, and P. Saffin, “Strong coupling in horava gravity,” Journal of High Energy Physics, vol. 08, no. 70, 2009.spa
dc.relation.referencesD. Blas, O. Pujolas, and S. Sibiryakov, “On the extra mode and inconsistency of horava gravity,” Journal of High Energy Physics, vol. 10, no. 29, 2009.spa
dc.relation.referencesE. Kiritsis and G. Kofinas, “Hořava–lifshitz cosmology,” Nucl. Phys. B, vol. 821,no. 467, 2009.spa
dc.relation.referencesK. Koyama and F. Arroja, “Pathological behaviour of the scalar graviton in hořavalifshitz gravity,” Journal of High Energy Physics, vol. 3, 2010.spa
dc.relation.referencesG. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and S. Zerbini, “Covariant horava-like and mimetic horndeski gravity: cosmological solutions and perturbations,” Class. Quantum Gravity, vol. 33, no. 467, 2016.spa
dc.relation.referencesA. Wang, “Hořava gravity at a lifshitz point: A progress report,” International Journal of Modern Physics D, vol. 26, no. 7, 2017.spa
dc.relation.referencesR. Loll, J. Ambjørn, and J. Jurkiewicz, “The universe from scratch,” Physics reports, vol. 279-360, pp. 103–117, 2006.spa
dc.relation.referencesF. Markopoulou and L. Smolin, “Gauge fixing in causal dynamical triangulation,” Nucl.Phys. B, vol. 739, pp. 120–130, 2006.spa
dc.relation.referencesJ. Ambjørn, J. Jurkiewicz, and R. Loll, “The self-organizing quantum universe,” Scientific America, pp. 42–49, 2008.spa
dc.relation.referencesJ. Ambjørn, J. Jurkiewicz, and R. Loll, “The self-organizing quantum universe,” Int.J.Mod.Phys.D, vol. 17, pp. 2015–2020, 2009.spa
dc.relation.referencesJ. Ambjørn and J. Jurkiewicz, “Four-dimensional simplicial quantum gravity,” Phys. Lett. B, vol. 278, no. 1-2, pp. 42–50, 1998.spa
dc.relation.referencesJ. Ambjørn, J. Jurkiewicz, and R. Loll, “Emergence of a 4d world from causal quantum gravity,” Phys. Rev. Lett, 2004.spa
dc.relation.referencesL. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, “Space-time as a causal set,” Phys. Rev. Lett, vol. 59, no. 521, 1987.spa
dc.relation.referencesJ. Myrheim, “Statistical geometry,” CERN pre print, vol. TH.2538, 1978.spa
dc.relation.referencesR. Yang, “Quantum gravity corrections to accretion onto a schwarzschild black hole,” Phys. Rev. D, vol. 92, 2015.spa
dc.relation.referencesL. D. Sosapanta, Efectos cuánticos gravitacionales sobre la estabilidad de la acreción hacia un agujero negro de Schwarzschild - Tesis de Maestría, Escuela de Física, Universidad Nacional de Colombia – Sede Medellín. 2018.spa
dc.relation.referencesM. Reuter and F. Saueressig, “Renormalization group flow of quantum gravity in the einstein-hilbert truncation,” Phys. Rev. D, vol. 65, 2002.spa
dc.relation.referencesD. Benedetti, P. Machado, and F. Saueressig, “Asymptotic safety in higher-derivative gravity,” Mod. Phys. Lett. A, vol. 24, 2009.spa
dc.relation.referencesM. Niedermaier and M. Reuter, “The asymptotic safety scenario in quantum gravity - an introduction,” Classical and Quantum Gravity, vol. 24, 2007.spa
dc.relation.referencesS. Weinberg, The Quantum Theory of Fields -Volume I: Foundations. Cambridge University Press, 1995.spa
dc.relation.referencesA. O. Barut and J. Krauss, “Nonperturbative quantum electrodynamics: The lamb shift,” Found of Phys, vol. 13, no. 189, p. 1344, 1983.spa
dc.relation.referencesP. A. M. Dirac, “The relativistic electron wave equation,” Europhysics, vol. 8, no. 1, 1977.spa
dc.relation.referencesI. Acikgoz, A. O. Barut, J. Krauss, and N. Ünal, “Self quantum electrodynamics without infinities. a new calculation of vacumm polarization,” Phys. Let A, vol. 198, no. 126, pp. 1344„ 1995.spa
dc.relation.referencesA. O. Barut and J. F. V. Huele, “Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization,” Phys. Rev. A, vol. 32, p. 3187, 1985.spa
dc.relation.referencesA. Salam, “Divergent integrals in renormalizable field theories,” Physical Review, vol. 84, no. 3, p. 426–431, 1951.spa
dc.relation.referencesF. J. Dyson, “The radiation theories of tomonaga, schwinger, and feynman,” Physics Review, vol. 75, p. 486, 1949.spa
dc.relation.referencesM. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory. Addison- Wesley Publishing Company, 1995.spa
dc.relation.referencesA. Salam, “Overlapping divergences and the s-matrix,” Physical Review, vol. 82, no. 2, p. 217–227, 1951.spa
dc.relation.referencesP. T. Matthews and A. Salam, “Renormalization,” Physical Review, vol. 94, no. 1, p. 185–191, 1954.spa
dc.relation.referencesN. N. Bogoliubow and O. Parasiuk, “Über die multiplikation der kausalfunktionen in der quantentheorie der felder,” Acta Mathematica, vol. 97, no. 0, p. 227–266, 1957.spa
dc.relation.referencesK. Hepp, “Proof of the bogoliubov-parasiuk theorem on renormalization,” Communications in Mathematical Physics, vol. 2, no. 1, p. 301–326, 1966.spa
dc.relation.referencesW. Zimmermann, “Convergence of bogoliubov’s method of renormalization in momentum space,” Communications in Mathematical Physics, vol. 15, no. 3, p. 208, 1969.spa
dc.relation.referencesS. Mandelstam, “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity,” General Theory. Physical Review, vol. 112, no. 4, p. 1344–1360, 1958.spa
dc.relation.referencesA. Guijosa, Notas de Clases de Teoría Cuántica de Campos. Universidad Autónoma de México.spa
dc.relation.referencesM. Gell-Mann and F. E. Low, “Quantum electrodynamics at small distances,” Physical Review, vol. 95, no. 5, p. 1300–1312, 1954.spa
dc.relation.referencesE. C. Stückelberg and A. Petermann, “La normalization des constantes dans la theorie des quanta,” Helv Phys, vol. 26, pp. 499–520, 1953.spa
dc.relation.referencesL. P. Kadanoff, “Scaling laws for ising models near tc,” Physics Physique Fizika, vol. 2, pp. 263–272, 1963.spa
dc.relation.referencesK. Falls, Asymptotic Safety and Black Holes. Thesis Submitted for the degree of Doctor of Philosophy. University of Sussex, 2012.spa
dc.relation.referencesK. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Physical Review Letters, vol. 28, no. 4, p. 240–243, 1972.spa
dc.relation.referencesK. G. Wilson, “Feynman-graph expansion for critical exponents,” Physical Review Letters, vol. 28, no. 9, p. 548–551, 1972.spa
dc.relation.referencesG. Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nuclear Physics B, vol. 44, no. 1, p. 189–213, 1972.spa
dc.relation.referencesC. G. Bollini and J. J. Giambiagi, “Lowest order “divergent” graphs in v-dimensional space,” Physics Letters B, vol. 40, no. 5, p. 566–568, 1972.spa
dc.relation.referencesK. G. Wilson, “Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture,” Phys. Rev B, vol. 4, pp. 3174–3184, 1971.spa
dc.relation.referencesK. Wilson and J. Kogut, “The renormalization group and the expansion,” Phys. Rept, vol. 12, pp. 75–200, 1974.spa
dc.relation.referencesK. G. Wilson, “The renormalization group: Critical phenomena and the kondo problem,” Reviews of Modern Physics, vol. 47, no. 4, p. 773–840, 1975.spa
dc.relation.referencesS. Weinberg, The Quantum Theory of Fields -Volume II: Modern Applications. Cambridge University Press, 1996.spa
dc.relation.referencesC. Wetterich, “Average action and the renormalization group equations,” Nuclear Physics B, vol. 352, pp. 529–584, 1991.spa
dc.relation.referencesJ. Berges, N. Tetradis, and C. Wetterich, “Non-perturbative renormalization flow in quantum field theory and statistical physics,” Phys. Report, vol. 363, pp. 223–386, 2002.spa
dc.relation.referencesV. Mukhanov and S. Winitzki, An Introduction to Quantum Effects in Gravity. Cambridge University Press, 2007.spa
dc.relation.referencesC. Wetterich, “Exact evolution equation for the effective potential,” Phys. Letters B, vol. 301, pp. 90–94, 1993.spa
dc.relation.referencesD. A. R. Torres, Solución de Schwarzschild corregida por medio de Asymptotic Safety - Tesis de pregrado en Física - Universidad de los Andes. 2019.spa
dc.relation.referencesL. F. Abbot, “Introduction to the background field method,” Acta Phys. Pol. B, vol. 13 (CERN-TH-3113), pp. 33–50, 1981.spa
dc.relation.referencesV. N. Popov and L. Faddeev, “Feynman diagrams for the yang-mills field,” hysics Letters B, vol. 25, pp. 29–30, 1967.spa
dc.relation.referencesD. V. Vassilevich, “Heat-kernel expansion: user’s manual.,” JHEP, vol. 9, no. 32, 2003.spa
dc.relation.referencesS. W. Hawking and G. F. R. Ellis, The large scale strucrure of the space-time. Cambridge University Press, 1974.spa
dc.relation.referencesR. M. Wald, General Relativity. Chicago Press, 1974.spa
dc.relation.referencesC. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University Press, 1977spa
dc.relation.referencesB. Koch and F. Saueressig, “Black holes within asymptotic safety,” Int. Journ. Mod. Phys. A., vol. 29, 2014.spa
dc.relation.referencesE. A. Larrañaga, Agujeros Negros Clásicos. AshCat Publishers, 2009.spa
dc.relation.referencesC. Gonzalez and B. Koch, “Improved reissner–nordström–(a)ds black hole in asymptotic safety,” International Journal of Modern Physics A, vol. 31, 2016.spa
dc.relation.referencesD. F. Litim, “Optimized renormalization group flows,” Phys. Rev. D, vol. 64, 2001.spa
dc.relation.referencesD. F. Litim, “Fixed points of quantum gravity,” Phys. Rev. Lett, vol. 92, 2004.spa
dc.relation.referencesB. Koch and I. Ramirez, “Exact renormalization group with optimal scale and its application to cosmology,” Class.Quant.Grav., vol. 28, 2011.spa
dc.relation.referencesC. Contreras, B. Koch, and P. Rioseco, “Black hole solution for scale-dependent gravitational couplings and the corresponding coupling flow,” Class.Quant.Grav., vol. 30, 2013.spa
dc.relation.referencesB. Koch and F. Saueressig, “Structural aspects of asymptotically safe black hole,” Class. Quant. Grav., vol. 31, 2013.spa
dc.relation.referencesY.-F. Cai and D. Easson, “Black holes in an asymptotically safe gravity theory with higher derivatives,” JCAP, vol. 9, no. 2, 2010.spa
dc.relation.referencesA. Bonano, “Astrophysical implications of the asymptotic safety scenario in quantum gravity,” Proceedings of Science, vol. 112, no. 784, 2008.spa
dc.relation.referencesM. Reuter and H. Weyer, “On the possibility of quantum gravity effects at astrophysical scales,” International Journal of Modern Physics D, vol. 15, no. 12, pp. 2011–2028, 2006.spa
dc.relation.referencesM. Reuter and H. Weyer, “Quantum gravity at astrophysical distances?,” Phys.Rev.D, vol. 69, 2004.spa
dc.relation.referencesT. Padmanabhan, “Theoretical astrophysics-galaxies and cosmology vol iii,” Cambridge University Press, 2002.spa
dc.relation.referencesF. Combes, P. Boiss´e, A. Mazure, and A. Blanchard, “Galaxies and cosmology,” Springer, New York, 2002.spa
dc.relation.referencesM. Reuter and H. Weyer, “Renormalization group improved gravitational actions: A brans-dicke approach,” Journal of Cosmology and Astroparticle Physics JCAP, vol. 97, 2004.spa
dc.relation.referencesA. Eichhorn and A. Held, “Image features of spinning regular black holes based on a locality principle,” Eur. Phys. J. C., vol. 81, no. 933, 2021.spa
dc.relation.referencesY. Zhang, M. Zhou, and C. Bambi, “Iron line spectroscopy of black holes in asymptotically safe gravity,” Eur. Phys. C, vol. 78, no. 316, 2018.spa
dc.relation.referencesT. Johannsen and D. Psaltis, “Testing the no-hair theorem with observations in the electromagnetic spectrum. iv. relativistically broadened iron lines,” Astrophys. J., vol. 773, no. 57, 2013.spa
dc.relation.referencesC. Bambi, “Testing the space-time geometry around black hole candidates with the analysis of the broad k����� iron line,” Phys. Rev. D, vol. 87, 2013.spa
dc.relation.referencesC. Bambi, A. Cardenas-Avendano, T. Dauser, J. Garcia, and S. Nampalliwar, “Testing the kerr black hole hypothesis using x-ray reflection spectroscopy,” Astrophys. J., 2017.spa
dc.relation.referencesC. Bambi, “Astrophysical black holes: A compact pedagogical review,” Annalen der Physik, vol. 530, 2018.spa
dc.relation.referencesB. Zhou, A. B. Abdikamalov, D. Ayzenberg, C. Bambi, S. Nampalliwar, and A. Tripathi, “Shining x-rays on asymptotically safe quantum gravity,” JCAP, vol. 2021, 2021.spa
dc.relation.referencesI. Novikov and K. Thorne, “Astrophysics of black holes ed. by c. dewitt, b. dewitt,” Gordon Breach, New York, 1973.spa
dc.relation.referencesF. H. Zuluaga and L. A. Sánchez, “Black holes in asymptotic safety with higher derivatives: accretion and stability analysis,” Chinese Physics C, vol. 45, 2021.spa
dc.relation.referencesF. H. Zuluaga and L. A. Sánchez, “Accretion disk around a schwarzschild black hole in asymptotic safety,” Eur. Phys. J. C, vol. 81, 2021.spa
dc.relation.referencesE.Chaverra and O. Sarbach, “Radial accretion flows on static spherically symmetric black holes,” Class, Quant. Grav, vol. 32, 2015.spa
dc.relation.referencesE.Chaverra, M. Morales, and O. Sarbach, “Quasi-normal acoustic oscillations in the michel flow,” Phys. Rev. D, vol. 91, 2015.spa
dc.relation.referencesE. Chaverra, P. Mach, and O. Sarbach, “Michel accretion of a polytropic fluid with adiabatic index 5=3: global flows versus homoclinic orbits,” Class, Quant. Grav, vol. 33, 2016.spa
dc.relation.referencesA. Ahmed and M. Faizal, “Cyclic and heteroclinic flows near general static spherically symmetric black holes,” Eur. Phys. J. C, vol. 76, no. 280, 2016.spa
dc.relation.referencesA. Ahmed, M. Azreg-Ainou, and S.Bahamonde, “Astrophysical flows near f(t) gravity black holes,” Eur. Phys. J. C, vol. 76, no. 269, 2016.spa
dc.relation.referencesM. Farooq, A. Ahmed, and R.-J. Yang, “Accretion on high derivative asymptotically safe black holes,” Chinese Physics C, vol. 44, 2020.spa
dc.relation.referencesJ. Petterson, J. Silk, and J. Ostriker, “Variations on a spherically symmetrical accretion flow,” Mon. Not. R. Astron. Soc, vol. 191, p. 571, 1980.spa
dc.relation.referencesT. Naskar, N. Chakravarty, J. K. Bhattacharjee, and A. K. Ray., “Acoustic perturbations on steady spherical accretion in schwarzschild geometry,” Phys. Review D, vol. 76, 2007.spa
dc.relation.referencesD. Ananda, S. Bhattacharya, and T. Das, “Acoustic geometry through perturbation of mass accretion rate: radial flow in static spacetimes,” General Relativity and Gravitation, vol. 47, no. 96, 2015.spa
dc.relation.referencesG. Abbas and A. Ditta, “Matter accretion onto a conformal gravity black hole,” The European Physical Journal C, vol. 80, no. 12, 2020.spa
dc.relation.referencesA. Jawad and M. U. Shanzad, “Effects of thermal fluctuations on non-minimal regular magnetic black hole,” Eur. Phys. J. C, vol. 77, no. 515, 2017.spa
dc.relation.referencesM. Hobson, G. Efstathiou, and A. Lasenby, “General relativity. an introduction for physicists,” Cambridge University Press, 2006.spa
dc.relation.referencesT. Harko, Z. Kovács, and F. Lobo, “Thin accretion disks in stationary axisymmetric wormhole spacetimes,” Phys. Rev. D, vol. 79, 2009.spa
dc.relation.referencesZ. Kovács and T. Harko, “Can accretion disk properties observationally distinguish black holes from naked singularities?,” Phys. Rev. D, vol. 82, 2010.spa
dc.relation.referencesD. Pérez, G. Romero, and S. P. Bergliaffa, “Accretion disks around black holes in modified strong gravity,” Astronomy and Astrophysics, vol. 551, no. A4, 2013.spa
dc.relation.referencesD. Pérez, F. L. Armengol, and G. Romero, “Accretion disks around black holes in scalar-tensor-vector gravity,” Phys. Rev. D, vol. 95, 2013.spa
dc.relation.referencesD. Page and K. S. Thorne, “Disk-accretion onto a black hole. time-averaged structure of accretion disk,” AstroPhys. J, vol. 191, no. 499, 1974.spa
dc.relation.referencesN. Shakura and R. Sunyaev, “Black holes in binary systems. observational appearance,” AA, vol. 24, no. 377, 1973.spa
dc.relation.referencesP. Joshi, D. Malafarina, and R. Narayan, “Distinguishing black holes from naked singularities through their accretion disc properties,” Class. Quantum Gravity, vol. 31, 2014.spa
dc.relation.referencesK. Falls, C. King, D. Litim, K. Nikolakopoulos, and C.Rahmede, “Asymptotic safety of quantum gravity beyond ricci scalars,” Phys. Rev. D, vol. 97, 2018.spa
dc.relation.referencesJ. Bardeen, W. Press, and S. Teukolsky, “Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J, vol. 178, no. 347, 1972.spa
dc.relation.referencesJ. Steiner, J. McClintock, J. Orosz, R. Remillard, C. Bailyn, M. Kolehmainen, and O. Straub, “The low-spin black hole in lmc x-3,” Astrophys. J, vol. 793, no. 2, 2014.spa
dc.relation.referencesJ. Orosz, J. Steiner, J. McClintock, M. Buxton, C. Bailyn, D. Steeghsa, A. Guberman, and M. Torres, “The mass of the black hole in lmc x-3,” Astrophys. J, vol. 794, no. 153, 2014.spa
dc.relation.referencesG. Bhuvana, D. Radhika, V. Agrawal, S. Mandal, and A. Nandi, “Broad-band ’spectrotemporal’ features of extragalactic black hole binaries lmc x-1 and lmc x-3: an astrosat perspective,” M.N.R.A.S., vol. 501, no. 4, 2021.spa
dc.relation.referencesJ. Steiner, J. McClintock, R. Remillard, L. Gou, S. Yamada, and R. Narayan, “The constant inner-disk radius of lmc x-3: a basis for measuring black hole spin.,” Astrophys. J, vol. 718, no. 2, 2010.spa
dc.relation.referencesO. Straub, M. Bursa, A. S¸adowski, J. Steiner, M. Abramowicz, W. Klu´zniak, J. Mc- Clintock, R. Narayan, and R. Remillard, “Testing slim-disk models on the thermal spectra of lmc x-3,” Astron. Astrophys, vol. 533, no. 2, 2011.spa
dc.relation.referencesA. Held, R. Gold, and A. Eichhorn, “Asymptotic safety casts its shadow,” JCAP, vol. 6, no. 29, 2019.spa
dc.relation.referencesJ. Cembranos, A. de la Cruz-Dombriz, and P. J. Romero, “Kerr-newman black holes in f(r) theories,” I. J of Geometric Methods in Modern Phys, vol. 11, p. 588, 2011.spa
dc.relation.referencesM. Guo and P. C. Li, “Innermost stable circular orbit and shadow of the 4d einstein– gauss–bonnet black hole,” Eur. Phys. J. C, vol. 80, p. 588, 2020.spa
dc.relation.referencesA. Dasgupta, “Measuring quantum gravity,” Can. J. Phys, vol. 96, pp. 366–378, 2018.spa
dc.relation.referencesF.Alfaro, H. Quevedo, and P. Sanchez, “Comparison of vacuum static quadrupolar metrics,” R. Soc. Op. Sci., vol. 5, 2018.spa
dc.relation.referencesOrellana and et all, “Structure of neutron stars in r-squared gravity,” General Relativity and Gravitation, vol. 45, pp. 771–783, 2013.spa
dc.relation.referencesF. L. López and G. E. Romero, “Neutron stars in scalar-tensor-vector gravity,” General Relativity and Gravitation, vol. 49, pp. 1–15, 2017.spa
dc.relation.referencesT. Harko, Z. Kovács, and F. Lobo, “Electromagnetic signatures of thin accretion disks in wormhole geometries,” Phys. Rev. D, vol. 78, 2008.spa
dc.relation.referencesD. Torres, “Accretion disc onto a static non-baryonic compact object,” Nucl. Phys. B, vol. 626, no. 377, 2002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembAgujeros negros de Kerrspa
dc.subject.lembColapso gravitacionalspa
dc.subject.lembTeoria cuanticaspa
dc.subject.lembGravedadspa
dc.subject.proposalGravitación Cuánticaspa
dc.subject.proposalSeguridad Asintóticaspa
dc.subject.proposalRelatividad Generalspa
dc.subject.proposalAgujeros Negrosspa
dc.subject.proposalTipo Schwarzschildspa
dc.subject.proposalde Sitterspa
dc.subject.proposalanti de-Sitterspa
dc.subject.proposalAcreciónspa
dc.subject.proposalPropiedades Térmicasspa
dc.subject.proposalQuantum Gravityeng
dc.subject.proposalAsymptotic Safetyeng
dc.subject.proposalGeneral Relativityeng
dc.subject.proposalBlack Holeseng
dc.subject.proposalSchwarzschildeng
dc.subject.proposalAccretion, Stabilityeng
dc.subject.proposalThermal propertieseng
dc.titleCorrecciones a la acreción por agujeros negros en gravedad cuántica de Einsteinspa
dc.title.translatedCorrections to the accretion onto black holes in Einstein quantum gravityeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75108126.2022.pdf
Tamaño:
1.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: