Two-regime functional threshold autoregressive model: an empirical approach

dc.contributor.advisorCalderón Villanueva, Sergio Alejandro
dc.contributor.advisorGuevara Gonzalez, Rubén Darío
dc.contributor.authorCoba Puerto, Juan Eduardo
dc.date.accessioned2021-09-14T15:34:32Z
dc.date.available2021-09-14T15:34:32Z
dc.date.issued2021
dc.descriptionIlustraciones y tablasspa
dc.description.abstractIt is known in the literature that economic and financial time series, such as stock returns or the exchange rate, present non-linear dynamics like regime switching, time-varying volatility, or volatility clusters, which should be modeled by using the appropriate non-linear models. Given that financial time series are often of high frequency, it is possible to split the series into intervals and treat each interval as a unique functional observational unit. In this work we introduce and explore, via simulation, a two-regime Functional Threshold Autoregressive model of order one, FTAR(2, 1, 1), as an extension of the univariate TAR(1) model, allowing for a discrete regime switching specification in functional time series governed by a scalar threshold process.eng
dc.description.abstractEs bien sabido que las series de tiempo económicas y financieras, como los retornos de activos financieros o la tasa de cambio, presentan dinámicas no-lineales como cambios de régimen o volatilidad. Estos comportamientos pueden ser tenidos en cuenta utilizando modelos no-lineales. Adicionalmente, teniendo en cuenta que las series de tiempo financieras suelen ser de alta frecuencia, es posible dividir la serie en intervalos y hacer uso de las técnicas de Análisis de Datos Funcionales. En este trabajo se presenta y explora, por medio de simulaciones, el Modelo Autorregressivo Funcional con Umbrales, para el caso en que se tienen dos regímenes, cada uno de primer orden. Este modelo es una extensión del modelo TAR(1), de modo que se pueden modelar series de tiempo funcionales con cambios de régimen gobernados por un proceso de umbrales escalar. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaSeries de Tiempo Funcionalesspa
dc.format.extentxii, 54 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80184
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAue, A., Van Delft, A., et al. (2020). Testing for stationarity of functional time series in the frequency domain. Annals of Statistics, 48(5):2505–2547.
dc.relation.referencesChan, K.-S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The annals of statistics, 21(1):520–533.
dc.relation.referencesDidericksen, D., Kokoszka, P., and Zhang, X. (2012). Empirical properties of forecasts with the functional autoregressive model. Computational Statistics, 27(2):285–298.
dc.relation.referencesFan, J. and Yao, Q. (2008). Nonlinear time series: nonparametric and parametric methods. Springer Science & Business Media.
dc.relation.referencesGabrys, R., Horváth, L., and Kokoszka, P. (2010). Tests for error correlation in the functional linear model. Journal of the American Statistical Association, 105(491):1113–1125.
dc.relation.referencesGrynkiv, G. and Stentoft, L. (2018). Stationary threshold vector autoregressive models.
dc.relation.referencesJournal of Risk and Financial Management, 11(3):45.
dc.relation.referencesHansen, B. E. (2011). Threshold autoregression in economics. Statistics and its Interface, 4(2):123–127.
dc.relation.referencesHarezlak, J., Ruppert, D., and Wand, M. P. (2018). Semiparametric regression with R. Springer.
dc.relation.referencesHO, L.-C. and Huang, C.-S. (2016). Nonlinear relationships between oil price and stock index - evidence from brazil, russia, india and china. Romanian Journal of Economic Forecasting, XIX(3):116–126.
dc.relation.referencesHorváth, L. and Kokoszka, P. (2012). Inference for functional data with applications, volume 200. Springer Science & Business Media.
dc.relation.referencesHorváth, L., Kokoszka, P., and Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics, 179(1):66–82.
dc.relation.referencesHubrich, K. and Teräsvirta, T. (2013). Thresholds and Smooth Transitions in Vector Autoregressive Models. VAR Models in Macroeconomics–New Developments and Applications: Essays in Honor of Christopher A. Sims, pages 273–326.
dc.relation.referencesJames, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning, volume 112. Springer.
dc.relation.referencesKokoszka, P. (2012). Dependent functional data. ISRN Probability and Statistics, 2012.
dc.relation.referencesKokoszka, P. and Reimherr, M. (2017). Introduction to functional data analysis. CRC Press.
dc.relation.referencesKokoszka, P. and Zhang, X. (2012). Functional prediction of intraday cumulative returns. Statistical Modelling, 12(4):377–398.
dc.relation.referencesKwiatkowski, D., Phillips, P. C., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3):159–178.
dc.relation.referencesRamsay, J., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and MATLAB. Springer.
dc.relation.referencesRamsay, J. O. and Silverman, B. (2008). Functional data analysis. ˙Internet Adresi: http.
dc.relation.referencesShang, H. L. (2017). Forecasting intraday s&p 500 index returns: A functional time series approach. Journal of forecasting, 36(7):741–755.
dc.relation.referencesTong, H. and Lim, K. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society. Series B (Methodological), 42(3):245–292.
dc.relation.referencesTsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association, 93(443):1188–1202.
dc.relation.referencesTsay, R. S. (2012). Nonlinearity and nonlinear econometric models in finance. Encyclopedia of Financial Models.
dc.relation.referencesTsay, R. S. and Chen, R. (2019). Nonlinear time series analysis, volume 891. John Wiley & Sons.
dc.relation.referencesWei, T. (2015). Time series in functional data analysis
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembTime-series analysiseng
dc.subject.lembAnálisis de series de tiempospa
dc.subject.lembRegression analysiseng
dc.subject.lembAnálisis de regresiónspa
dc.subject.lembStatistical informationeng
dc.subject.lembInformación estadísticaspa
dc.subject.proposalTAReng
dc.subject.proposalTAR Modeleng
dc.subject.proposalFunctional data analysiseng
dc.subject.proposalFunctional threshold autoregressioneng
dc.subject.proposalFunctional time serieseng
dc.subject.proposalModelo TARspa
dc.subject.proposalAnálisis de datos funcionalesspa
dc.subject.proposalModeloautoregressivo funcional con umbralesspa
dc.subject.proposalSeries de tiempo funcionalesspa
dc.titleTwo-regime functional threshold autoregressive model: an empirical approacheng
dc.title.translatedModelo autorregressivo funcional con umbrales: una aproximación empíricaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019127061.2021.pdf
Tamaño:
9.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: