En 6 día(s), 22 hora(s) y 56 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

CELSR en los procesos de polaridad en una línea celular de cáncer de seno

dc.contributor.advisorUmaña Pérez, Yadi Adrianaspa
dc.contributor.authorCorrea Sánchez, Andrés Felipespa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2021-01-26T15:07:13Zspa
dc.date.available2021-01-26T15:07:13Zspa
dc.date.issued2020-08-18spa
dc.description.abstractCadherins are a superfamily of adhesion molecules with functions in cell recognition, tissue morphogenesis and tumour suppression. Among the members of this family, there is a subgroup of adhesion receptors coupled to G protein, that contain cadherin repeats on their N-terminus, called EGF LAG seven-pass G- typed receptor or CELSR. Three types of non-classical cadherins exist (CELSR 1,2 and 3), and they are involved in the mechanism of cell polarity by activation of the non-canonical Wnt signalling pathway in the epithelial tissue. Recently, these cadherins have been found in the hematopoietic tissue, but their functional role is not clear. Due to the importance of adhesion molecules to promote migration processes in cancer, we studied the presence of CELSR family in an epithelial cell line derived from breast cancer MCF-7 and in cell lines from acute lymphoid leukaemia Jurkat and CCRF-CEM to evaluate functional involvement. A high expression level of the CELSR receptor was found in the MCF-7 cell line in comparison to the epithelial cell lines. Triple silencing of CELSR 1, 2 and 3 in MCF-7 decreased cell migration in response to the activation to the non-canonical Wnt signalling pathway, decreased of production of diacylglycerol was also seen without altering proliferation and cell viability.spa
dc.description.abstractLas cadherinas son una superfamilia de moléculas de adhesión con funciones en reconocimiento celular, morfogénesis tisular y supresión tumoral. A esta familia pertenece un subgrupo de receptores de adhesión acoplados a proteína G, que contienen repeticiones de cadherina en su N-terminal, las cadherinas EGF LAG seven pass G-type receptor o CELSR. De estas cadherinas no clásicas existen 3 miembros (CELSR 1 a 3), y están involucradas en mecanismos de polaridad celular por activación de la vía de señalización Wnt no canónica en el tejido epitelial. Recientemente, estas cadherinas se encontraron en el tejido hematopoyético, aunque su implicación funcional aún no es clara. Debido a la importancia que tienen las moléculas de adhesión en la promoción de los procesos migratorios en cáncer, este trabajo se centró en identificar la presencia de los miembros de la familia CELSR en la línea epitelial derivada de cáncer de seno MCF-7 y en las líneas celulares de leucemia linfoide aguda Jurkat y CCRF-CEM y evaluar su implicación funcional. Se encontró un mayor nivel de expresión de las cadherinas en la línea celular MCF-7 en comparación con líneas de leucemia. El silenciamiento triple de CELSR 1, 2 y 3, en MCF-7, disminuyó la migración celular en respuesta a la activación de la vía de señalización Wnt no canónica disminuyendo a su vez, la producción de diacilglicerol sin alterar la viabilidad ni la proliferación celularspa
dc.description.additionalLínea de Investigación: Factores de crecimiento, diferenciación y cáncerspa
dc.description.degreelevelMaestríaspa
dc.description.project4428spa
dc.description.sponsorshipFundación para la Promoción de la Investigación y la Tecnología-FPIT del Banco de la Repúblicaspa
dc.format.extent69spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78921
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesK. Ebnet, D. Kummer, T. Steinbacher, A. Singh, M. Nakayama, and M. Matis, “Regulation of cell polarity by cell adhesion receptors,” Semin. Cell Dev. Biol., vol. 81, pp. 2–12, 2018, doi: 10.1016/j.semcdb.2017.07.032.spa
dc.relation.referencesA. C. Humphries and M. Mlodzik, “From instruction to output: Wnt/PCP signaling in development and cancer,” Curr. Opin. Cell Biol., vol. 51, pp. 110–116, Apr. 2018, doi: 10.1016/j.ceb.2017.12.005spa
dc.relation.referencesA. M. Goffinet and F. Tissir, “Seven pass cadherins CELSR1-3,” Semin. Cell Dev. Biol., vol. 69, pp. 102–110, 2017, doi: 10.1016/j.semcdb.2017.07.014.spa
dc.relation.referencesY. Saito, R. R. Desai, and S. K. Muthuswamy, “Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion,” Biochim. Biophys. Acta - Rev. Cancer, vol. 1869, no. 2, pp. 103–116, 2018, doi: 10.1016/j.bbcan.2017.12.001.spa
dc.relation.referencesGLOBOCAN 2018, “Cancer Today. Global Cancer Observatory,” 2019. https://gco.iarc.fr/today/home (accessed Aug. 10, 2020).spa
dc.relation.referencesK. Barzaman et al., “Breast cancer: Biology, biomarkers, and treatments,” Int. Immunopharmacol., vol. 84, no. April, p. 106535, Jul. 2020, doi: 10.1016/j.intimp.2020.106535.spa
dc.relation.referencesC. Rejon, M. Al-Masri, and L. McCaffrey, “Cell Polarity Proteins in Breast Cancer Progression,” J. Cell. Biochem., no. March, pp. 2215–2223, 2016, doi: 10.1002/jcb.25553.spa
dc.relation.referencesS. J. Chatterjee and L. McCaffrey, “Emerging role of cell polarity proteins in breast cancer progression and metastasis,” Breast Cancer Targets Ther., vol. 6, no. 0, pp. 15–27, 2014, doi: 10.2147/BCTT.S43764.spa
dc.relation.referencesA. H. Allam, M. Charnley, and S. M. Russell, “Context-Specific Mechanisms of Cell Polarity Regulation,” J. Mol. Biol., vol. 430, no. 19, pp. 3457–3471, 2018, doi: 10.1016/j.jmb.2018.06.003.spa
dc.relation.referencesM. T. Butler and J. B. Wallingford, “Planar cell polarity in development and disease,” Nat. Rev. Mol. Cell Biol., vol. 18, no. 6, pp. 375–388, 2017, doi: 10.1038/nrm.2017.11.spa
dc.relation.referencesL. M. McCaffrey and I. G. Macara, “Epithelial organization, cell polarity and tumorigenesis,” Trends Cell Biol., vol. 21, no. 12, pp. 727–735, 2011, doi: 10.1016/j.tcb.2011.06.005.spa
dc.relation.referencesC. F. Davey and C. B. Moens, “Planar cell polarity in moving cells: think globally, act locally,” Development, vol. 144, no. 2, pp. 187–200, 2017, doi: 10.1242/dev.122804.spa
dc.relation.referencesL. Huang and S. K. Muthuswamy, “Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators,” Curr. Opin. Genet. Dev., vol. 20, no. 1, pp. 41–50, 2010, doi: 10.1016/j.gde.2009.12.001.spa
dc.relation.referencesY. Yang, “Wnt signaling in development and disease,” Cell Biosci., vol. 2, no. 1, p. 14, 2012, doi: 10.1186/2045-3701-2-14.spa
dc.relation.referencesC. Y. Logan and R. Nusse, “The Wnt Signaling Pathway in Development and Disease,” Annu. Rev. Cell Dev. Biol., vol. 20, no. 1, pp. 781–810, 2004, doi: 10.1146/annurev.cellbio.20.010403.113126.spa
dc.relation.referencesR. Nusse and H. Clevers, “Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities,” Cell, vol. 169, no. 6, pp. 985–999, 2017, doi: 10.1016/j.cell.2017.05.016.spa
dc.relation.referencesE. Gómez-Orte, B. Sáenz-Narciso, S. Moreno, and J. Cabello, “Multiple functions of the noncanonical Wnt pathway,” Trends Genet., vol. 29, no. 9, pp. 545–553, 2013, doi: 10.1016/j.tig.2013.06.003.spa
dc.relation.referencesJ. Brasch, O. J. Harrison, B. Honig, and L. Shapiro, “Thinking outside the cell: How cadherins drive adhesion,” Trends Cell Biol., vol. 22, no. 6, pp. 299–310, 2012, doi: 10.1016/j.tcb.2012.03.004.spa
dc.relation.referencesI. S. Gul, P. Hulpiau, Y. Saeys, and F. van Roy, “Evolution and diversity of cadherins and catenins,” Exp. Cell Res., vol. 358, no. 1, pp. 3–9, 2017, doi: 10.1016/j.yexcr.2017.03.001.spa
dc.relation.referencesP. Hulpiau and F. van Roy, “Molecular evolution of the cadherin superfamily,” Int. J. Biochem. Cell Biol., vol. 41, no. 2, pp. 349–369, 2009, doi: 10.1016/j.biocel.2008.09.027.spa
dc.relation.referencesA. Kourtidis, R. Lu, L. J. Pence, and P. Z. Anastasiadis, “A central role for cadherin signaling in cancer,” Exp. Cell Res., vol. 358, no. 1, pp. 78–85, 2017, doi: 10.1016/j.yexcr.2017.04.006.spa
dc.relation.referencesA. V. Priest, O. Shafraz, and S. Sivasankar, “Biophysical basis of cadherin mediated cell-cell adhesion,” Exp. Cell Res., vol. 358, no. 1, pp. 10–13, 2017, doi: 10.1016/j.yexcr.2017.03.015.spa
dc.relation.referencesF. van Roy, “Beyond E-cadherin: Roles of other cadherin superfamily members in cancer,” Nat. Rev. Cancer, vol. 14, no. 2, pp. 121–134, 2014, doi: 10.1038/nrc3647.spa
dc.relation.referencesM. Sotomayor, R. Gaudet, and D. P. Corey, “Sorting out a promiscuous superfamily: Towards cadherin connectomics,” Trends Cell Biol., vol. 24, no. 9, pp. 524–536, 2014, doi: 10.1016/j.tcb.2014.03.007.spa
dc.relation.referencesC. J. Formstone, “7TM-Cadherins: Developmental Roles and Future Challenges,” in Advances in Experimental Medicine and Biology, vol. 706, 2010, pp. 14–36.spa
dc.relation.referencesW. S. Chen et al., “Asymmetric Homotypic Interactions of the Atypical Cadherin Flamingo Mediate Intercellular Polarity Signaling,” Cell, vol. 133, no. 6, pp. 1093–1105, 2008, doi: 10.1016/j.cell.2008.04.048.spa
dc.relation.referencesC. J. Formstone and P. F. R. Little, “The flamingo-related mouse Celsr family (Celsr1-3) genes exhibit distinct patterns of expression during embryonic development,” Mech. Dev., vol. 109, no. 1, pp. 91–94, 2001, doi: 10.1016/S0925-4773(01)00515-9.spa
dc.relation.referencesP. Arvind, J. Nair, S. Jambunathan, K. Vijay, and J. Shanker, “CELSR2-PSRC1-SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort,” J. Cardiol., vol. 64, no. 5, pp. 339–346, 2014, doi: 10.1016/j.jjcc.2014.02.012.spa
dc.relation.referencesT. Vilboux et al., “CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency,” Am. J. Med. Genet. Part A, vol. 173, no. 3, pp. 661–666, 2017, doi: 10.1002/ajmg.a.38005.spa
dc.relation.referencesE. Einarsdottir et al., “CELSR2 is a candidate susceptibility gene in idiopathic scoliosis,” PLoS One, vol. 12, no. 12, pp. 1–14, 2017, doi: 10.1371/journal.pone.0189591.spa
dc.relation.referencesX. J. Wang et al., “Understanding cadherin EGF LAG seven-pass G-type receptors,” J. Neurochem., vol. 131, no. 6, pp. 699–711, 2015, doi: 10.1111/jnc.12955.spa
dc.relation.referencesM. Kaucká et al., “The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of b-lymphocyte migration,” Cancer Res., vol. 73, no. 5, pp. 1491–1501, 2013, doi: 10.1158/0008-5472.CAN-12-1752.spa
dc.relation.referencesK. VanderVorst, J. Hatakeyama, A. Berg, H. Lee, and K. L. Carraway, “Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy,” Semin. Cell Dev. Biol., pp. 1–10, 2017, doi: 10.1016/j.semcdb.2017.09.026.spa
dc.relation.referencesD. Nagarajan and S. E. B. McArdle, “Immune Landscape of Breast Cancers,” Biomedicines, vol. 6, no. 1, p. 20, Feb. 2018, doi: 10.3390/biomedicines6010020.spa
dc.relation.referencesM. K. Hasan et al., “Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis,” npj Breast Cancer, vol. 5, no. 1, pp. 1–11, 2019, doi: 10.1038/s41523-019-0131-9.spa
dc.relation.referencesK. VanderVorst, C. A. Dreyer, S. E. Konopelski, H. Lee, H. Y. H. Ho, and K. L. Carraway, “Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis,” Cancer Res., vol. 79, no. 8, pp. 1719–1729, 2019, doi: 10.1158/0008-5472.CAN-18-2757.spa
dc.relation.referencesR. Zeng et al., “Multiple roles of WNT5A in breast cancer,” Med. Sci. Monit., vol. 22, pp. 5058–5067, 2016, doi: 10.12659/MSM.902022.spa
dc.relation.referencesY. Zhu et al., “Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells,” Cell. Signal., vol. 25, no. 5, pp. 1075–1085, 2013, doi: 10.1016/j.cellsig.2013.01.015.spa
dc.relation.referencesY. Zhu et al., “Dvl2-Dependent Activation of Daam1 and RhoA Regulates Wnt5a-Induced Breast Cancer Cell Migration,” PLoS One, vol. 7, no. 5, p. e37823, May 2012, doi: 10.1371/journal.pone.0037823.spa
dc.relation.referencesW. Strober, “Trypan Blue Exclusion Test of Cell Viability,” Curr. Protoc. Immunol., vol. 111, no. 1, p. A3.B.1-A3.B.3, 2015, doi: 10.1002/0471142735.ima03bs111.spa
dc.relation.referencesY. Jian, C. George, Z. Irena, C. Ioana, R. Steve, and L. Madden Thomas, “Primer- BLAST: A tool to design target-specific primers for polymerase chain reaction,” BMC Bioinformatics, vol. 13, no. 1, p. 134, 2012.spa
dc.relation.referencesP. Stothard, “The Sequence Manipulation Suite,” Biotechniques, vol. 28, no. 6, 2000, doi: 10.2144/00286ir01.spa
dc.relation.referencesM. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Res., vol. 29, no. 9, pp. 45e – 45, May 2001, doi: 10.1093/nar/29.9.e45.spa
dc.relation.referencesJ. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676–682, 2012, doi: 10.1038/nmeth.2019.spa
dc.relation.referencesH. A. Safdari, S. Pandey, A. K. Shukla, and S. Dutta, “Illuminating GPCR Signaling by Cryo-EM,” Trends Cell Biol., vol. 28, no. 8, pp. 591–594, 2018, doi: 10.1016/j.tcb.2018.06.002.spa
dc.relation.referencesD. Hilger, M. Masureel, and B. K. Kobilka, “Structure and dynamics of GPCR signaling complexes,” Nat. Struct. Mol. Biol., vol. 25, no. 1, pp. 4–12, 2018, doi: 10.1038/s41594-017-0011-7.spa
dc.relation.referencesR. Petryszak et al., “Expression Atlas update - An integrated database of gene and protein expression in humans, animals and plants,” Nucleic Acids Res., vol. 44, no. D1, pp. D746–D752, 2016, doi: 10.1093/nar/gkv1045.spa
dc.relation.referencesN. Manjunath, H. Wu, S. Subramanya, and P. Shankar, “Lentiviral delivery of short hairpin RNAs,” Adv. Drug Deliv. Rev., vol. 61, no. 9, pp. 732–745, 2009, doi: 10.1016/j.addr.2009.03.004.spa
dc.relation.referencesA. Alfranca, M. R. Campanero, and J. M. Redondo, “New Methods for Disease Modeling Using Lentiviral Vectors,” Trends Mol. Med., vol. 24, no. 10, pp. 825–837, 2018, doi: 10.1016/j.molmed.2018.08.001.spa
dc.relation.referencesC. Borsotti, E. Borroni, and A. Follenzi, “Lentiviral vector interactions with the host cell,” Curr. Opin. Virol., vol. 21, pp. 102–108, 2016, doi: 10.1016/j.coviro.2016.08.016.spa
dc.relation.referencesS. Etienne-Manneville, “Polarity proteins in migration and invasion,” Oncogene, vol. 27, no. 55, pp. 6970–6980, 2008, doi: 10.1038/onc.2008.347.spa
dc.relation.referencesN. Prieto-Dominguez, C. Parnell, and Y. Teng, “Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges,” Cells, vol. 8, no. 3, p. 255, 2019, doi: 10.3390/cells8030255.spa
dc.relation.referencesP. Aspenström, “Integration of signalling pathways regulated by small GTPases and calcium,” Biochim. Biophys. Acta - Mol. Cell Res., vol. 1742, no. 1–3, pp. 51–58, 2004, doi: 10.1016/j.bbamcr.2004.09.029.spa
dc.relation.referencesH. Wada, H. Tanaka, S. Nakayama, M. Iwasaki, and H. Okamoto, “Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain,” Development, vol. 133, no. 23, pp. 4749–4759, 2006, doi: 10.1242/dev.02665.spa
dc.relation.referencesY. Qu et al., “Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice,” J. Neurosci., vol. 30, no. 28, pp. 9392–9401, 2010, doi: 10.1523/JNEUROSCI.0124-10.2010.spa
dc.relation.referencesK. S. K. S. Louis and A. C. A. C. Siegel, “Mammalian Cell Viability,” in Methods in Molecular Biology, vol. 740, no. 1, 2011, p. p.7-12.spa
dc.relation.referencesP. Kumar, A. Nagarajan, and P. D. Uchil, “Analysis of cell viability by the MTT assay,” Cold Spring Harb. Protoc., vol. 2018, no. 6, pp. 469–471, 2018, doi: 10.1101/pdb.prot095505.spa
dc.relation.referencesD. C. Wright, “Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis,” Appl. Physiol. Nutr. Metab., vol. 32, no. 5, pp. 840–845, 2007, doi: 10.1139/H07-062.spa
dc.relation.referencesY. Rai et al., “Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition,” Sci. Rep., vol. 8, no. 1, pp. 1–15, 2018, doi: 10.1038/s41598-018-19930-w.spa
dc.relation.referencesS. Carrasco and I. Mérida, “Diacylglycerol, when simplicity becomes complex,” Trends Biochem. Sci., vol. 32, no. 1, pp. 27–36, 2007, doi: 10.1016/j.tibs.2006.11.004.spa
dc.relation.referencesS. U. Jayasinghe, A. T. Tankeu, and F. Amati, “Reassessing the Role of Diacylglycerols in Insulin Resistance,” Trends Endocrinol. Metab., vol. 30, no. 9, pp. 618–635, 2019, doi: 10.1016/j.tem.2019.06.005.spa
dc.relation.referencesJ. C. Gómez-Fernández and S. Corbalán-García, “Diacylglycerols, multivalent membrane modulators,” Chem. Phys. Lipids, vol. 148, no. 1, pp. 1–25, 2007, doi: 10.1016/j.chemphyslip.2007.04.003.spa
dc.relation.referencesT. Usui et al., “Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled,” Cell, vol. 98, no. 5, pp. 585–595, 1999, doi: 10.1016/S0092-8674(00)80046-X.spa
dc.relation.referencesD. Devenport, “The cell biology of planar cell polarity,” J. Cell Biol., vol. 207, no. 2, pp. 171–179, 2014, doi: 10.1083/jcb.201408039.spa
dc.relation.referencesL. B. Luna-Ulloa, J. G. Hernández-Maqueda, M. C. Castañeda-Patlán, and M. Robles-Flores, “Protein kinase C in Wnt signaling: Implications in cancer initiation and progression,” IUBMB Life, vol. 63, no. 10, pp. 915–921, 2011, doi: 10.1002/iub.559.spa
dc.relation.referencesŞ. Comşa, A. M. Cîmpean, and M. Raica, “The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research.,” Anticancer Res., vol. 35, no. 6, pp. 3147–54, Jun. 2015, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/26026074.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalCell polarityeng
dc.subject.proposalPolaridad celularspa
dc.subject.proposalCadherinseng
dc.subject.proposalCadherinasspa
dc.subject.proposalBreast cancereng
dc.subject.proposalCáncer de senospa
dc.subject.proposalSeñalización celularspa
dc.subject.proposalCell signallingeng
dc.subject.proposalMigraciónspa
dc.subject.proposalMigrationeng
dc.subject.proposalWntspa
dc.subject.proposalWnteng
dc.titleCELSR en los procesos de polaridad en una línea celular de cáncer de senospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015433237.2020.pdf
Tamaño:
1.48 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: