Evaluación del efecto del extracto de zanthoxylum martinicense sobre la expresión de apoe, lrp, glast y glt-1 en modelo de astrocitos y en ratones 3x tg-ad

dc.contributor.advisorArboleda Bustos, Gonzalo Humberto
dc.contributor.authorLopez-Cano, Juan Guillermo
dc.contributor.financerColciencias
dc.contributor.researchgroupGrupo de Neurociencias-Universidad Nacional de Colombiaspa
dc.contributor.researchgroupMuerte Celularspa
dc.date.accessioned2023-07-31T14:23:20Z
dc.date.available2023-07-31T14:23:20Z
dc.date.issued2023-07-30
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl aumento no regulado de la excitación neuronal y del ingreso de calcio a la célula, conocido como excitotoxicidad y causado por un exceso de glutamato (ya sea en tiempo de permanencia y/o en concentración) en la hendidura sináptica, o por acúmulos de Aβ en el espacio extracelular en contextos de Alzheimer, ha sido considerado como uno de los posibles mecanismos moleculares que derivan en la muerte de neuronas del hipocampo en el desarrollo de la enfermedad de Alzheimer (EA). Los extractos vegetales presentan características químicas estructurales que amplían el espectro de ligandos o compuestos con actividad neuroprotectora, y dada esa diversidad química han ganado importancia en la búsqueda de alternativas terapéuticas a enfermedades neurodegenerativas como la EA convirtiéndolos en sustancias privilegiadas multidiana. En este trabajo se evaluó el efecto de un extracto etanólico de raíz de Zanthoxylum martinicense sobre la expresión de las proteínas astrocitarias responsables de la regulación del glutamato en la hendidura sináptica, adicionalmente se evaluó el cambio en otras proteínas de interés en contextos de la EA dada la actividad agonista LXRβ de este extracto demostrada previamente en nuestro grupo de investigación. Mediante técnicas de inmunología y de cuantificación de proteínas totales, se evaluó el cambio en la expresión de las proteínas LRP, APOE (que tienen un rol protagónico en la homeostasis de Aβ en el sistema nervioso central) y de los transportadores de glutamato GLAST (EAAT1) y GLT-1 (EAAT2), en cultivos in vitro de la línea U87-MG empleado como modelo de astrocitos y en un modelo in vivo de ratones 3xTg-AD que fueron tratados con el extracto de Zanthoxylum martinicense. El resultado muestra que el tratamiento con este extracto específicamente tiene un efecto dosis dependiente en el aumento de la expresión de las proteínas ya mencionadas excepto LRP. El aumento en la expresión de APOE, GLAST y GLT1 tiene un potencial efecto neuroprotector por la posible mejora de la remoción de Aβ y en el incremento en la eficiencia de la retoma del glutamato sináptico evitando eventos de excitotoxidad, y puede pensarse que sean una parte del sustento molecular que soporta la recuperación de la memoria espacial en ratones 3xTg-AD tratados con el extracto. (Texto tomado de la fuente)spa
dc.description.abstractThe dysregulated increase of neuronal excitation and calcium entry into the neuron, known as excitotoxicity, after a glutamate excess in the synaptic cleft or because of the Aβ aggregates in the extracellular matrix in Alzheimer’s disease (AD), has been considered as one of the possible molecular mechanisms driving neurodegeneration in the hippocampus during progression of AD. Vegetable extracts exhibit structural chemical features that enlarge the spectrum of ligands or compounds with neuroprotective capacity. According to this chemical diversity, they have emerged as protagonists in the search for therapeutic alternatives to neurodegenerative diseases like Alzheimer, and make them privileged multitarget compounds. In this research, we tested the effect of an ethanolic Zanthoxylum martinicense root’s extract on the expression of astrocytic proteins responsible for glutamate reuptake in the synaptic cleft. Additionally, because previous research in our lab demonstrated an LXRβ agonist activity of the extract, we evaluate the change in additional proteins related to AD. By using immunology tools and total protein quantification procedures, we probed changes in the expression of LRP, APOE (with a main role in the Aβ homeostasis in the central nervous system) and for the astrocytic glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2), in cultures of U87-MG cell line used as an astrocytic model, and in an in-vivo model of 3xTg-AD mice that were treated with the Zanthoxylum martinicense extract. Our results show that the treatment with this extract has a dose-dependent effect in the upregulation of the above-mentioned proteins, except LRP. The APOE, GLT1, and GLAST upregulation has a potential neuroprotective effect, due to their potential increased in Aβ removal and increased reuptake of synaptic glutamate, therefore avoiding excitotoxicity. We speculate that these effects are a constitutive part of the molecular substrate that supports the spatial memory recovery of 3xTg-AD treated with the extract.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Neurocienciasspa
dc.description.researchareaMuerte Celularspa
dc.description.researchareaAlzheimerspa
dc.description.researchareaextractos vegetalesspa
dc.description.researchareaastrocitosspa
dc.description.researchareaexcitotoxicidadspa
dc.description.researchareaglutamatospa
dc.format.extentxxii, 98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84372
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.referencesAlmad, A., & Maragakis, N. J. (2018). A stocked toolbox for understanding the role of astrocytes in disease. In Nature Reviews Neurology (Vol. 14, Issue 6, pp. 351–362). Nature Publishing Group. https://doi.org/10.1038/s41582-018-0010-2spa
dc.relation.referencesAlmad, A., & Maragakis, N. J. (2018). A stocked toolbox for understanding the role of astrocytes in disease. In Nature Reviews Neurology (Vol. 14, Issue 6, pp. 351–362). Nature Publishing Group. https://doi.org/10.1038/s41582-018-0010-2spa
dc.relation.referencesBáez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research 2018 33:3, 33(3), 569–579. https://doi.org/10.1007/S12640-017-9845-3spa
dc.relation.referencesBen Haim, L., & Rowitch, D. H. (2016). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience 2016 18:1, 18(1), 31–41. https://doi.org/10.1038/nrn.2016.159spa
dc.relation.referencesBenarroch, E. E. (2010). Glutamate transporters. Neurology, 74(3), 259–264. https://doi.org/10.1212/WNL.0B013E3181CC89E3spa
dc.relation.referencesBezprozvanny, I., & Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends in Neurosciences, 31(9), 454–463. https://doi.org/10.1016/J.TINS.2008.06.005spa
dc.relation.referencesBustos-Rangel, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer [Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80277spa
dc.relation.referencesEmonard, H., Théret, L., Bennasroune, A. H., & Dedieu, S. (2014). Regulation of LRP-1 expression: make the point. Pathologie-Biologie, 62(2), 84–90. https://doi.org/10.1016/J.PATBIO.2014.02.002spa
dc.relation.referencesEsposito, Z., Belli, L., Toniolo, S., Sancesario, G., Bianconi, C., & Martorana, A. (2013). Amyloid β, Glutamate, Excitotoxicity in Alzheimer’s Disease: Are We on the Right Track? CNS Neuroscience & Therapeutics, 19(8), 549. https://doi.org/10.1111/CNS.12095spa
dc.relation.referencesFontana, A. C. K. (2015). Current approaches to enhance glutamate transporter function and expression. Journal of Neurochemistry, 134(6), 982–1007. https://doi.org/10.1111/JNC.13200spa
dc.relation.referencesGalland, F., Seady, M., Taday, J., Smaili, S. S., Gonçalves, C. A., & Leite, M. C. (2019). Astrocyte culture models: Molecular and function characterization of primary culture, immortalized astrocytes and C6 glioma cells. Neurochemistry International, 131, 104538. https://doi.org/10.1016/j.neuint.2019.104538spa
dc.relation.referencesGo, G. W., & Mani, A. (2012). Low-Density Lipoprotein Receptor (LDLR) Family OrchestratesCholesterol Homeostasis. The Yale Journal of Biology and Medicine, 85(1), 19. /pmc/articles/PMC3313535/spa
dc.relation.referencesGonzález-Reyes, R., Nava-Mesa, M., Ariza-Salamanca, D., Mora-Muñoz, L., & Vargas-Sánchez, K. (2017). Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Frontiers in Molecular Neuroscience, 10. https://doi.org/10.3389/fnmol.2017.00427spa
dc.relation.referencesHiebl, V., Ladurner, A., Latkolik, S., & Dirsch, V. M. (2018). Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnology Advances, 36(6), 1657–1698. https://doi.org/10.1016/J.BIOTECHADV.2018.03.003spa
dc.relation.referencesHodson, R. (2018). Alzheimer’s disease. Nature, 559(7715), S1. https://doi.org/10.1038/D41586-018-05717-6spa
dc.relation.referencesHong, D. Y., Lee, D. H., Lee, J. Y., Lee, E. C., Park, S. W., Lee, M. R., & Oh, J. S. (2022). Relationship between Brain Metabolic Disorders and Cognitive Impairment: LDL Receptor Defect. International Journal of Molecular Sciences, 23(15). https://doi.org/10.3390/IJMS23158384spa
dc.relation.referencesJeremic, D., Jiménez-Díaz, L., & Navarro-López, J. D. (2021). Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Research Reviews, 72. https://doi.org/10.1016/J.ARR.2021.101496spa
dc.relation.referencesJonathan, M. C., Adrián, S. H., & Gonzalo, A. (2021). Type II nuclear receptors with potential role in Alzheimer disease. Molecular Aspects of Medicine, 100940. https://doi.org/10.1016/j.mam.2020.100940spa
dc.relation.referencesLee, H. G., Wheeler, M. A., & Quintana, F. J. (2022). Function and therapeutic value of astrocytes in neurological diseases. Nature Reviews. Drug Discovery, 21(5), 339. https://doi.org/10.1038/S41573-022-00390-Xspa
dc.relation.referencesLeik, C. E., Carson, N. L., Hennan, J. K., Basso, M. D., Liu, Q. Y., Crandall, D. L., & Nambi, P. (2007). GW3965, a synthetic liver X receptor (LXR) agonist, reduces angiotensin II-mediated pressor responses in Sprague–Dawley rats. British Journal of Pharmacology, 151(4), 450. https://doi.org/10.1038/SJ.BJP.0707241spa
dc.relation.referencesLemberg, A., & Fernández, M. A. (2009). Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Annals of Hepatology, 8(2), 95–102. https://doi.org/10.1016/S1665-2681(19)31785-5spa
dc.relation.referencesLi, C., Zhao, R., Gao, K., Wei, Z., Yaoyao Yin, M., Ting Lau, L., Chui, D., & Cheung Hoi Yu, A. (2011). Astrocytes: Implications for Neuroinflammatory Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 8(1), 67–80. https://doi.org/10.2174/156720511794604543spa
dc.relation.referencesLi, Z., Shue, F., Zhao, N., Shinohara, M., & Bu, G. (2020). APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease. Molecular Neurodegeneration, 15(1). https://doi.org/10.1186/S13024-020-00413-4spa
dc.relation.referencesLiao, F., Yoon, H., & Kim, J. (2017). Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Current Opinion in Lipidology, 28(1), 60. https://doi.org/10.1097/MOL.0000000000000383spa
dc.relation.referencesMaragakis, N. J., & Rothstein, J. D. (2006). Mechanisms of Disease: Astrocytes in neurodegenerative disease. In Nature Clinical Practice Neurology (Vol. 2, Issue 12, pp. 679–689). Nat Clin Pract Neurol. https://doi.org/10.1038/ncpneuro0355spa
dc.relation.referencesMatias, I., Morgado, J., & Gomes, F. C. A. (2019). Astrocyte Heterogeneity: Impact to Brain Aging and Disease. In Frontiers in Aging Neuroscience (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fnagi.2019.00059spa
dc.relation.referencesMcConnell, H. L., & Mishra, A. (2022). Cells of the Blood-brain Barrier: an Overview of the Neurovascular Unit in Health and Disease. Methods in Molecular Biology (Clifton, N.J.), 2492, 3. https://doi.org/10.1007/978-1-0716-2289-6_1spa
dc.relation.referencesMuñoz-Cabrera, J. M. (2015). Efecto del Bexaroteno sobre la plasticidad en la sinapsis comisural CA3-CA1 en un modelo murino de enfermedad de Alzheimer. Universidad Nacional de Colombiaspa
dc.relation.referencesMuñoz-Cabrera, J. M., Sandoval-Hernández, A. G., Niño, A., Báez, T., Bustos-Rangel, A., Cardona-Gómez, G. P., Múnera, A., & Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLOS ONE, 14(10), e0223578. https://doi.org/10.1371/JOURNAL.PONE.0223578spa
dc.relation.referencesNamjoshi, D. R., Martin, G., Donkin, J., Wilkinson, A., Stukas, S., Fan, J., Carr, M., Tabarestani, S., Wuerth, K., Hancock, R. E. W., & Wellington, C. L. (2013). The Liver X Receptor Agonist GW3965 Improves Recovery from Mild Repetitive Traumatic Brain Injury in Mice Partly through Apolipoprotein E. PLOS ONE, 8(1), e53529. https://doi.org/10.1371/JOURNAL.PONE.0053529spa
dc.relation.referencesPajarillo, E., Rizor, A., Lee, J., Aschner, M., & Lee, E. (2019a). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 161, 107559. https://doi.org/10.1016/j.neuropharm.2019.03.002spa
dc.relation.referencesPajarillo, E., Rizor, A., Lee, J., Aschner, M., & Lee, E. (2019b). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 161. https://doi.org/10.1016/j.neuropharm.2019.03.002spa
dc.relation.referencesPark, S. H., Lee, J. Y., Jhee, K. H., & Yang, S. A. (2020). Amyloid-ß peptides inhibit the expression of AQP4 and glutamate transporter EAAC1 in insulin-treated C6 glioma cells. Toxicology Reports, 7, 1083–1089. https://doi.org/10.1016/j.toxrep.2020.08.032spa
dc.relation.referencesPeng, M., Ling, X., Song, R., Gao, X., Liang, Z., Fang, F., & Cang, J. (2019). Upregulation of GLT-1 via PI3K/Akt Pathway Contributes to Neuroprotection Induced by Dexmedetomidine. Frontiers in Neurology, 10(SEP). https://doi.org/10.3389/FNEUR.2019.01041spa
dc.relation.referencesPérez Silva, A. (2023). Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/83985spa
dc.relation.referencesPrada, S. I., Takeuchi, Y., & Ariza, Y. (2014). Costo monetario del tratamiento de la enfermedad de Alzheimer en Colombia Monetary cost of treatment for Alzheimer’s disease in Colombia Artículo original. Acta Neurol Colomb, 30(4), 247–255.spa
dc.relation.referencesRebec, G. V. (2013). Dysregulation of Corticostriatal Ascorbate Release and Glutamate Uptake in Transgenic Models of Huntington’s Disease. Antioxidants & Redox Signaling, 19(17), 2115. https://doi.org/10.1089/ARS.2013.5387spa
dc.relation.referencesRezaee, N., Fernando, W. M. A. D. B., Hone, E., Sohrabi, H. R., Johnson, S. K., Gunzburg, S., & Martins, R. N. (2021). Potential of Sorghum Polyphenols to Prevent and Treat Alzheimer’s Disease: A Review Article. Frontiers in Aging Neuroscience, 13, 603. https://doi.org/10.3389/FNAGI.2021.729949/BIBTEXspa
dc.relation.referencesRodríguez-Arellano, J. J., Parpura, V., Zorec, R., & Verkhratsky, A. (2016). Astrocytes in physiological aging and Alzheimer’s disease. In Neuroscience (Vol. 323, pp. 170–182). Elsevier Ltd. https://doi.org/10.1016/j.neuroscience.2015.01.007spa
dc.relation.referencesRodríguez-Giraldo, M., González-Reyes, R. E., Ramírez-Guerrero, S., Bonilla-Trilleras, C. E., Guardo-Maya, S., & Nava-Mesa, M. O. (2022). Astrocytes as a Therapeutic Target in Alzheimer’s Disease–Comprehensive Review and Recent Developments. International Journal of Molecular Sciences 2022, Vol. 23, Page 13630, 23(21), 13630. https://doi.org/10.3390/IJMS232113630spa
dc.relation.referencesSahng, W. P., Moon, Y. A., & Horton, J. D. (2004). Post-transcriptional Regulation of Low Density Lipoprotein Receptor Protein by Proprotein Convertase Subtilisin/Kexin Type 9a in Mouse Liver. Journal of Biological Chemistry, 279(48), 50630–50638. https://doi.org/10.1074/JBC.M410077200spa
dc.relation.referencesSandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 10(12), e0145467. https://doi.org/10.1371/JOURNAL.PONE.0145467spa
dc.relation.referencesSandoval-Hernández, A. G., Restrepo, A., Cardona-Gómez, G. P., & Arboleda, G. (2016). LXR activation protects hippocampal microvasculature in very old triple transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 621, 15–21. https://doi.org/10.1016/J.NEULET.2016.04.007spa
dc.relation.referencesSimpson, J. E., Ince, P. G., Lace, G., Forster, G., Shaw, P. J., Matthews, F., Savva, G., Brayne, C., & Wharton, S. B. (2010). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31(4), 578–590. https://doi.org/10.1016/J.NEUROBIOLAGING.2008.05.015spa
dc.relation.referencesSofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. In Acta Neuropathologica (Vol. 119, Issue 1, pp. 7–35). Acta Neuropathol. https://doi.org/10.1007/s00401-009-0619-8spa
dc.relation.referencesSoni, N., Reddy, B. V. K., & Kumar, P. (2014). GLT-1 transporter: An effective pharmacological target for various neurological disorders. Pharmacology Biochemistry and Behavior, 127, 70–81. https://doi.org/10.1016/j.pbb.2014.10.001spa
dc.relation.referencesVerkhratsky, A., Olabarria, M., Noristani, H. N., Yeh, C. Y., & Rodriguez, J. J. (2010). Astrocytes in Alzheimer’s Disease. Neurotherapeutics, 7(4), 399–412. https://doi.org/10.1016/j.nurt.2010.05.017spa
dc.relation.referencesvon Bartheld, C. S., Bahney, J., & Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. Journal of Comparative Neurology, 524(18), 3865–3895. https://doi.org/10.1002/CNE.24040spa
dc.relation.referencesWood, O. W. G., Yeung, J. H. Y., Faull, R. L. M., & Kwakowsky, A. (2022). EAAT2 as a therapeutic research target in Alzheimer’s disease: A systematic review. Frontiers in Neuroscience, 16, 952096. https://doi.org/10.3389/fnins.2022.952096spa
dc.relation.referencesZhang, X., Lao, K., Qiu, Z., Rahman, M. S., Zhang, Y., & Gou, X. (2019). Potential Astrocytic Receptors and Transporters in the Pathogenesis of Alzheimer’s Disease. Journal of Alzheimer’s Disease : JAD, 67(4), 1109–1122. https://doi.org/10.3233/JAD-181084spa
dc.relation.referencesRuiz González, J. (2021). Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer. Universidad Nacional de Colombiaspa
dc.relation.referencesCaicedo Díaz, J. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. Universidad Nacional de Colombia.spa
dc.relation.referencesPrillaman, M. (2022). Alzheimer's drug slows mental decline in trial-but is it a breakthrough?. Naturespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.ddc580 - Plantas::582 - Plantas destacadas por características vegetativas y floresspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsMedicina alternativaspa
dc.subject.lembAlternative medicineeng
dc.subject.lembNeuropatíaspa
dc.subject.lembNeuropathyeng
dc.subject.lembMedicinal planteng
dc.subject.lembPlantas medicinalesspa
dc.subject.proposalAlzheimerspa
dc.subject.proposalZanthoxylum martinicensespa
dc.subject.proposalApoEspa
dc.subject.proposalGLT-1spa
dc.subject.proposalGLT1spa
dc.subject.proposalGLASTspa
dc.subject.proposalAstrocitosspa
dc.subject.proposalExcitotoxicidadspa
dc.subject.proposalGlutamatospa
dc.subject.proposalTransportadoresspa
dc.subject.proposalAlzheimereng
dc.subject.proposalZanthoxylum martinicenseeng
dc.subject.proposalApoEeng
dc.subject.proposalGLT-1eng
dc.subject.proposalGLT1eng
dc.subject.proposalGLASTeng
dc.subject.proposalAstrocyteseng
dc.subject.proposalExcitotoxicityeng
dc.subject.proposalGlutamateeng
dc.subject.proposalTransporterseng
dc.titleEvaluación del efecto del extracto de zanthoxylum martinicense sobre la expresión de apoe, lrp, glast y glt-1 en modelo de astrocitos y en ratones 3x tg-adspa
dc.title.translatedEvaluation of the effect of Zanthoxylum martinicense extract over the expression of ApoE, LRP, GLAST y GLT-1 in an astrocyte model and 3x Tg-AD miceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBioprospección del potencial terapéutico de extractos vegetales de las familias laurácea y rutácea asociados a la actividad farmacológica de LXR en un modelo murino de enfermedad de Alzheimer y análisis computacionalspa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71786951.2023.pdf
Tamaño:
2.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Neurociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: