Estimación del consumo voluntario y digestibilidad de la materia orgánica en ovinos mediante el análisis fecal por espectroscopia de reflectancia infrarroja cercana

dc.contributor.advisorAriza Nieto, Claudia Janeth
dc.contributor.authorParra Forero, Diana Marcela
dc.contributor.financerMinisterio de Agricultura y Desarrollo Rural
dc.contributor.researchgroupMicrobiología y Nutrición Animal del Trópicospa
dc.date.accessioned2022-06-09T14:52:45Z
dc.date.available2022-06-09T14:52:45Z
dc.date.issued2022
dc.descriptionilustraciones, tablasspa
dc.description.abstractLa digestibilidad y el consumo son dos de los principales parámetros que definen la calidad de un forraje, sin embargo, estos parámetros son difíciles y costosos de estimar. La tecnología NIRS aplicada a las heces (NIRSf) puede ser una alternativa rápida y económica para predecir la digestibilidad y el consumo voluntario en ovinos con suficiente precisión. El objetivo de este trabajo fue calibrar ecuaciones NIRSf para predicción de digestibilidad y consumo voluntario de ovinos. Los bioensayos para evaluar seis regímenes alimenticios: Kikuyo; Ryegrass; Kikuyo+Angleton; Kikuyo+Alfalfa; Kikuyo+Tilo; Kikuyo+Ensilaje de maíz, emplearon cinco ovinos en confinamiento durante seis días de medición. Se utilizaron métodos gravimétricos, uso de marcadores interno (FDNi) y externo (Cr2O3) y análisis por espectroscopia para estimar los parámetros evaluados. El forraje ofrecido, rechazado y la excreción fecal fueron pesados y colectados diariamente. Las muestras secas, molidas y tamizadas a 1 mm fueron escaneadas en el segmento espectral 400-2500 nm. Las lecturas fecales se obtuvieron del promedio de cada animal para cada régimen alimenticio evaluado. El análisis quimiométrico se realizó por el método de mínimos cuadrados parciales modificados, a los espectros se les aplicó pretratamientos matemáticos usando la primera y segunda derivada. Las calibraciones se evaluaron por medio del coeficiente de determinación en la validación cruzada (R2 ), el error estándar de la validación cruzada (SECV) y la desviación predictiva residual (RPD). Se obtuvieron promedios por el método gravimétrico para DMS de 51.5 %, DMO de 53.6%, CVMS de 1.3 kg/d y CVMO de 1.07 kg/d. Se lograron mejores calibraciones para DMS y DMO fue cuando se utilizó como método de referencia el marcador interno FDNi con la segunda derivada (2.4.4.1) y el segmento Vis+NIR con R2 0.67 y 0.71, RPD 1.78 y 1.89, respectivamente. Los mejores modelos predictivos para CVMS y CVMO expresado en kilogramos por día fue cuando se utilizó como referencia el método de marcadores con el tratamiento matemático (2.8.8.1) y el segmento NIR con R2 0.84 y 0.84, RPD 2.58 y 2.52, respectivamente, mientras que para CVMS y CVMO ajustado por el peso metabólico fue cuando se utilizó como referencia el método gravimétrico con el tratamiento matemático (2.8.8.1) y el segmento NIR con R2 0.77 y 0.78, RPD 2.11 y 2.16, respectivamente. Se concluye que el uso de NIRSf tiene potencial para la predicción de la digestibilidad y el consumo en ovinos en confinamiento, que a futuro se puede convertir en una herramienta que pueda facilitar el manejo nutricional de rumiantes en Colombia. (Texto tomado de la fuente)spa
dc.description.abstractDigestibility and voluntary intake are two of the main parameters that define the quality of a forage, however, these parameters are difficult and expensive to estimate. NIRS technology applied to feces (F-NIRS) can be a fast and cheap alternative to predict digestibility and voluntary intake in sheep with sufficient precision. The objective of this study was to calibrate NIRSf equations for prediction of digestibility and voluntary intake of sheep. Bioassays to evaluate six nutritional regimens: Kikuyu; Ryegrass; Kikuyo+Angleton; Kikuyo+Alfalfa; Kikuyo+Tilo; Kikuyo+corn silage, used five sheep in confinement for six days of measurement. Gravimetric methods, use of internal (iNDF) and external (Cr2O3) markers and spectroscopy analysis were used to estimate the evaluating parameters. Offered and orts forage and fecal excretion were weighed and collected daily. The dried, ground and 1 mm screen samples were scanned in the 400-2500 nm spectral segment. Fecal spectra will be acquired from the average of each animal for each feeding regimen evaluated. The chemometric analysis was performed by the method of partially modified least squares, mathematical pretreatments were applied to the spectra using the first and second derivatives. Calibrations were evaluated using the cross-validation coefficient of determination (R2 ), the cross-validation standard error (SECV), and the residual predictive deviation (RPD). The averages would be increased by the gravimetric method for DMD of 51.5%, OMD of 53.6%, DMVI of 1.3 kg/d and OMVI of 1.07 kg/d. The best calibrations for DMS and OMD were achieved when the internal marker FDNi with the second derivative (2.4.4.1) and the Vis+NIR segment with R2 0.67 and 0.71, RPD 1.78 and 1.89, respectively, were obtained as the reference method. The best predictive models for CVMS and CVMO expressed in kilograms per day was when the marker method was obtained as reference with the mathematical treatment (2.8.8.1) and the NIR segment with R2 0.84 and 0.84, RPD 2.58 and 2.52, respectively, while that for DMVI and OMVI adjusted for metabolic weight was obtained when the gravimetric method with the mathematical treatment (2.8.8.1) and the NIR segment with R2 0.77 and 0.78, RPD 2.11 and 2.16, respectively, were obtained as reference. It is concluded that the use of NIRSf has potential for the prediction of digestibility and consumption in sheep in confinement, which in the future can become a tool that can facilitate the nutritional management of ruminants.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaNutrición Animalspa
dc.format.extent92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81546
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ciencias Para La Producción Animalspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAcamovic, T., Murray, I., & Paterson, R. M. (1992). The use of NIR in predicting chromic oxide in diets. In Murray I. and A.I., eds. Making light work. Advances in near infrared spectroscopy. Ian Michael Publications, pp 250-252.spa
dc.relation.referencesAdesogan, A. T., Givens, D. I., & Owens, E. (2000). Measuring chemical composition and nutritive values in forages. Field and laboratory methods for grassland and animal production research. In CAB International (pp. 263–278).spa
dc.relation.referencesAGROSAVIA. (2017). AlimenTro [Sistema de información].https://Alimentro.Agrosavia.co/spa
dc.relation.referencesAkdağ, A., & Ocak, N. (2019). Herbage Intake Determination Methods of Grazing Animals. Animal Science, 52 (1).spa
dc.relation.referencesAllen, M. S. (1996). Physical constrains on voluntary intake of forages by ruminants. Journal Animal Science, 74, 3063–3075.spa
dc.relation.referencesAllison, C. D. (1985). Factors affecting forage intake by range ruminants: a review. J. Range Manage., 38, 305.spa
dc.relation.referencesAndueza, D., Picard, F., Dozias, D., & Aufrère, J. (2017). Fecal Near-Infrared Reflectance Spectroscopy Prediction of the Feed Value of Temperate Forages for Ruminants and Some Parameters of the Chemical Composition of Feces: Efficiency of Four Calibration Strategies. Applied Spectroscopy, 71(9), 2164–2176. https://doi.org/10.1177/0003702817712740spa
dc.relation.referencesArana, I., Jarén, C., & Arazuri, S. (2005). Maturity, Variety and Origin Determination in White Grapes (Vitis Vinifera L.) Using near Infrared Reflectance Technology. J. Near Infrared Spectrosc., 13(6), 349–357.spa
dc.relation.referencesAriza-Nieto, C., Mayorga, O. L., Mojica, B., Parra, D., & Afanador-Tellez, G. (2018). Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. Journal of Near Infrared Spectroscopy, 26(1), 44–52. https://doi.org/10.1177/0967033517746900spa
dc.relation.referencesArthington, J. D., & Brown, W. F. (2005). Estimation of feeding value of four tropical forage species at two stages of maturity. Journal Animal Science, 83, 1726–1731.spa
dc.relation.referencesAzevedo, E. B., Poli, C. H. E. C., David, D. B., Amaral, G. A., Fonseca, L., Carvalho, P. C. F., Fischer, V., & Morris, S. T. (2014). Use of faecal components as markers to estimate intake and digestibility of grazing sheep. Livestock Science, 165(1), 42–50. https://doi.org/10.1016/j.livsci.2014.04.018spa
dc.relation.referencesBarnicoat, C. R. (1945). Estimation of apparent digestibility coefficients by means of an inert reference-substance. New Zealand Journal of Science and Technology, 27(A), 202– 212.spa
dc.relation.referencesBartiaux-Thill, N., & Oger, R. (1986). The indirect estimation of the digestibility in cattle of herbage from Belgian permanent pasture. Grass Forage Sci, 41, 269–272.spa
dc.relation.referencesBaumont, R., Prache, S., Meuret, M., & Morand-Fehr, P. (2000). How forage characteristics influence behaviour and intake in small ruminants: a review. Livestock Science, 64, 15–28.spa
dc.relation.referencesBender, R. W., Cook, D. E., & Combs, D. K. (2016). Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 hours to quantify the indigestible neutral detergent fiber fraction of corn silage samples. Journal of Dairy Science, 99(7), 5394–5400. https://doi.org/10.3168/jds.2015-10258spa
dc.relation.referencesBettero, V. P., Campos, A. F., Dib, V., del Valle, T. A., Zilio, E. M. C., Teixeira, I. A. M. A., Siqueira, G. R., & Rennó, F. P. (2021). Indigestible neutral detergent fiber evaluation with incubation in different species. Archivos de Zootecnia, 70(269), 14–19. https://doi.org/10.21071/az.v70i269.5413spa
dc.relation.referencesBlaxter, K. L., Graham, N., & Wainman, F. W. (1956). Some observations on the digestibility of food by sheep and on related problems. Br. J. Nutr., 10, 69–91spa
dc.relation.referencesBoval, M., Ortega-Jimenez, E., Fanchone, A., & Alexandre, G. (2010). Diet attributes of lactating ewes at pasture using faecal NIRS and relationship to pasture characteristics and milk production. Journal of Agricultural Science, 148(4), 477–485. https://doi.org/10.1017/S0021859610000298spa
dc.relation.referencesBrogna, N., Palmonari, A., Canestrari, G., Mammi, L., Dal Prà, A., & Formigoni, A. (2018). Technical note: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. Journal of Dairy Science, 101(2), 1234–1239. https://doi.org/10.3168/jds.2017-13319spa
dc.relation.referencesCabral, S., Augusto, J., Azevêdo, G., Santos, D., Gustavo, L., Pereira, R., Almeida, F. M. de, Lins, L., & Lima, R. F. de. (2017). Evaluation of internal markers as determinants of fecal dry matter output and digestibility in feedlot sheep. 3331–3340. https://doi.org/10.5433/1679-0359.2017v38n5p3331spa
dc.relation.referencesCastañeda-Serrano, R. D., Piñeros-Varón, R., & Vélez-Giraldo, A. (2018). Foliage of tropical arboreal species in feeding ovines (Ovis Aries): Intake, digestibility and balance nitrogen. Boletin Cientifico Del Centro de Museos, 22(1), 58–68. https://doi.org/10.17151/bccm.2018.22.1.4spa
dc.relation.referencesChurch, D. C., Pond, W. G., & Pond, K. R. (2002). Fundamentos de nutrición y alimentación de animales.spa
dc.relation.referencesCoates, D. B., & Dixon, R. M. (2011). Developing robust faecal near infrared spectroscopy calibrations to predict diet dry matter digestibility in cattle consuming tropical forages. J. Near Infrared Spectrosc., 19, 507–519.spa
dc.relation.referencesCoates, D. B., & Penning, P. (2000). Measuring animal performance (L. Mannetje & R. M. Jones, Eds.; Mannetje L).spa
dc.relation.referencesColeman, S. W., Christiansen, S., & Shenk, J. S. (1990). Prediction of botanical composition using nIrS calibrations developed from botanically pure samples. Crop Sci., 30, 202.spa
dc.relation.referencesColeman, S. W., Stuth, J. W., & Holloway, J. W. (1989). Monitoring the nutrition of grazing cattle with near-infrared analysis of faeces. XVI International Grassland Congress, Nice, France, 881–882.spa
dc.relation.referencesCompere, R., Valdivia, J., Hellemans, P., Guns, M., & Vandenbyvang, P. (1992). Comparaison de deux methodes utilisant le Cr2O3 pour estimer la quantite de feces emises par les moutons: pellets de luzerne et bolus CAPTEC-CRD. Bull. Rech. Agron., 27, 365–383.spa
dc.relation.referencesCorrea, H. J. (2011). Efecto del manejo del pastoreo y la suplementacion alimenticia en vacas lactantes de sistemas especializados sobre su metabolismo energetico y proteico y el contenido de proteina en la leche.spa
dc.relation.referencesCorrea, H. J., Pabon, M. L., & Carulla, J. E. (2009). Estimación del consumo de materia seca en vacas Holstein bajo pastoreo en el trópico alto de Antioquia Estimation of dry matter intake of lactating Holstein cows under grazing in Antioquia Summary. Livestock Research for Rural Development.spa
dc.relation.referencesCôrtes, C., Damasceno, J. C., Bechet, G., & Prache, s. (2005). Species composition of ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) mixtures using various combinations of n‐alkanes. Grass and Forage Science, 60, 254–261. https://doi.org/10.1111/j.1365-2494.2005.00473.xspa
dc.relation.referencesCottle, D. (2013). The trials and tribulations of estimating the pasture intake of grazing animals. Animal Production Science, 53, 1209. https://doi.org/10.1071/AN13164spa
dc.relation.referencesCozzolino, D., LaMann, A., & VazMartins, D. (2002). Use of near infrared reflectance spectroscopy to analyze bovine faecal samples. J. Near Infrared Spectrosc., 10, 309–314. https://doi.org/doi:10.1255/ jnirs.347spa
dc.relation.referencesDavies, A. M., & Grant, A. (1987). Near infra‐red analysis of food. International Journal of Food Science & Technology, 22(3), 191–207.spa
dc.relation.referencesDavison, C., Bowen, J. M., Michie, C., Rooke, J. A., Jonsson, N., Andonovic, I., Tachtatzis, C., Gilroy, M., & Duthie, C. A. (2021). Predicting feed intake using modelling based on feeding behaviour in finishing beef steers. Animal, 15(7). https://doi.org/10.1016/j.animal.2021.100231spa
dc.relation.referencesde Souza, J., Batistel, F., Welter, K. C., Silva, M. M., Costa, D. F., & Portela Santos, F. A. (2014). Evaluation of external markers to estimate fecal excretion, intake, and digestibility in dairy cows. Tropical Animal Health and Production, 47(1), 265–268. https://doi.org/10.1007/s11250-014-0674-6spa
dc.relation.referencesDecruyenaere, V., Buldgen, A., & Stilmant, D. (2009). Factors affecting intake by grazing ruminants and related quantification methods : a review. Biotechnol. Agron. Soc. Environ., 13(4), 559–573.spa
dc.relation.referencesDecruyenaere, V., Lecomte, P., Demarquilly, C., Aufrere, J., Dardenne, P., Stilmant, D., & Buldgen, A. (2009a). Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Animal Feed Science and Technology, 148(2–4), 138–156. https://doi.org/10.1016/j.anifeedsci.2008.03.007spa
dc.relation.referencesDecruyenaere, V., Lecomte, P., Demarquilly, C., Aufrere, J., Dardenne, P., Stilmant, D., & Buldgen, A. (2009b). Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Animal Feed Science and Technology, 148(2–4), 138–156. https://doi.org/10.1016/j.anifeedsci.2008.03.007spa
dc.relation.referencesDecruyenaere, V., Peters, M., Stilmant, D., Lecomte, P., & Dardenne, P. (2003). Near infrared reflectance spectroscopy applied to faeces to predict dry matter intake of sheep under grazing, comparison with N-alkanes and direct biomass measurement methods. In H.-C. J. & S.-C. C.A. (Eds.), Tropical and Subtropical Agroecosystems: The Sixth International Symposium on the Nutrition of Herbivores: matching herbivore nutrition to ecosystems biodiversity (pp. 471–475). Faculty of Veterinary Medicine & Animal Science Autonomous University of Yucatan, Mexico.spa
dc.relation.referencesDecruyenaere, V., Planchon, V., Dardenne, P., & Stilmant, D. (2015). Prediction error and repeatability of near infrared reflectance spectroscopy applied to faeces samples to predict voluntary intake and digestibility of forages by ruminants. Animal Feed Science and Technology, 205, 49–59. https://doi.org/10.1016/j.anifeedsci.2015.04.011spa
dc.relation.referencesDecruyenaere, V., Visser, M., Stilmant, D., Clément, C., & Sinnaeve, G. (2004). Faecal near infrared reflectance spectroscopy for ruminant feed intake prediction. Grass and Forage Science, 1034, 9.spa
dc.relation.referencesDetmann, E., Gionbelli, M. P., & Huhtanen, P. (2014). A meta-analytical evaluation of the regulation of voluntary intake in cattle fed tropical forage-based diets. Journal Animal Science, 92, 4632–4641. https://doi.org/doi:10.2527/jas2014-7717spa
dc.relation.referencesDixon, R., & Coates, D. (2009). Review: Near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. In Journal of Near Infrared Spectroscopy (Vol. 17, Issue 1, pp. 1–31). https://doi.org/10.1255/jnirs.822spa
dc.relation.referencesDixon, R. M., & Coates, D. B. (2005). The use of faecal NIRS to improve nutritional management of cattle in northern Australia. 15, 65–76.spa
dc.relation.referencesFanchone, A., Boval, M., & Archimède, H. (2007). Faecal indices based on near infrared spectroscopy to assess intake, in vivo digestibility and chemical composition of the herbage ingested by sheep. 113, 107–113. https://doi.org/10.1255/jnirs.720spa
dc.relation.referencesFaverdin, P., Delagarde, R., Delaby, L., & Meschy, F. (2007). Alimentation des vaches laitieres. In Alimentation des Bovins, Ovins et Caprins: Besoins des Animaux-Valeur des Aliments. Edi- tions Quae, Versailles Cedex, France. 23–57.spa
dc.relation.referencesFEDEGAN.(2021).Coyuntura-Ganadera-Semestre-1-2021. https://www.fedegan.org.co/estadisticas/documentos-de-estadisticaspa
dc.relation.referencesFerrell, C. L., Koong, L. J., & Nienaber, J. A. (1986). Effect of previous nutrition on body composition and maintenance energy cost growing lambs. Br. J. Nutr., 56, 595–605.spa
dc.relation.referencesFoley, W. J., McLean, S., & Cork, S. J. (1995). Consequences of biotransformation of plant secondary metabolites on acid-base metabolism in mammals- A final common pathway? J. Chem. Ecol., 21, 721–743. https://doi.org/doi:10.1007/BF02033457spa
dc.relation.referencesGalyean, M. L., & Gunter, S. A. (2016). Predicting forage intake in extensive grazing system. Animal Science, 26–43. https://doi.org/10.2527/jas2016-0523spa
dc.relation.referencesGlindemann, T., Tas, B., Wang, C., Alvers, S., & Susenbeth, A. (2009). Evaluation of titanium dioxide as an inert marker for estimating faecal excretion in grazing sheep. Animal Feed Science and Technology - ANIM FEED SCI TECH, 152, 186–197. https://doi.org/10.1016/j.anifeedsci.2009.04.010spa
dc.relation.referencesGoering, H. K., & Van Soest, P. K. (1970). Forage fiber analyses (Apparatus, reagents, procedures, and some applications). In U.S. Department of Agriculture (Issue 379). ARS-USDA.spa
dc.relation.referencesGordon I J. (1995). Animal-based techniques for grazing ecology research. Small Ruminant Research, 16(3), 203–214. https://doi.org/10.1016/0921-4488(95)00635-Xspa
dc.relation.referencesGregorini, P., Gunter, S. A., Masino, C. A., & Beck, P. A. (2007). Effects of ruminal fill on short-term herbage intake rate and grazing dynamics of beef heifers.spa
dc.relation.referencesHolechek, J. L., Vavra, M., & Piepper, R. D. (1982). Botanical composition determination of range herbivores diets: a review. J. Range Manage, 35(3), 309–315.spa
dc.relation.referencesHolloway, J. W., Estell, I. I. R. E., & Butts Jr., W. T. (1981). Relationships between fecal components and forage consumption and digestibility. J. Anim. Sci., 52, 836–848.spa
dc.relation.referencesIllius, A. W., & Jessop, N. S. (1996). Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science, 74(12), 3052–3062. https://doi.org/10.2527/1996.74123052xspa
dc.relation.referencesJancewicz, L. J., Swift, M. L., Penner, G. B., Beauchemin, K. A., & Koening, K. M. (2016). Development of NIRS calibrations to estimate fecal composition and nutrient digestibility in beef cattle. Canadian Journal of Animal Science, 403, 1–33.spa
dc.relation.referencesJeffery, H. (1976). Effect of the live weight of caged sheep and the amount of feed on offer on estimates of digestibility and ad libitum intake. Australian Journal of Experimental Agriculture and Animal Husbandry, 16(82), 656–660.spa
dc.relation.referencesJohnson, D. E., Dinusson, W. E., & Bolin, D. W. (1964). Rate of Passage of Chromic Oxide and Composition of Digesta along the Alimentary Tract of Wethers. Journal of Animal Science, 23(2), 499–505. https://doi.org/10.2527/jas1964.232499xspa
dc.relation.referencesJohnson, J. R., Carstens, G. E., Prince, S. D., Ominski, K. H., Wittenberg, K. M., Undi, M., Forbes, T. D. A., Hafla, A. N., Tolleson, D. R., & Basarab, J. A. (2017). Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle. Journal of Animal Science, 95(1), 447. https://doi.org/10.2527/jas2016.0845spa
dc.relation.referencesKrämer, M., Weisbjerg, M. R., Lund, P., Jensen, C. S., & Pedersen, M. G. (2012). Estimation of indigestible NDF in forages and concentrates from cell wall composition. Animal Feed Science and Technology, 177(1–2), 40–51. https://doi.org/10.1016/j.anifeedsci.2012.07.027spa
dc.relation.referencesKyriazakis, I. (2003). What are ruminant herbivores trying to achieve through their feeding behaviour and food intake. In: Herrera-Camacho C.A. and Sandoval-Castro J., eds. VIth International Symposium on the Nutrition of Herbivores (pp. 153–173).spa
dc.relation.referencesLandau, S., Glasser, T., & Dvash, L. (2006). Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Ruminant Research, 61(1), 1–11. https://doi.org/10.1016/j.smallrumres.2004.12.012spa
dc.relation.referencesLandau, S., Glasser, T., Dvash, L., & Perevolotsky, A. (2004). Faecal NIRS to monitor the diet of Mediterranean goats. In South African Journal of Animal Science (Vol. 34).spa
dc.relation.referencesLandau, S., Glasser, T., Muklada, H., Dvash, L., Perevolotsky, A., Ungar, E. D., & Walker, J. W. (2005). Fecal NIRS prediction of dietary protein percentage and in vitro dry matter digestibility in diets ingested by goats in Mediterranean scrubland. Small Ruminant Research, 59(2-3 SPEC. ISS.), 251–263. https://doi.org/10.1016/j.smallrumres.2005.05.009spa
dc.relation.referencesLanglands, J. P., Corbett, J. L., Mcdonald, I., & Reid, G. W. (1963). Estimation of the faeces output of grazing animals from the concentration of chromium sesquioxide in a sample of faeces. Brit. J. Nutr.spa
dc.relation.referencesLeng, R. A. (1990). Factors affecting the utilization of poor-quality forages by ruminants particularly under tropical conditions. Nutr. Research Rev., 3, 277–303.spa
dc.relation.referencesLi, H., Tolleson, D., Stuth, J., Bai, K., Mo, F., & Kronberg, S. (2007). Faecal near infrared reflectance spectroscopy to predict diet quality for sheep. Small Ruminant Res., 68, 263–268.spa
dc.relation.referencesLippke, H. (2002). Estimation of forage intake by ruminants on pasture. Crop Science, 42(3), 869-872.spa
dc.relation.referencesLippke, H., Barton II, F. E., & Ocumpaugh, W. R. (1989). Near infrared reflectance spectroscopy for estimation of digestible organic matter intake and body weight gain. Proceedings of the XVI International Grassland Congress, Nice, France, 893–894.spa
dc.relation.referencesLippke, H., Ellis, W. C., & Jacobs, B. F. (1986). Recovery of indigestible fiber from feces of sheep and cattle on forage diets. Journal of Dairy Science, 69(2), 403–412. https://doi.org/10.3168/jds.S0022-0302(86)80418-0spa
dc.relation.referencesLobley, G. E., Harris, P. M., Skene, P. A., Brown, D., Milne, E., Calder, A. G., Anderson, S. E., Garlick, P. J., Nevison, I., & Conell, A. (1992). Responses in tissue protein synthesis to sub and supra-maintenance intake in young, growing sheep: Comparison of large-dose and continuous-infusion techniques. Brit. J. Nutr., 68, 373–388.spa
dc.relation.referencesLyons, R. K., Stuth, J. W., & Holloway, J. W. (1992). Fecal NIRS equations for predicting diet quality of free-ranging cattle. J. Range Manage, 45, 238–244. https://doi.org/doi:10.2307/4002970spa
dc.relation.referencesMagalhães, K. A., Valadares Filho, S. C., Detmann, E., Diniz, L. L., Pina, D. S., Azevedo, J. A. G., Araújo, F. L., Marcondes, M. I., Fonseca, M. A., & Tedeschi, L. O. (2010). Evaluation of indirect methods to estimate the nutritional value of tropical feeds for ruminants. Animal Feed Science and Technology, 155(1), 44–54. https://doi.org/10.1016/j.anifeedsci.2009.10.004spa
dc.relation.referencesMayes, R. W., & Dove, H. (2000). Measurement of dietary nutrient intake in free-ranging mammalian herbivores. Nutrition Research Reviews, 44.spa
dc.relation.referencesMehtiö, T., Rinne, M., Nyholm, L., Mäntysaari, P., Sairanen, A., Mäntysaari, E. A., Pitkänen, T., & Lidauer, M. H. (2016). Cow-specific diet digestibility predictions based on near-infrared reflectance spectroscopy scans of faecal samples. Journal of Animal Breeding and Genetics, 133(2), 115–125. https://doi.org/10.1111/jbg.12183spa
dc.relation.referencesMejia Diaz, E., Mahecha Ledesma, L., & Angulo Arizala, J. (2017). Consumo de materia seca en un sistema silvopastoril de Tithonia diversifolia en trópico alto. Agronomía Mesoamericana, 28(2), 389. https://doi.org/10.15517/ma.v28i2.23561spa
dc.relation.referencesMertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. Assoc. Off. Anal. Chem. Intern, 85, 1217–1240.spa
dc.relation.referencesMichael Forbes, J. (2007). A personal view of how ruminant animals control their intake and choice of food: Minimal total discomfort. In Nutrition Research Reviews (Vol. 20, Issue 2, pp. 132–146). https://doi.org/10.1017/S0954422407797834spa
dc.relation.referencesMioto Da Costa, M. C., Ítavo, L. C. V., Ferreira Ítavo, C. C. B., Dias, A. M., Petit, H. v., Reis, F. A., Gomes, R. C., Leal, E. S., Niwa, M. V. G., & de Moraes, G. J. (2019). Evaluation of internal and external markers to estimate faecal output and feed intake in sheep fed fresh forage. Animal Production Science, 59(4), 741–748. https://doi.org/10.1071/AN16567spa
dc.relation.referencesMoore, J. E. (1994). Forage quality indices: development and application. In Fahey, Jr. et al. (Ed.) Forage Quality, Evaluation and Utilization. ASA. CSSA and SSSA., 967–998.spa
dc.relation.referencesMoreno, L. A., Rueda, C., & Andrade, G. I. (2018). Biodiversidad 2017. Estados y tendencias de la biodiversidad continental de Colombia.spa
dc.relation.referencesMorgan, C. A., & Campling, R. C. (1978). Digestibility of whole barley and oat grains by cattle of different ages. Animal Production, 27(3), 323–329. https://doi.org/10.1017/S0003356100036217spa
dc.relation.referencesNordheim, H., Volden, H., Fystro, G., & Lunnan, T. (2007). Prediction of in situ degradation characteristics of neutral detergent fibre (aNDF) in temperate grasses and red clover using near-infrared reflectance spectroscopy (NIRS). Animal Feed Science and Technology, 139(1–2), 92–108. https://doi.org/10.1016/j.anifeedsci.2006.11.024spa
dc.relation.referencesNorris, K. H., Barnes, R. F., Moore, J. E., & Shenk, J. S. (1976). Predicting forage quality by Near Infrared Reflectance Spectroscopy. J. Anim. Sci., 43, 889–897spa
dc.relation.referencesNúñez-Sánchez, N., Carrion, D., Peña Blanco, F., Domenech García, V., Garzón Sigler, A., & Martínez-Marín, A. L. (2016). Evaluation of botanical and chemical composition of sheep diet by using faecal near infrared spectroscopy. Animal Feed Science and Technology, 222, 1–6. https://doi.org/10.1016/j.anifeedsci.2016.09.010spa
dc.relation.referencesNúñez-Sánchez, N., Martínez Marín, A. L., Hernández, M. P., Carrion, D., Castro, G. G., & Pérez Alba, L. M. (2012). Faecal near infrared spectroscopy (NIRS) as a tool to assess rabbit’s feed digestibility. Livestock Science, 150(1–3), 386–390. https://doi.org/10.1016/j.livsci.2012.07.030spa
dc.relation.referencesOsborne, B. G., Fearn, P., & Hindle, T. (1993). Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientific and Tecnnical. London, UK.spa
dc.relation.referencesOudshoorn, F. W., Cornou, C., Hellwing, A. L. F., Hansen, H. H., Munksgaard, L., Lund, P., & Kristensen, T. (2013). Estimation of grass intake on pasture for dairy cows using tightly and loosely mounted di- and tri-axial accelerometers combined with bite count. Computers and Electronics in Agriculture, 99, 227–235. https://doi.org/10.1016/j.compag.2013.09.013spa
dc.relation.referencesOwens, F. N., & Hanson, C. F. (1992). External and Internal Markers for Appraising Site and Extent of Digestion in Ruminants. Journal of Dairy Science, 75(9), 2605–2617. https://doi.org/10.3168/jds.S0022-0302(92)78023-0spa
dc.relation.referencesOzaki, Y., McClure, W. F., & Christy, A. A. (2007). Near-Infrared Spectroscopy in Food Science and Technology, Wiley Interscience, Hoboken, New Jersey, USA.spa
dc.relation.referencesParga, J., Peyraud, J. L., & Delagarde, R. (2002). Age of regrowth affects grass intake and ruminal fermentations in grazing dairy cows. In: Durand J.L., Emile J.C., Huyghe C. and Lemaire G., eds. multi-function grasslands. Quality Forages, Animal Products and Landscape. Grassl. Sci. Eur., 7, 256–257.spa
dc.relation.referencesPeguero, A. (2010). La espectroscopía NIR en la determinación de propiedades físicas y composición química de intermedios de producción y productos acabados. Universidad Autonoma de Barcelona.spa
dc.relation.referencesPeripolli, V., Prates, Ê. R., Barcellos, J. O. J., & Neto, J. B. (2011). Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Animal Feed Science and Technology. https://doi.org/10.1016/j.anifeedsci.2010.11.008spa
dc.relation.referencesPeyraud, J. L., Comerón, E. A., Wade, M. H., & Lemaire, G. (1996). The effect of daily herbage allowance, herbage mass and animal factors upon herbage intake by grazing dairy cows. Ann. Zootech., 45, 201–217.spa
dc.relation.referencesPfister, J. A., Provenza, F. D., Manners, G. D., Gardner, D. R., & Ralphs, M. H. (1997). Tall larkspur ingestion: Can cattle regulate intake below toxic levels? J. Chem. Ecol., 23, 759–777. https://doi.org/doi:10.1023/ B: JOEC.0000006409.20279.59spa
dc.relation.referencesProvenza, F. D., Villalba, J. J., & Dziba, L. E. (2003). Linking herbivore experience, varied diets, and plant biochemical diversity. Small Ruminant Research, 49, 257–274.spa
dc.relation.referencesPulina, G., Avondo, M., Molle, G., Dias Francesconi, A. H., Atzori, A. S., & Cannas, A. (2013). Invited Review Models for estimating feed intake in small ruminantsspa
dc.relation.referencesRaymond, W. F., Harris, C. E., & Haurker, V. G. (1953). Studies on the digestibility of herbage. 1. Technique of measurement of digestibility and some observations on factors affecting the accuracy of digestibility data. Journal of the British Grassland Society, 8, 301–314.spa
dc.relation.referencesRaymond, W. F., Harris, C. E., & Kemp, C. D. (1955). Studies in the digestibility of herbage. VI. The effect of level of herbage intake on the digestibility of herbage by sheep. J. Brit. Grassl. Soc., 10, 19–26.spa
dc.relation.referencesRhind, S. M., Archer, Z. A., & Adam, C. L. (2002). Seasonality of food intake in ruminants: recent developments in understanding. Nutr. Research Rev., 15, 43–65.spa
dc.relation.referencesRihani, N., Garrett, W. N., & Zinn, R. A. (1993). Influence of level of urea, and method of supplementation on characteristics of digestion of high-fiber diets by sheep. Journal Animal Science, 71, 1657–1665.spa
dc.relation.referencesRombach, M., Münger, A., Niederhauser, J., Südekum, K.-H., & Schori, F. (2018). Evaluation and validation of an automatic jaw move- ment recorder (RumiWatch) on unsupplemented or supplemented dairy cows on pasture. J. Dairy Sci., 101, 2463–2475.spa
dc.relation.referencesRomney, D. L., & Gill, M. (2009). Intake of forages. In Forage evaluation in ruminant nutrition. (Issue 1996, pp. 43–62). https://doi.org/10.1079/9780851993447.0043spa
dc.relation.referencesRuuska, S., Kajava, S., Mughal, M., Zehner, N., & Mononen, J. (2016). Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Appl. Anim. Behav. Sci., 174, 19–23.spa
dc.relation.referencesSampaio, C. B., Detmann, E., Neves, T., & Valente, P. (2011). Fecal excretion patterns and short-term bias of internal and external markers in a digestion assay with cattle. Revista Brasileira de Zootecnia, 657–665.spa
dc.relation.referencesSelcuk, A., & Suphi, D. (2017). Use of Chromium Oxide and Alkane Indicator Methods for Determination of Feed Intake for Grazing Sheep. Journal of Agricultural Science and Technology A, 7(3). https://doi.org/10.17265/2161-6256/2017.03.008spa
dc.relation.referencesShenk, J. S., & Westerhaus, M. O. (1994). THE APPLICATION OF NEAR INFRARED REFLECTANCE SPECTROSCOPY (NIRS) TO FORAGE ANALYSIS.spa
dc.relation.referencesShenk, J. S., & Westerhaus, M. O. (1996). Calibration de ISI way. En Near Infrared Spectroscopy: the future waves. In W. P. Davies A.M.C. (Ed.), NIR publications.spa
dc.relation.referencesShenk, J. S., & Westrerhaus, M. O. (1991). Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy. Crop Sci., 31, 469–474.spa
dc.relation.referencesShenk, J. S., Workman, J. J., & Westerhaus, M. O. (2001). Application of NIR Spectroscopy to Agricultural Products. Handbook of Near Infrared Analysis. Second Edition. Burns D.A. y Ciurczak E.W. (Eds.). Practical Spectroscopy Series, Vol. 27. Marcel Dekker, USA.spa
dc.relation.referencesShowers, E. E. (1997). Prediction of Diet Quality Parameters of White-tailed Deer Via Near Infrared Reflectance Spectroscopy (NIRS) Fecal Profiling. Texas A&M University.spa
dc.relation.referencesSmit, H. J., Taweel, H. Z., Tas, B. M., Tamminga, S., & Elgersma, A. (2005). Comparison of Techniques for Estimating Herbage. Journal of Dairy Science, 88(5), 1827–1836. https://doi.org/10.3168/jds.S0022-0302(05)72857-5spa
dc.relation.referencesSoto-Navarro, S. A., Lancaster, R., Sankey, C., Capitan, B. M., & Holland, B. P. (2014). Comparative digestibility by cattle versus sheep: Effect of forage quality. https://doi.org/10.2527/jas2013-6740spa
dc.relation.referencesStuth, J. W., Kapes, E. D., & Lyons, R. K. (1989). Use of near infrared spectroscopy to assess nutritional status of cattle diets on rangeland. XVI International Grassland Congress, Nice, France, 889–890.spa
dc.relation.referencesUPRA. (2020). Plan de ordenamiento productivo: Analisis prospectivo de la cadena lactea bovina colombiana.spa
dc.relation.referencesUPRA. (2021). Analisis situacional de la cadena productiva carnica bovina.spa
dc.relation.referencesValentine, M. E., Karayilanli, E., Cherney, J. H., & Cherney, D. J. (2019). Comparison of in vitro long digestion methods and digestion rates for diverse forages. Crop Science, 59(1), 422–435. https://doi.org/10.2135/cropsci2018.03.0159spa
dc.relation.referencesvan Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583–3597.spa
dc.relation.referencesVan Wieren, S. E. (1996a). Do large herbivores select a diet that maximizes short-term energy intake rate? Forest Ecol. Manage, 88, 149–156.spa
dc.relation.referencesVan Wieren, S. E. (1996b). Do large herbivores select a diet that maximizes short-term energy intake rate? Forest Ecol. Manage., 88, 149–156.spa
dc.relation.referencesVelásquez, A. v, da Silva, G. G., Sousa, D. O., Oliveira, C. A., Martins, C. M. M. R., dos Santos, P. P. M., Balieiro, J. C. C., Rennó, F. P., & Fukushima, R. S. (2018). Evaluating internal and external markers versus fecal sampling procedure interactions when estimating intake in dairy cows consuming a corn silage-based diet. Journal of Dairy Science, 101(7), 5890–5901. https://doi.org/10.3168/jds.2017-13283spa
dc.relation.referencesWard, R. G., Smith, G. S., Wallace, J. D., Urquhart, N. S., & Shenk, J. S. (1982). Estimation of intake and quality of grazed range forage by near infrared reflectance spectroscopy. J. Anim. Sci., 54, 399–402.spa
dc.relation.referencesWilliams, P. C. (2001). Implementation of Near- Infrared Technology. En Near-Infrared Technology in the Agricultural and Food Industries, 2nd edition. In American Association of Cereal Chemists, Inc. (P.K. Willi).spa
dc.relation.referencesWilliams, P., Dardenne, P., & Flinn, P. (2017). Tutorial: Items to be included in a report on a near infrared spectroscopy project. Journal of Near Infrared Spectroscopy, 25(2). https://doi.org/10.1177/0967033517702395spa
dc.relation.referencesWorkman, J. J., & Mark, H. (2015). Choosing the Best Regression Model. J. Near Infrared Spectrosc., 30(6).spa
dc.relation.referencesYearsley, J., Tolkamp, B. J. N., & Illius, A. W. (2001). Theoretical developments in the study and prediction of food intake. Proc. Nutr. Soc., 60, 145–156.spa
dc.relation.referencesMinson, D. (1990). Forage in ruminant nutrition. Academic Press Limited.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocuriForrajesspa
dc.subject.agrovocuriforageeng
dc.subject.agrovocuriBúsqueda de alimentospa
dc.subject.agrovocuriforagingeng
dc.subject.agrovocuriNutrición animalspa
dc.subject.agrovocurianimal nutritioneng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalForrajespa
dc.subject.proposalHecesspa
dc.subject.proposalMarcadoresspa
dc.subject.proposalNutrición animalspa
dc.subject.proposalAnálisis espectralspa
dc.subject.proposalanimal nutritioneng
dc.subject.proposalfeceseng
dc.subject.proposalforageeng
dc.subject.proposalmarkerseng
dc.subject.proposalspectral analysiseng
dc.titleEstimación del consumo voluntario y digestibilidad de la materia orgánica en ovinos mediante el análisis fecal por espectroscopia de reflectancia infrarroja cercanaspa
dc.title.translatedEstimation of voluntary intake and digestibility of organic matter in sheep by means of fecal analysis by near-infrared reflectance spectroscopyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleUso integral de estrategias tecnológicas para el fortalecimiento y sostenibilidad de la ganadería colombiana desde la críaspa
oaire.fundernameMinisterio de Agricultura y Desarrollo Ruralspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1069723407.2022.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Producción animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: