Dispositivo para aplicación inteligente de fertirriego en cultivos de arándanos
dc.contributor.advisor | Rodrigo Leiva, Fabio | spa |
dc.contributor.author | Murcia Sanchez, Oscar Felipe | spa |
dc.date.accessioned | 2025-02-28T12:41:46Z | |
dc.date.available | 2025-02-28T12:41:46Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | En busca de profundizar en un proyecto bajo la concepción de industria 4.0 se enfocó la investigación en la instrumentación industrial “sensores, actuadores, hardware, software” bajo la estructura jerárquica de automatización, teniendo como prioridad en el desarrollo el establecimiento de una comunicación remota con un dispositivo para la aplicación inteligente de fertirriego en cultivos de arándanos; esto es, la aplicación de esta técnica con información digitalizada en una interfaz Android como tecnología IT “tecnologías de la información”. El objetivo general del proyecto fue desarrollar un dispositivo inteligente de fertirriego en cultivos de arándanos, consiste en un microcontrolador dspic33ck128mp202 que se comunica por vía bluetooth con un smartphone, en donde se ejecuta por medio de una aplicación Android la vinculación entre el dispositivo y el usuario, mediante una interfaz cliente servidor usando FireBase; el dispositivo hace consultas a la base de datos no relacional ubicada en Estados Unidos brindada por Google, que mide en tiempo real los valores de las variables ambientales en la tabla asociada a cada una y consulta el estatus de las tablas vinculadas a los actuadores, y por último, actualiza las salidas de cada actuador. El dispositivo al ser capaz de comunicarse con el usuario a través de FireBase como proveedor de bases de datos en tiempo real, facilita la gestión del cultivo, lo cual conlleva a una producción más eficiente, sostenible y precisa del riego, y por tanto de sistemas productivos que requieren mayor tecnificación (Texto tomado de la fuente). | spa |
dc.description.abstract | In an effort to deepen a project under the concept of Industry 4.0, the research focused on industrial instrumentation—"sensors, actuators, hardware, software"—within the hierarchical automation structure. The primary development goal was to establish remote communication with a device for the intelligent application of fertigation in blueberry crops. This involves the application of this technique using digitized information through an Android interface as an IT (Information Technology) solution. The main objective of the project was to develop an intelligent fertigation device for blueberry crops. It consists of a dsPIC33CK128MP202 microcontroller that communicates via Bluetooth with a smartphone, where an Android application enables the connection between the device and the user through a client server interface using Firebase. The device queries the non-relational database, hosted in the United States and provided by Google, measuring in real-time the values of environmental variables in their respective tables. It also checks the status of the tables linked to the actuators and finally updates the outputs of each actuator. By being able to communicate with the user through Firebase as a real-time database provider, the device facilitates crop management, leading to a more efficient, sustainable, and precise irrigation process, and consequently, to more technologically advanced production systems. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería electrónica | spa |
dc.description.methods | La metodología del proyecto tuvo en cuenta lo planteado en el libro (A guide to the automation body of knowledge) de ISA “sociedad internacional de automatización” organización global que establece normas seguras, eficientes y confiables para el cumplimento de normativas especificas en el sector industrial. En él se habla sobre instrumentos inteligentes, definiéndolos como instrumentos basados en un microprocesador programable con memoria capaz de intercambiar información mediante protocolos de comunicación a una locación remota (ISA, 2017, 16). Esta guía contempla el flujo del proyecto en 6 fases: estudio de factibilidad, definición del proyecto, diseño del sistema, software, despliegue y soporte. Véase en la figura 36-3 del libro (ISA, 2017, 446). A continuación, se presenta un listado que contiene los aspectos importantes tomados de la guía desarrollada por ISA que contribuyen a la automatización de procesos. | spa |
dc.description.researcharea | Dispositivos IoT | spa |
dc.format.extent | 58 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87565 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica | spa |
dc.relation.references | Abderahman Rejeb, Karim Rejeb, Alireza Abdollahi, Fadi Al-Turjman, Horst Treiblmaier, The Interplay between the Internet of Things and agriculture: A bibliometric analysis and research agenda, Internet of Things, Volume 19, 2022, 100580, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2022.100580. | spa |
dc.relation.references | Akhie, A. A., & Joksimovic, D. (2023). Monitoring of a Productive Blue-Green Roof Using Low-Cost Sensors. Sensors, 23(24). https://doi.org/10.3390/s23249788 | spa |
dc.relation.references | B. Patil & Z. Shelby (2015). IPv6 over BLUETOOTH(R) Low Energy. Universitat Politecnica de Catalunya. ISSN: 2070-1721. Disponible en: RFC 7668: IPv6 over BLUETOOTH(R) Low Energy (rfc-editor.org) | spa |
dc.relation.references | Beltrán Huertas, D. C. (2023). Evaluación de un sistema Smart Sensors de bajo costo para el monitoreo de la escorrentía superficial. Universidad Nacional de Colombia.1010209903.2024.pdf | spa |
dc.relation.references | Biglari, A., & Tang, W. (2023). A Review of Embedded Machine Learning Based on Hardware, Application, and Sensing Scheme. Sensors, 23(4). https://doi.org/10.3390/s23042131 | spa |
dc.relation.references | Borrero, J. D., & Mariscal, J. (2022). A case study of a digital data platform for the agricultural sector: A valuable decision support system for small farmers. Agriculture, 17, 1–15. https://doi.org/10.3390/agriculture12060767 | spa |
dc.relation.references | Cimino, A., Grazia Gnoni, M., Longo, F., & Solina, V. (2023). Integrating multiple industry 4.0 approaches and tools in an interoperable platform for manufacturing SMEs. Computers and Industrial Engineering, 186. https://doi.org/10.1016/j.cie.2023.109732 | spa |
dc.relation.references | Cuarán Cuarán, S. W. (2021). Sistema de Internet de las Cosas (IoT) de bajo costo con JavaScript y ESP8266. Universidad Nacional de Colombia. 1085919198.2021.pdf | spa |
dc.relation.references | Dahnil, D. P., Hood, Z., Adam, A., Razak, M. Z. A., & Ismail, A. G. (2021). Drip Irrigation Detection for Power Outage-Prone Areas with Internet-of-Things Smart Fertigation Managemant System. International Journal of Advanced Computer Science and Applications, 12(7), 745–755. https://doi.org/10.14569/IJACSA.2021.0120785 | spa |
dc.relation.references | Defense advanced research projects agency information processing techniques (1981). Internet Protocol Darpa Internet Program Protocol Specification. Information sciences institute university of southern California. Disponible en: RFC 791: Internet Protocol (rfc editor.org) | spa |
dc.relation.references | Defense advanced research projects agency information processing techniques (1981). Transmission Control Protocol Darpa Internet Program Protocol Specification. Disponible en: RFC 793: Transmission Control Protocol (rfc-editor.org)F | spa |
dc.relation.references | Delbaz, R., Ebrahimian, H., Abbasi, F., Ghameshlou, A. N., Liaghat, A., & Ranazadeh, D. (2023). A global meta-analysis on surface and drip fertigation for annual crops under different fertilization levels. Agricultural https://doi.org/10.1016/j.agwat.2023.108504 | spa |
dc.relation.references | Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture (Switzerland), 12(10). https://doi.org/10.3390/agriculture12101745 | spa |
dc.relation.references | Diamond, J. (1998). Guns, germs and steel. Vintage. | spa |
dc.relation.references | Dimitrijević, M. S. (2023). Technological progress in the function of productivity and sustainability of agriculture: The case of innovative countries and the Republic of Serbia. Journal of Agriculture and Food Research, 14. https://doi.org/10.1016/j.jafr.2023.100856 | spa |
dc.relation.references | Elsa T. Berthet, Gordon M. Hickey, Laurens Klerkx, Opening design and innovation processes in agriculture: Insights from design and management sciences and future directions, Agricultural Systems, Volume 165, 2018, ISSN 0308-521X, https://doi.org/10.1016/j.agsy.2018.06.004. | spa |
dc.relation.references | Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. Journal of Sensor and Actuator Networks, 13(4). https://doi.org/10.3390/jsan13040039 | spa |
dc.relation.references | Giraldo, R. A. D., de León, M. Á., Castillo, Á. R., López, O. P., Rocha, E. C., & Asprilla, W. P. (2023). Estimation of forage availability and parameters associated with the nutritional quality of Urochloa humidicola cv Llanero based on multispectral images | Estimación de la disponibilidad de forraje y de parámetros asociados a la calidad nutricional del pa. Tropical Grasslands-Forrajes Tropicales, 11(1), 61–74. https://doi.org/10.17138/tgft(11)61-74 | spa |
dc.relation.references | Hadj Abdelkader, O., Bouzebiba, H., Pena, D., & Aguiar, A. P. (2023). Energy-Efficient IoT-Based Light Control System in Smart Indoor Agriculture. Sensors, 23(18). https://doi.org/10.3390/s23187670 | spa |
dc.relation.references | IETF. (2018). RFC 8376: Low-Power Wide Area Network (LPWAN) Overview. RFC Editor. https://www.rfc-editor.org/rfc/rfc8376 | spa |
dc.relation.references | ISA CAP. (Ed.). (2017). A Guide to the Automation Body of Knowledge. CRC Press. | spa |
dc.relation.references | Izahar, N. A. Z., Derahman, M. N., Mohamed, M. A., & Sitanggang, I. S. (2023). Smart fertigation system with mobile application and fuzzy logic optimization. International Journal of Advanced Technology and Engineering Exploration, 10(109), 1580–1603. https://doi.org/10.19101/IJATEE.2023.10102045 | spa |
dc.relation.references | J. Poste (1980). User Datagram Protocol. ISI. Disponible en: RFC 768: User Datagram Protocol (rfc-editor.org) | spa |
dc.relation.references | Jani, K. A., & Chaubey, N. K. (2023). SDIPMIoT: Smart Drip Irrigation and Preventative Maintenance using IoT. SSRG International Journal of Electrical and Electronics Engineering, 10(7), 22–30. https://doi.org/10.14445/23488379/IJEEE-V10I7P102 | spa |
dc.relation.references | K. Hartke & C. Bormann (2014). The Constrained Application Protocol (CoAP).Universitaet Bremen TZI. ISSN: 2070-1721. Disponible en: https://www.rfc editor.org/rfc/rfc7252 | spa |
dc.relation.references | Kunrath, T. L., Dresch, A., & Veit, D. R. (2023). Supply chain management and industry 4.0: A theoretical approach. Brazilian Journal of Operations and Production Management, 20(1). https://doi.org/10.14488/BJOPM.1263.2023 | spa |
dc.relation.references | Lin N, Wang X, Zhang Y, Hu X, Ruan J. Fertigation management for sustainable precision agriculture based on Internet of Things. Journal of Cleaner Production 2020;277:124119. https://doi.org/10.1016/j.jclepro.2020.124119 | spa |
dc.relation.references | Lu, Y., Liu, M., Li, C., Liu, X., Cao, C., Li, X., & Kan, Z. (2022). Precision Fertilization and Irrigation: Progress and Applications. AgriEngineering, 4(3), 626–655. https://doi.org/10.3390/agriengineering4030041 | spa |
dc.relation.references | Lu, Y.-X., Wang, S.-T., Yao, G.-X., & Xu, J. (2023). Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices. Agriculture (Switzerland), 13(10). https://doi.org/10.3390/agriculture13102021 | spa |
dc.relation.references | Microchip Technology Inc. (2022). dsPIC33CK128MP202 Datasheet [Documento técnico]. Recuperado de [dsPIC33CK128MP202 | Microchip Technology].. | spa |
dc.relation.references | Osrof, H. Y., Tan, C. L., Angappa, G., Yeo, S. F., & Tan, K. H. (2023). Adoption of smart farming technologies in field operations: A systematic review and future research agenda. Technology in Society, 75. https://doi.org/10.1016/j.techsoc.2023.102400 | spa |
dc.relation.references | Quintero, J. H. (2021). Sistema para el manejo de datos climáticos de pequeñas producciones agrícolas bajo invernadero y el manejo de imágenes satelitales (Tesis de maestría). Universidad Nacional de Colombia. 1015994669.2021.pdf | spa |
dc.relation.references | Quy, V. K., Hau, N. V., Anh, D. V., Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences (Switzerland), 12(7). https://doi.org/10.3390/app12073396 | spa |
dc.relation.references | Restrepo Arias, J. F. (2023). Método de Clasificación de Imágenes, Empleando Técnicas de Inteligencia Artificial, Integrado a una Plataforma IoT de Agricultura Inteligente. Universidad Nacional de Colombia. 71756752.2023.pdf | spa |
dc.relation.references | S. Deering & R Hinden. (1998). Internet Protocol Version 6 (IPv6) Specification. Cisco & Nokia. Disponible en: RFC 2460: Internet Protocol, Version 6 (IPv6) Specification (rfc editor.org) | spa |
dc.relation.references | San Emeterio de la Parte, M., Martínez-Ortega, J.-F., Hernández Díaz, V., & Martínez, N. L. (2023). Big Data and precision agriculture: a novel spatio-temporal semantic IoT data management framework for improved interoperability. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-023-00729-0 | spa |
dc.relation.references | Sjaak Wolfert, Cor Verdouw, Lan van Wassenaer, Wilfred Dolfsma, Laurens Klerkx, Digital innovation ecosystems in agri-food: design principles and organizational framework, Agricultural Systems, Volume 204, 2023, 103558, ISSN 0308-521X, https://doi.org/10.1016/j.agsy.2022.103558. | spa |
dc.relation.references | Sustainable Agriculture. Agriculture 12(10): 1745. https://doi.org/10.3390/agriculture12101745. | spa |
dc.relation.references | T. Berners-le & R. Fieldin (1996). Hypertext Transfer Protocol – HTTP/1.0. H. Frystyk. Disponible en: RFC 1945: Hypertext Transfer Protocol -- HTTP/1.0 (rfc-editor.org) | spa |
dc.relation.references | Tummers, J., Kassahun, A., & Tekinerdogan, B. (2021). Reference architecture design for farm management information systems: a multi-case study approach. Precision Agriculture, 22(1), 22–50. https://doi.org/10.1007/s11119-020-09728-0 | spa |
dc.relation.references | . Vinay Surendra Yadav, A.R. Singh, Rakesh D. Raut, Sachin Kumar Mangla, Sunil Luthra, Anil Kumar, Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review, Computers & Industrial Engineering, Volume 169, 2022, 108304, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2022.108304 | spa |
dc.relation.references | Zhang, X., Li, S., An, X., Song, Z., Zhu, Y., Tan, Y., Guo, X., & Wang, D. (2023). Effects of nitrogen, phosphorus and potassium formula fertilization on the yield and berry quality of blueberry. PLoS ONE, 18(3 March). https://doi.org/10.1371/journal.pone.0283137 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 004.6782 | spa |
dc.subject.ddc | 006.31 | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) | spa |
dc.subject.ddc | 635.977393 | spa |
dc.subject.lemb | RIEGO-PROCESAMIENTO DE DATOS | spa |
dc.subject.lemb | Irrigation - data processing | eng |
dc.subject.lemb | ARANDANOS | spa |
dc.subject.lemb | Blueberries | eng |
dc.subject.lemb | ARBOLES FRUTALES-RIEGO | spa |
dc.subject.lemb | Fruit trees - Irrigation | eng |
dc.subject.proposal | Interfaz | spa |
dc.subject.proposal | Android | spa |
dc.subject.proposal | Codificar | spa |
dc.subject.proposal | Decodificar | spa |
dc.subject.proposal | FireBase | spa |
dc.subject.proposal | Interface | eng |
dc.subject.proposal | Android | eng |
dc.subject.proposal | Encode | eng |
dc.subject.proposal | Decode | eng |
dc.subject.wikidata | Internet de las cosas | spa |
dc.subject.wikidata | Internet of things | eng |
dc.subject.wikidata | Implementación de la Industria 4.0 | spa |
dc.subject.wikidata | Implementation of Industry 4.0 | eng |
dc.subject.wikidata | Actuadores | spa |
dc.subject.wikidata | Actuators | eng |
dc.subject.wikidata | Sensores | spa |
dc.subject.wikidata | Sensors | eng |
dc.subject.wikidata | Automatización | spa |
dc.subject.wikidata | Automation | eng |
dc.title | Dispositivo para aplicación inteligente de fertirriego en cultivos de arándanos | spa |
dc.title.translated | Device for fertigation application in blueberry crops | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014266207.2025.pdf
- Tamaño:
- 1.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de maestría en Ingeniería electrónica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: