Modelado de la gestión de la calidad en cadenas de suministro usando un enfoque multi-etapas

dc.contributor.advisorCorrea Espinal, Alexander Alberto
dc.contributor.authorCogollo Flórez, Juan Miguel
dc.contributor.researchgroupMODELAMIENTO PARA LA GESTIÓN DE OPERACIONES (GIMGO)spa
dc.date.accessioned2021-06-19T14:22:24Z
dc.date.available2021-06-19T14:22:24Z
dc.date.issued2020
dc.descriptionilustracionesspa
dc.description.abstractLa investigación en el área de gestión de la calidad en cadenas de suministro evidencia falta de desarrollos enfocados en el análisis de estructuras relacionales para la toma de decisiones táctico-estratégicas. En esta tesis se propone un modelo analítico para la coordinación e integración de la gestión de la calidad en cadenas de suministro usando un enfoque multi-etapas. La metodología de modelado propuesta integra mapas cognitivos grises difusos multicapa para la configuración estructural y diseños factoriales fraccionados para validar el desempeño dinámico del modelo. Las variables que representan el desempeño global de la gestión de la calidad en cadenas de suministro están agrupadas en la capa principal. Las variables del desempeño en calidad en las tres etapas de la cadena de suministro están agrupadas en submapas en una segunda capa. La validación del modelo vía experimentos de simulación computacional permitió identificar los factores principales estadísticamente significativos en cada mapa y determinar la asignación de valores grises o concretos a los mismos. Finalmente, los aportes realizados en esta investigación constituyen un punto de partida para futuras aplicaciones en sectores específicos y la integración de otras técnicas cuantitativas. (Tomado de la fuente)spa
dc.description.abstractResearch in Supply Chain Quality Management lacks developments focused on the analysis of relational structures for tactical-strategic decision making. This doctoral thesis proposes an analytical model for Supply Chain Quality Management coordination and integration, by using a multi-stage approach. The proposed modeling methodology integrates Multi-layer Fuzzy Grey Cognitive Maps for the structural configuration and fractional factorial designs to validate the dynamic performance of the model. The variables that represent the overall performance of Supply Chain Quality Management are grouped in the main layer. The quality performance variables in the three stages of the supply chain are grouped into submaps in a second layer. The validation of the model via computational simulation experiments made it possible to identify statistically significant factors main in each map and to determine the assignment of gray or specific values to them. Finally, the contributions made in this research constitute a starting point for future applications in specific sectors and the integration of other quantitative techniques. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsSe utilizó una metodología secuencial exploratoria que permite integrar referentes teóricos para un posterior análisis cuantitativospa
dc.description.researchareaGestión de la Cadena de Suministrospa
dc.format.extent132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79655
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería de la Organizaciónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.referencesAjalli, M., & Mozaffari, M. M. (2018). Appraisal the key factors of SCQM using a combined approach of SWARA-FISM. International Journal of Supply Chain Management, 7(4), 13–21.spa
dc.relation.referencesAmer, Y., Luong, L., & Lee, S. H. (2010). Case study: Optimizing order fulfillment in a global retail supply chain. International Journal of Production Economics, 127(2), 278–291. https://doi.org/10.1016/j.ijpe.2009.08.020spa
dc.relation.referencesBautista-Santos, H., Martínez-Flores, L., Fernández-Lambert, G., Bernabé-Loranca, M. B., Sánchez-Galván, F., & Sablón-Cossío, N. (2015). Integration model of collaborative supply chain. Dyna, 82(193), 145–154. https://doi.org/10.15446/dyna.v82n193.47370spa
dc.relation.referencesBayo-Moriones, A., Bello-Pintado, A., & Merino-Díaz-de-Cerio, J. (2011). Quality assurance practices in the global supply chain: the effect of supplier localisation. International Journal of Production Research, 49(1), 255–268. https://doi.org/10.1080/00207543.2010.508953spa
dc.relation.referencesBorner, K., Chen, C., & Boyack, K. (2003). Visualizing Knowledge Domains. Annual Review of Information Science and Technology, 37(1), 179–255.spa
dc.relation.referencesBowersox, D., Closs, D., Cooper, M., & Bowersox, J. (2020). Supply Chain Logistics Management (5th ed.). New York, NY: McGrawHill.spa
dc.relation.referencesBrandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299–312. https://doi.org/10.1016/j.ejor.2013.09.032spa
dc.relation.referencesBray, R. L., Serpa, J. C., & Colak, A. (2019). Supply Chain Proximity and Product Quality. Management Science, 65(9), 4079–4099. https://doi.org/10.1287/mnsc.2018.3161spa
dc.relation.referencesÇankaya, S. Y. (2020). The effects of strategic sourcing on supply chain strategies. Journal of Global Operations and Strategic Sourcing, 13(2), 129–148. https://doi.org/10.1108/JGOSS-01-2019-0002spa
dc.relation.referencesCarmignani, G. (2009). Supply chain and quality management: The definition of a standard to implement a process management system in a supply chain. Business Process Management Journal, 15(3), 395–407. https://doi.org/10.1108/14637150910960639spa
dc.relation.referencesChaghooshi, A. J., Soltani-Neshan, M., & Moradi-Moghadam, M. (2015). Canonical correlation analysis between supply chain quality management and competitive advantages. Foundations of Management, 7(1), 83–92.spa
dc.relation.referencesChang, K. H., & Lin, G. (2015). Optimal design of hybrid renewable energy systems using simulation optimization. Simulation Modelling Practice and Theory, 52, 40–51. https://doi.org/10.1016/j.simpat.2014.12.002spa
dc.relation.referencesChardine-Baumann, E., & Botta-Genoulaz, V. (2014). A framework for sustainable performance assessment of supply chain management practices. Computers and Industrial Engineering, 76, 138–147. https://doi.org/10.1016/j.cie.2014.07.029spa
dc.relation.referencesChen, J., Fan, T., & Pan, F. (2021). Urban delivery of fresh products with total deterioration value. International Journal of Production Research, 59(7), 2218–2228. https://doi.org/10.1080/00207543.2020.1828638spa
dc.relation.referencesCheung, K. L., & Leung, K. F. (2000). Coordinating replenishments in a supply chain with quality control considerations. Production Planing and Control, 11(7), 697–705. https://doi.org/10.1080/095372800432160spa
dc.relation.referencesChiadamrong, N., & Wajcharapornjinda, P. (2012). Developing an economic cost model for quantifying supply chain costs. International Journal of Logistics Systems and Management, 13(4), 540–571. https://doi.org/10.1504/IJLSM.2012.050171spa
dc.relation.referencesChinello, E., Lee Herbert-Hansen, Z. N., & Khalid, W. (2020). Assessment of the impact of inventory optimization drivers in a multi-echelon supply chain: Case of a toy manufacturer. Computers and Industrial Engineering, 141, 106232. https://doi.org/10.1016/j.cie.2019.106232spa
dc.relation.referencesChopra, S. (2018). Supply Chain Management: Strategy, Planning, and Operation (7th ed.). New York: Pearson.spa
dc.relation.referencesChoudhary, D., Shankar, R., Tiwari, M. K., & Purohit, A. K. (2016). VMI versus information sharing: an analysis under static uncertainty strategy with fill rate constraints. International Journal of Production Research, 54(13), 3978–3993. https://doi.org/10.1080/00207543.2016.1168943spa
dc.relation.referencesChristoforou, A., & Andreou, A. S. (2017). A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps. Neurocomputing, 232, 133–145. https://doi.org/10.1016/j.neucom.2016.09.115spa
dc.relation.referencesChristova, N., Stylios, C., & Groumpos, P. (2003). Production Planning for Complex Plants using Fuzzy Cognitive Maps. IFAC Proceedings Volumes, 36(3), 81–86. https://doi.org/10.1016/S1474-6670(17)37739-Xspa
dc.relation.referencesCogollo-Flórez, Juan M., & Correa-Espinal, A. A. (2019). Analytical modeling of supply chain quality management coordination and integration: A literature review. Quality Management Journal, 26(2), 72–83. https://doi.org/10.1080/10686967.2019.1580553spa
dc.relation.referencesCogollo-Flórez, Juan M, & Correa-Espinal, A. A. (2017). Modeling Supply Chain Quality Management Performance. In Proceedings of the International Conference on Modeling and Applied Simulation 2017 (pp. 115–122). Barcelona, Spain.spa
dc.relation.referencesCogollo-Flórez, Juan Miguel, & Correa-Espinal, A. A. (2018). Rule-based Modeling of Supply Chain Quality Management. In A. Bruzzone, F. De Felice, C. Frydman, F. Longo, M. Massei, & A. Solis (Eds.), Proceedings of The International Conference on Modeling and Applied Simulation 2018 (pp. 120–125). Budapest, Hungary.spa
dc.relation.referencesCogollo Flórez, J. M., & Ruiz Vásquez, C. (2019). Prácticas de responsabilidad sostenible de cadenas de suministro: Revisión y propuesta. Revista Venezolana de Gerencia, 24(87), 668–683.spa
dc.relation.referencesCogollo, J., & Correa, A. (2019). Modeling Supply Chain Quality Management using Multi-Layer Fuzzy Cognitive Maps. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–6). New Orleans, LA: IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8858995spa
dc.relation.referencesCooper, M., Lambert, D., & Pagh, J. (1997). Supply Chain Management: More Than a New Name for Logistics. The International Journal of Logistics Management, 8(1), 1–14. https://doi.org/10.1108/09574099710805556spa
dc.relation.referencesCouncil of Supply Chain Management Professionals. (n.d.). CSCMP Supply Chain Management Definitions and Glossary. Retrieved June 13, 2020, from https://cscmp.org/CSCMP/Academia/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx?hkey=60879588-f65f-4ab5-8c4b-6878815ef921spa
dc.relation.referencesCoyle, J., Langley, J., Novack, R., & Gibson, B. (2017). Supply Chain Management: A Logistics Perspective (10th ed.). Boston, USA: Cengage Learning.spa
dc.relation.referencesCreswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). Los Angeles, CA: SAGE.spa
dc.relation.referencesCruz Trejos, E., Correa Espinal, A. A., & Cogollo Florez, J. M. (2012). Supply Chain Social Responsibility. Gestión y Región, 13, 89–106.spa
dc.relation.referencesDas, K., & Sengupta, S. (2010). Modelling supply chain network: a quality-oriented approach. International Journal of Quality & Reliability Management, 27(5), 506–526. https://doi.org/10.1108/09574090910954864spa
dc.relation.referencesDas, Kanchan, & Lashkari, R. S. (2015). A Supply Chain Product Delivery and Distribution Planning Model. Operations and Supply Chain Management: An International Journal, 8(1), 22–27. https://doi.org/10.31387/oscm0190129spa
dc.relation.referencesDellana, S., & Kros, J. (2014). An exploration of quality management practices, perceptions and program maturity in the supply chain. International Journal of Operations & Production Management, 34(6), 786–806. https://doi.org/10.1108/09574090910954864spa
dc.relation.referencesDickerson, J. A., & Kosko, B. (1994). Virtual Worlds as Fuzzy Cognitive Maps. Presence: Teleoperators and Virtual Environments, 3(2), 173–189. https://doi.org/10.1109/VRAIS.1993.380742spa
dc.relation.referencesDuman, E. (2007). Decision making by simulation in a parcel transportation company. Journal of The Franklin Institute, 344(5), 672–683. https://doi.org/10.1016/j.jfranklin.2006.02.030spa
dc.relation.referencesEdmonds, W., & Kennedy, T. (2017). An Applied Guide to Research Designs: Quantitative, Qualitative, and Mixed Methods (2nd ed.). Los Angeles, CA: SAGE.spa
dc.relation.referencesEvans, J. R., Foster, S. T., & Linderman, K. (2014). A Content Analysis of Research in Quality Management and a Proposed Agenda for Future Research. Quality Management Journal, 21(2), 17–44.spa
dc.relation.referencesFernandes, A. C., Sampaio, P., & Carvalho, M. do S. (2014). Quality Management and Supply Chain Management Integration: a conceptual model. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 773–780). Bali, Indonesia.spa
dc.relation.referencesFlynn, B., & Zhao, X. (2015). Global Supply Chain Quality Management: Product Recalls and Their Impact. Boca Raton: CRC Press.spa
dc.relation.referencesFoster, S. T. (2008). Towards an understanding of supply chain quality management. Journal of Operations Management, 26(4), 461–467. https://doi.org/10.1016/j.jom.2007.06.003spa
dc.relation.referencesFoster, S. T. (2017). Managing Quality: Integrating the Supply Chain (6th ed.). New Jersey: Pearson.spa
dc.relation.referencesGalindo-Pacheco, G. M., Paternina-Arboleda, C. D., Barbosa-Correa, R. A., & Llinás-Solano, H. (2012). Non-linear programming model for cost minimization in a supply chain, including non-quality and inspection costs. International Journal of Operational Research, 14(3), 301–323. https://doi.org/10.1504/IJOR.2012.047092spa
dc.relation.referencesGao, C., Cheng, T. C. E., Shen, H., & Xu, L. (2016). Incentives for quality improvement efforts coordination in supply chains with partial cost allocation contract. International Journal of Production Research, 54(20), 6213–6231. https://doi.org/10.1080/00207543.2016.1191691spa
dc.relation.referencesGumrukcu, S., Rossetti, M. D., & Buyurgan, N. (2008). Quantifying the costs of cycle counting in a two-echelon supply chain with multiple items. International Journal of Production Economics, 116(2), 263–274. https://doi.org/10.1016/j.ijpe.2008.09.006spa
dc.relation.referencesGutiérrez, H., & De La Vara, R. (2012). Análisis y diseño de experimentos (3rd ed.). México: McGrawHill.spa
dc.relation.referencesGylling, M., Heikkilä, J., Jussila, K., & Saarinen, M. (2015). Making decisions on offshore outsourcing and backshoring: A case study in the bicycle industry. International Journal of Production Economics, 162, 92–100. https://doi.org/10.1016/j.ijpe.2015.01.006spa
dc.relation.referencesHarrison, A., Van Hoek, R., & Skipworth, H. (2014). Logistics Management and Strategy: Competing Throug the Supply Chain (5th ed.). Harlow, UK: Pearson.spa
dc.relation.referencesHasani, A., Zegordi, S. H., & Nikbakhsh, E. (2012). Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty. International Journal of Production Research, 50(16), 4649–4669. https://doi.org/10.1080/00207543.2011.625051spa
dc.relation.referencesHatwagner, M. F., Buruzs, A., Torma, A., & Koczy, L. T. (2015). Introduction of Modeling Complex Management Systems using Fuzzy Cognitive Map. The 7th International Conference on Information Technology, 2015, 508–514. https://doi.org/10.15849/icit.2015.0092spa
dc.relation.referencesHugos, M. (2018). Essentials of Supply Chain Management (4th ed.). Hoboken, NJ: Wiley.spa
dc.relation.referencesHuo, B., Ye, Y., Zhao, X., & Zhu, K. (2016). Supply chain quality integration: A taxonomy perspective. International Journal of Production Economics, In Press, 1–11. https://doi.org/10.1016/j.ijpe.2016.05.004spa
dc.relation.referencesJacobs, F., & Chase, R. (2018). Operations and Supply Chain Management (15th ed.). New York, NY: McGrawHill.spa
dc.relation.referencesJaqueta, S. D. J., Mashilo, E. N., Mocke, K., & Agigi, A. F. A. (2020). Physical distribution challenges and adaptations: A qualitative study of South Africa-based organisations operating in emerging African markets. Journal of Transport and Supply Chain Management, 14(1), 1–16. https://doi.org/10.4102/jtscm.v14i0.475spa
dc.relation.referencesJetter, A. J., & Kok, K. (2014). Fuzzy Cognitive Maps for futures studies-A methodological assessment of concepts and methods. Futures, 61, 45–57. https://doi.org/10.1016/j.futures.2014.05.002spa
dc.relation.referencesKitchenham, B. (2004). Procedures for Performing Systematic Reviews. Joint Technical Report. Australia: Department of Computer Science. Keele University. https://doi.org/10.1.1.122.3308spa
dc.relation.referencesKleijnen, J. (2005). An overview of the design and analysis of simulation experiments for sensitivity analysis. European Journal of Operational Research, 164(2), 287–300. https://doi.org/10.1016/j.ejor.2004.02.005spa
dc.relation.referencesKleijnen, J. P. C., & Smits, M. T. (2003). Performance metrics in supply chain management. Journal of the Operational Research Society, 54(5), 507–514. https://doi.org/10.1057/palgrave.jors.2601539spa
dc.relation.referencesKonti, A., & Damigos, D. (2018). Exploring strengths and weaknesses of bioethanol production from bio-waste in Greece using Fuzzy Cognitive Maps. Energy Policy, 112, 4–11. https://doi.org/10.1016/j.enpol.2017.09.053spa
dc.relation.referencesKosko, B. (1986). Fuzzy cognitive maps. Int. J. Man-Machine Studies, 24, 65–75.spa
dc.relation.referencesKuei, C.-H., & Madu, C. N. (2001). Identifying critical success factors for supply chain quality management (SCQM). Asia Pacific Management Review, 6(4), 409–423. https://doi.org/10.4018/jsds.2010070104spa
dc.relation.referencesKuei, C.-H., Madu, C. N., & Lin, C. (2011). Developing global supply chain quality management systems. International Journal of Production Research, 49(15), 4457–4481. https://doi.org/10.1080/00207543.2010.501038spa
dc.relation.referencesKuei, C.-H., Madu, C. N., & Winch, J. K. (2008). Supply chain quality management: a simulation study. Information and Management Sciences, 19(1), 131–151.spa
dc.relation.referencesKumar, S., & Schmitz, S. (2011). Managing recalls in a consumer product supply chain - Root cause analysis and measures to mitigate risks. International Journal of Production Research, 49(1), 235–253. https://doi.org/10.1080/00207543.2010.508952spa
dc.relation.referencesLaguna, M., & Marklund, J. (2019). Business Process Modeling, Simulation and Design (3rd ed.). Boca Raton, FL: CRC Press.spa
dc.relation.referencesLambertini, L. (2018). Coordinating research and development efforts for quality improvement along a supply chain. European Journal of Operational Research, 270(2), 599–605. https://doi.org/10.1016/j.ejor.2018.03.037spa
dc.relation.referencesLavin, E., & Giabbanelli, P. (2017). Analyzing and simplifying model uncertainty in fuzzy cognitive maps. In Proceedings of the 2017 Winter Simulation Conference (pp. 1868–1879). Las Vegas, NV, USA. https://doi.org/10.1109/WSC.2017.8247923spa
dc.relation.referencesLaw, A. (2015). Simulation Modeling and Analysis (5th ed.). New York, NY: McGrawHill.spa
dc.relation.referencesLaw, A. (2017). A tutorial on Design of Experiments for simulation modeling. In Proceedings of the 2017 Winter Simulation Conference (pp. 550–564). Las Vegas, NV, USA.spa
dc.relation.referencesLejarza, F., & Baldea, M. (2020). Closed-loop optimal operational planning of supply chains with fast product quality dynamics. Computers and Chemical Engineering, 132, 106594. https://doi.org/10.1016/j.compchemeng.2019.106594spa
dc.relation.referencesLeón, M., Rodriguez, C., García, M. M., Bello, R., & Vanhoof, K. (2010). Fuzzy Cognitive Maps for Modeling Complex Systems. In Proceedings of 9th Mexican International Conference on Artificial Intelligence, MICAI 2010 (pp. 166–174). https://doi.org/10.1007/978-3-642-16761-4_15spa
dc.relation.referencesLi, B., & Jiang, Y. (2019). Impacts of returns policy under supplier encroachment with risk-averse retailer. Journal of Retailing and Consumer Services, 47, 104–115. https://doi.org/10.1016/j.jretconser.2018.11.011spa
dc.relation.referencesLin, C., Chow, W. S., Madu, C. N., Kuei, C.-H., & Pei Yu, P. (2005). A structural equation model of supply chain quality management and organizational performance. International Journal of Production Economics, 96(3), 355–365. https://doi.org/10.1016/j.ijpe.2004.05.009spa
dc.relation.referencesLiu, S., & Lin, Y. (2006). Grey Information: Theory and Practical Applications. London, UK: Springer.spa
dc.relation.referencesLiu, Y., Fang, S., Fang, Z., & Hipel, K. (2012). Petri net model for supply-chain quality conflict resolution of a complex product. Kybernetes, 41(7/8), 920–928. https://doi.org/10.1108/K-01-2015-0009spa
dc.relation.referencesLorscheid, I., Heine, B. O., & Meyer, M. (2012). Opening the “black box” of simulations: increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18(1), 22–62. https://doi.org/10.1007/s10588-011-9097-3spa
dc.relation.referencesLou, P., Liu, Q., Zhou, Z., & Quan, S. (2009). Production-Outsourcing Supply Chain Quality Management Based on Multi-Agent System. In Proceedings of The 16th International Conference on Industrial Engineering and Engineering Management, 2009. IE&EM ’09. (pp. 1555–1559).spa
dc.relation.referencesLuthra, S., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). An integrated framework for sustainable supplier selection and evaluation in supply chains. Journal of Cleaner Production, 140, 1686–1698. https://doi.org/10.1016/j.jclepro.2016.09.078spa
dc.relation.referencesMallick, R. K., Manna, A. K., & Mondal, S. K. (2018). A supply chain model for imperfect production system with stochastic lead time demand. Journal of Management Analytics, 5(4), 309–333. https://doi.org/10.1080/23270012.2018.1530619spa
dc.relation.referencesMarucheck, A., Greis, N., Mena, C., & Cai, L. (2011). Product safety and security in the global supply chain: Issues, challenges and research opportunities. Journal of Operations Management, 29(7–8), 707–720. https://doi.org/10.1016/j.jom.2011.06.007spa
dc.relation.referencesMasoudipour, E., Amirian, H., & Sahraeian, R. (2017). A novel closed-loop supply chain based on the quality of returned products. Journal of Cleaner Production, 151, 344–355. https://doi.org/10.1016/j.jclepro.2017.03.067spa
dc.relation.referencesMelnyk, S. a., Lummus, R. R., Vokurka, R. J., Burns, L. J., & Sandor, J. (2009). Mapping the future of supply chain management: a Delphi study. International Journal of Production Research, 47(16), 4629–4653. https://doi.org/10.1080/00207540802014700spa
dc.relation.referencesMendes Dos Reis, J. G. (2011). Modelo de Avaliação da Qualidade para Redes de Suprimentos. Universidade Paulista: Tese de Doutoramento em Engenharia de Produção.spa
dc.relation.referencesMerigó, J. M., & Yang, J. B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, 37–48. https://doi.org/10.1016/j.omega.2016.12.004spa
dc.relation.referencesModak, N. M., Panda, S., & Sana, S. S. (2016). Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products. International Journal of Production Economics, 182, 564–578. https://doi.org/10.1016/j.ijpe.2015.05.021spa
dc.relation.referencesMoharana, H., Murty, J. S., Senapati, S. K., & Khuntia, K. (2012). Coordination, Collaboration and Integration for Supply Chain Management. International Journal of Interscience Management Review (IMR), 2(2), 46–50.spa
dc.relation.referencesMontevechi, J. A. B., De Almeida Filho, R. G., Paiva, A. P., Costa, R. F. S., & Medeiros, A. L. (2010). Sensitivity analysis in discrete-event simulation using fractional factorial designs. Journal of Simulation, 4(2), 128–142. https://doi.org/10.1057/jos.2009.23spa
dc.relation.referencesMontgomery, D. (2017). Design and Analysis of Experiments (9th ed.). Hoboken, NJ: John Wiley & Sons.spa
dc.relation.referencesMontoya-Torres, J. R., & Ortiz-Vargas, D. A. (2014). Collaboration and information sharing in dyadic supply chains: A literature review over the period 2000–2012. Estudios Gerenciales, 30, 343–354. https://doi.org/10.1016/j.estger.2014.05.006spa
dc.relation.referencesMontoya-Torres, J. R., & Ortiz, D. (2011). Analysis of the collaboration concept in supply chain: A scientific literature review. In Proceedings of Ninth Latin American and Caribbean Conference. (pp. 1–10). August 3-5, Medellín, Colombia.spa
dc.relation.referencesMota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14–27. https://doi.org/10.1016/j.jclepro.2014.07.052spa
dc.relation.referencesMourhir, A., Papageorgiou, E., Kokkinos, K., & Rachidi, T. (2017). Exploring Precision Farming Scenarios Using Fuzzy Cognitive Maps. Sustainability, 9(7), 1241. https://doi.org/10.3390/su9071241spa
dc.relation.referencesMpelogianni, V., Marnetta, P., & Groumpos, P. P. (2015). Fuzzy Cognitive Maps in the Service of Energy Efficiency. IFAC-PapersOnLine, 48(24), 1–6. https://doi.org/10.1016/j.ifacol.2015.12.047spa
dc.relation.referencesNagar, L., & Jain, K. (2008). Supply chain planning using multi-stage stochastic programming. Supply Chain Management: An International Journal, 13(3), 251–256. https://doi.org/10.1108/13598540810871299spa
dc.relation.referencesNarasimhan, R., & Nair, A. (2005). The antecedent role of quality, information sharing and supply chain proximity on strategic alliance formation and performance. International Journal of Production Economics, 96(3), 301–313. https://doi.org/10.1016/j.ijpe.2003.06.004spa
dc.relation.referencesNarasimhan, V., Venkatasubbaiah, K., & Avadhani, P. S. (2013). Identification of Critical SSCM Activities Through Confirmatory Factor Analysis. International Journal for Quality Research, 7(2), 239–248.spa
dc.relation.referencesObiedat, M., & Samarasinghe, S. (2016). A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems. Applied Soft Computing Journal, 48, 91–110. https://doi.org/10.1016/j.asoc.2016.06.001spa
dc.relation.referencesPang, J., & Tan, K. H. (2018). Supply chain quality and pricing decisions under multi-manufacturer competition. Industrial Management & Data Systems, 118(1), 164–187. https://doi.org/10.1108/IMDS-03-2017-0092spa
dc.relation.referencesPapageorgiou, E. I., Aggelopoulou, K. D., Gemtos, T. A., & Nanos, G. D. (2013). Yield prediction in apples using Fuzzy Cognitive Map learning approach. Computers and Electronics in Agriculture, 91, 19–29. https://doi.org/10.1016/j.compag.2012.11.008spa
dc.relation.referencesPapageorgiou, E., Markinos, A., & Gemptos, T. (2009). Application of fuzzy cognitive maps for cotton yield management in precision farming. Expert Systems with Applications, 36(10), 12399–12413. https://doi.org/10.1016/j.eswa.2009.04.046spa
dc.relation.referencesParast, M. M. (2013). Supply chain quality management: An inter-organizational learning perspective. International Journal of Quality & Reliability Management, 30(5), 511–529. https://doi.org/10.1108/09574090910954864spa
dc.relation.referencesParast, M. M. (2019). A learning perspective of supply chain quality management: empirical evidence from US supply chains. Supply Chain Management: An International Journal, 25(1), 17–34. https://doi.org/10.1108/SCM-01-2019-0028spa
dc.relation.referencesPark, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205–1224. https://doi.org/10.1080/00207540412331327718spa
dc.relation.referencesPelta, D. A., & Cruz Corona, C. (2018). Soft Computing Based Optimization and Decision Models. Berlin: Springer. https://doi.org/10.1007/978-3-319-64286-4spa
dc.relation.referencesPeng, X., Prybutok, V., & Xie, H. (2019). Integration of supply chain management and quality management within a quality focused organizational framework. International Journal of Production Research, 58(2), 448–466. https://doi.org/10.1080/00207543.2019.1593548spa
dc.relation.referencesPettersson, A. I., & Segerstedt, A. (2013). Measuring supply chain cost. International Journal of Production Economics, 143(2), 357–363. https://doi.org/10.1016/j.ijpe.2012.03.012spa
dc.relation.referencesPhan, A. C., Abdallah, A. B., & Matsui, Y. (2011). Quality management practices and competitive performance: Empirical evidence from Japanese manufacturing companies. International Journal of Production Economics, 133(2), 518–529. https://doi.org/10.1016/j.ijpe.2011.01.024spa
dc.relation.referencesPoczeta, K., & Papageorgiou, E. I. (2018). Implementing Fuzzy Cognitive Maps with Neural Networks for Natural Gas Prediction. In 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1026–1032). Volos, Greece: IEEE. https://doi.org/10.1109/ICTAI.2018.00158spa
dc.relation.referencesRashid, K., & Aslam, M. M. H. (2012). Business excellence through total supply chain quality management. Asian Journal on Quality, 13(3), 309–324. https://doi.org/10.1108/09574090910954864spa
dc.relation.referencesReisman, A. (2004). How can OR/MS Educators Benefit From Creating and Using Taxonomies? INFORMS Transactions on Education, 4(3), 55–65. https://doi.org/10.1287/ited.4.3.55spa
dc.relation.referencesRobinson, C. J., & Malhotra, M. K. (2005). Defining the concept of supply chain quality management and its relevance to academic and industrial practice. International Journal of Production Economics, 96(3), 315–337. https://doi.org/10.1016/j.ijpe.2004.06.055spa
dc.relation.referencesRomero, J. C., Coudert, T., Geneste, L., & De Valroger, A. (2012). Collaborative methodology for supply chain quality management: Framework and integration with strategic decision processes in product development. In 6th European Conference on Information Management and Evaluation, ECIME 2012 (pp. 418–427).spa
dc.relation.referencesRushton, A., Croucher, P., & Baker, P. (2017). The Handbook of Logistics and Distribution Management: Understanding the Supply Chain (6th ed.). New York, NY: Kogan Page.spa
dc.relation.referencesSalmeron, J. (2010). Modelling grey uncertainty with Fuzzy Grey Cognitive Maps. Expert Systems with Applications, 37(12), 7581–7588. https://doi.org/10.1016/j.eswa.2010.04.085spa
dc.relation.referencesSanders, N. (2018). Supply Chain Management: A Global Perspective (2nd ed.). Hoboken, NJ: John Wiley & Sons.spa
dc.relation.referencesSarkar, B., Majumder, A., Sarkar, M., Kim, N., & Ullah, M. (2018). Effects of variable production rate on quality of products in a single-vendor multi-buyer supply chain management. The International Journal of Advanced Manufacturing Technology, 99, 567–581. https://doi.org/10.1007/s00170-018-2527-3spa
dc.relation.referencesSayama, H. (2015). Introduction to the Modeling and Analysis of Complex Systems. New York: Open SUNY Textbooks.spa
dc.relation.referencesShah, J. (2016). Supply Chain Management: Text and Cases (2nd ed.). Noida, India: Pearson.spa
dc.relation.referencesSharma, A., Garg, D., & Agarwal, A. (2012). Quality Management in Supply Chains: the Literature Review. International Journal for Quality Research, 6(3), 193–206.spa
dc.relation.referencesSharma, A., Garg, D., & Agarwal, A. (2014). Product recall: Supply chain quality issue? International Journal of Intelligent Enterprise, 2(4), 277–293. https://doi.org/10.1504/IJIE.2014.069059spa
dc.relation.referencesSimchi-Levi, D., Chen, X., & Bramel, J. (2014). The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management (3rd ed.). New York, NY: Springer.spa
dc.relation.referencesSkład, A. (2019). Assessing the impact of processes on the Occupational Safety and Health Management System’s effectiveness using the fuzzy cognitive maps approach. Safety Science, 117, 71–80. https://doi.org/10.1016/j.ssci.2019.03.021spa
dc.relation.referencesSlack, N., Brandon-Jones, A., & Johnston, R. (2016). Operations Management (8th ed.). Harlow, UK: Pearson.spa
dc.relation.referencesSlack, N., & Lewis, M. (2017). Operations Strategy (5th ed.). Harlow, UK: Pearson.spa
dc.relation.referencesSong, T., Li, Y., Song, J., & Zhang, Z. (2014). Airworthiness considerations of supply chain management from Boeing 787 Dreamliner battery issue. Procedia Engineering, 80, 628–637. https://doi.org/10.1016/j.proeng.2014.09.118spa
dc.relation.referencesSteven, A. B., Dong, Y., & Corsi, T. (2014). Global sourcing and quality recalls: An empirical study of outsourcing-supplier concentration-product recalls linkages. Journal of Operations Management, 32(5), 241–253. https://doi.org/10.1016/j.jom.2014.04.003spa
dc.relation.referencesSu, Q., & Liu, Q. (2011). Supply Chain Quality Management by Contract Design. In D. Önkal & E. Aktas (Eds.), Supply Chain Management - Pathways for Research and Practice (pp. 57–74). Rijeka: InTech.spa
dc.relation.referencesSuard, S., Hostikka, S., & Baccou, J. (2013). Sensitivity analysis of fire models using a fractional factorial design. Fire Safety Journal, 62, 115–124. https://doi.org/10.1016/j.firesaf.2013.01.031spa
dc.relation.referencesSun, P., & Li, Q. (2010). Study on Supply Chain Quality Management Model Based on Immune Theory. 2010 International Conference on Management and Service Science, 1–4. https://doi.org/10.1109/ICMSS.2010.5576336spa
dc.relation.referencesSusniene, D., Torma, A., Buruzs, A., Hatwágner, M. F., & Kóczy, L. T. (2014). Using Fuzzy Cognitive Map Approach to model the casual relationships in stakeholder management at companies. In 5th IEEE International Conference on Cognitive Infocommunications (pp. 121–124). Vietri sul Mare, Italy.spa
dc.relation.referencesTarashioon, S., Van Driel, W. D., & Zhang, G. Q. (2014). Multi-physics reliability simulation for solid state lighting drivers. Microelectronics Reliability, 54(6–7), 1212–1222. https://doi.org/10.1016/j.microrel.2014.02.019spa
dc.relation.referencesTruong, H. Q., Sampaio, P., Sameiro, M., & Fernandez, A. (2016). An extensive structural model of supply chain quality management and firm performance. International Journal of Quality & Reliability Management, 33(4), 444–464.spa
dc.relation.referencesTruong, H., Sampaio, P., Carvalho, M. S., Fernandes, A. C., Binh An, D. T., & Vilhenac, E. (2016). An extensive structural model of supply chain quality management and firm performance. International Journal of Quality & Reliability Management, 33(4), 444–464. https://doi.org/10.1108/IJQRM-11-2014-0188spa
dc.relation.referencesTsadiras, A. K. (2008). Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Information Sciences, 178(20), 3880–3894. https://doi.org/10.1016/j.ins.2008.05.015spa
dc.relation.referencesTsai, T. P., & Wang, F.-C. (2004). Improving Supply Chain Management: A Model for Collaborative Quality Control. In Advanced Semiconductor Manufacturing, 2004. ASMC ’04. IEEE Conference and Workshop (pp. 36–42). https://doi.org/10.1109/ASMC.2004.1309531spa
dc.relation.referencesWieland, A., Handfield, R. B., & Durach, C. F. (2016). Mapping the Landscape of Future Research Themes in Supply Chain Management. Journal of Business Logistics, 37(3), 205–212.spa
dc.relation.referencesWood, L. C., Wang, J. X., Olesen, K., & Reiners, T. (2017). The effect of slack, diversification, and time to recall on stock market reaction to toy recalls. International Journal of Production Economics, 193, 244–258. https://doi.org/10.1016/j.ijpe.2017.07.021spa
dc.relation.referencesWu, Y., Yang, Y., Wang, Z., & Yuan, J. (2013). Macro Quality Chain Management and Coordination Optimization Research. Journal of Software, 8(8), 2023–2031. https://doi.org/10.4304/jsw.8.8.2023-2031spa
dc.relation.referencesXiao, T., Yang, D., & Shen, H. (2011). Coordinating a supply chain with a quality assurance policy via a revenue-sharing contract. International Journal of Production Research, 49(1), 99–120. https://doi.org/10.1080/00207543.2010.508936spa
dc.relation.referencesYan, J., Sun, S., Wang, H., & Hua, Z. (2010). Ontology of Collaborative Supply Chain for Quality Management. World Academy of Science, Engineering and Technology, 4(4), 365–370.spa
dc.relation.referencesYao, D. Q., & Zhang, N. (2009). Contract design for supply chain quality management. International Journal of Value Chain Management, 3(2), 129–145. https://doi.org/10.1504/IJVCM.2009.026954spa
dc.relation.referencesYoo, S. H. (2014). Product quality and return policy in a supply chain under risk aversion of a supplier. International Journal of Production Economics, 154, 146–155. https://doi.org/10.1016/j.ijpe.2014.04.012spa
dc.relation.referencesYoo, S. H., & Cheong, T. (2018). Quality improvement incentive strategies in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 114, 331–342. https://doi.org/10.1016/j.tre.2018.01.005spa
dc.relation.referencesYu, Y., & Huo, B. (2018). Supply chain quality integration: relational antecedents and operational consequences. Supply Chain Management: An International Journal, 23(3), 188–206. https://doi.org/10.1108/SCM-08-2017-0280spa
dc.relation.referencesZeng, J., Phan, C. A., & Matsui, Y. (2013). Supply chain quality management practices and performance: An empirical study. Operations Management Research, 6(1–2), 19–31. https://doi.org/10.1007/s12063-012-0074-xspa
dc.relation.referencesZhang, M., Guo, H., Huo, B., Zhao, X., & Huang, J. (2017). Linking supply chain quality integration with mass customization and product modularity. International Journal of Production Economics, 207, 227–235. https://doi.org/10.1016/j.ijpe.2017.01.011spa
dc.relation.referencesZimon, D. (2017). The Impact of TQM Philosophy for the Improvement of Logistics Processes in the Supply Chain. International Journal for Quality Research, 11(1), 3–16. https://doi.org/10.18421/IJQR11.01-01spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcIngeniería industrialspa
dc.subject.ddc650 - Gerencia y servicios auxiliares::658 - Gerencia generalspa
dc.subject.lembControl de calidad
dc.subject.lembCalidad de los productos
dc.subject.proposalGestión de la calidad en cadenas de suministrospa
dc.subject.proposalModelado analítico multietapaspa
dc.subject.proposalMapas cognitivos grises difusosspa
dc.subject.proposalDiseño factorial fraccionadospa
dc.subject.proposalSupply Chain Quality Managementeng
dc.subject.proposalMulti-layer Analytical Modelingeng
dc.subject.proposalFuzzy Grey Cognitive Mapseng
dc.subject.proposalFractional Factorial Designeng
dc.titleModelado de la gestión de la calidad en cadenas de suministro usando un enfoque multi-etapasspa
dc.title.translatedModeling supply chain ouality management using a multi-stage approacheng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
78752898.2020.pdf
Tamaño:
16.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctor en Ingeniería – Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: