Global lipschitz continuous solutions for a linear damped p-system

dc.contributor.advisorRendón Arbelaez, Leonardospa
dc.contributor.authorBeltrán Lizarazo, José Davidspa
dc.date.accessioned2021-01-19T22:05:05Zspa
dc.date.available2021-01-19T22:05:05Zspa
dc.date.issued2020-11-04spa
dc.description.abstractIn this proposal we present an alternative point of view for the mathematical treatment of a linearly damped p-system through a variant of the vanishing viscosity method and the use of the theory of compensated compactness. We prove the existence of a weak global Lipschitz continuous solution for the Cauchy problem $$ \begin{cases} v_{t}-u_x = 0 & (x,t) \in \mathbb{R} \times (0,\infty)\\ u_t+p(v)_x = -\alpha u, \end{cases} $$ with $\alhpa > 0$, and $p$ a smooth function subject to suitable conditions. The solution is constructed as the limit of global smooth solutions of parabolic perturbations of the system and its Lipschitz continuity is obtained trough classical embedding theorems of Sobolev spaces.spa
dc.description.abstractEn esta propuesta presentamos un punto de vista alternativo para el tratamiento matemático de un p-sistema linealmente amortiguado mediante una variante del método de la viscosidad nula y el uso de la teoría de compacidad compensada. Probamos la existencia de una solución débil global, Lipschitz continua para el problema de Cauchy $$ \begin{cases} v_{t}-u_x = 0 & (x,t) \in \mathbb{R} \times (0,\infty)\\ u_t+p(v)_x = -\alpha u, \end{cases} $$ con $\alpha>0$, y $p$ una función suave sujeta a condiciones apropiadas. La solución es construida como el límite de soluciones suaves globales de perturbaciones parabólicas del sistema y la Lipschitz-continuidad es obtenida a través de teoremas clásicos de inmersión en espacios de Sobolev.spa
dc.description.degreelevelMaestríaspa
dc.format.extent73spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBeltrán, J. (2020). Global lipschitz continuous solutions for a linear damped p-systemspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78832
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesAdams, R. (1975). Sobolev Spaces. Academic Press, Pure and Applied Mathematics, New York-San Francisco-London.spa
dc.relation.referencesBrezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York.spa
dc.relation.referencesDacorogna, B. (1982). Weak Continuity and Weak Lower Semi- Continuity of Non-Linear Functionals. Springer Verlag, New York.spa
dc.relation.referencesDiPerna, R. (1983). Convergence of Approximate Solutions to Conservation Laws. Arch. Rat. Mech. Anal. 82.spa
dc.relation.referencesEvans, L. (1988). Weak Convergence Methods for Nonlinear Partial Differential Equations. Conference Board of the Mathematical Sciences-American Mathematical Society, Providence, Rhode Island.spa
dc.relation.referencesEvans, L. (1999). Partial Differential Equations. American Mathematical Society, Berkeley, California.spa
dc.relation.referencesFrid, H. (1993). Compacidade Compensada aplicada as leis de conservacao. 19 Coloquio Brasileiro de Matemática, Rio de Janeiro.spa
dc.relation.referencesGodlewski, E. and Raviart, P. (1996). Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag. Applied Mathematical Sciences 118, New York.spa
dc.relation.referencesHsiao, L. and Liu, T. (1992). Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. 4, Communications in Mathematical Physics, Springer Verlag: 45-51.spa
dc.relation.referencesHsiao, L. and Serre, D. (1996). Global existence of solutions for the system of compressible adiabatic flow through porous media. 4, SIAM. J. Math. Analysis : 70-77.spa
dc.relation.referencesJiang, M., Li, D., and Ruan, L. (2013). Existence of a global smooth solution to the initial boundary-value problem for the p-system with nonlinear damping. 143, Proceedings of the Royal Society of Edinburgh : 1243-1253.spa
dc.relation.referencesKesavan, S. (1989.). Topics in Functional Analysis and Applications. New Age International Publishers, Bangalore, India.spa
dc.relation.referencesKesavan, S. (2009). Functional Analysis. Hindustian Book Agency, New Delhi, India.spa
dc.relation.referencesLax, P. (1957a). Asymptotic solutions of oscillatory initial value problems. 24, Duke Math Journal: 169 - 176.spa
dc.relation.referencesLax, P. (1957.b). Hyperbolic Systems of Conservation Laws II. Comm. Pure Appl. Math. vol 10.spa
dc.relation.referencesLax, P. (1971). Shock Waves and Entropy. Contributions to non-linear functional analysis. Academic Press, New York.spa
dc.relation.referencesLu, Y. (1993). The global holder solution of isentropic gas dynamics. 123, Proceedings of the Royal Society of Edinburgh: 231-238.spa
dc.relation.referencesLu, Y. (2003.). Hyperbolic Conservation Laws and The Compensated Compactness Method. Chapman and Hall/CRC. Monographs and Surveys in Pure and Applied Mathematics 128, Boca Raton - London - New York - Washington D.C.spa
dc.relation.referencesLukkassen, D. and Wall, P. (2002). On weak convergence of locally periodic functions. 1, Journal of Nonlinear Mathematical Physics Vol. 9.spa
dc.relation.referencesMurat, F. (1978). Compacite par Compensation. Ann. Scuola Norm. Sup. Pisa Sci. Math, Pissa.spa
dc.relation.referencesMalek, J., Necas, J., Rokyta, M., and Ruzicka, M. (1996). Weak and Measure-valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computations 13. Chapman and Hall, New York.spa
dc.relation.referencesNishida, T. (1978). Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics. Publications Mathematiques D'orsay, France.spa
dc.relation.referencesRudin, W. (1991). Functional Analysis. Mc Graw-Hill International Editions, Singapore.spa
dc.relation.referencesSmoller, J. (1994). Shock Waves and Reaction - Diffusion Equations. Springer Verlag, New York.spa
dc.relation.referencesSmoller, J., Chueh, K., and Conley, C. (1977). Positively invariant regions for systems of nonlinear diffusion equations. 26, Indiana University Mathematics Journal.spa
dc.relation.referencesSmoller, J. and Hoff, D. (1985). Solutions in the large for certain nonlinear parabolic systems. 2, Annales de l'institut Henri Poincaré - Analyse non lineare: 213-235.spa
dc.relation.referencesTartar, L. (1979). Compensated Compactness and Applications to Differential Partial Equations. Heriot-Watt Symmposium Vol. 4 - Pitman Press, New York.spa
dc.relation.referencesWang, H. and Li, C. (1988). Global regularity and formation of singularities of solutions for quasilinear hyperbolic systems with dissipation. 9, Chin. Ann. Math.: 509-523.spa
dc.relation.referencesYang, T. and Longwei, L. (1991). Existence and Nonexistence of Global Smooth Solutions for Damped p-System with "Really Large" Initial Data. 4, J. Part. Diff. Eq.: 45-51.spa
dc.relation.referencesYang, T. and Wang, W. (2003). Pointwise Estimates and Lp Convergence Rates to DiffusionWaves for p-System with Damping. 187, Journal of Differential Equations: 310-336.spa
dc.relation.referencesZheng, Y. and Longwei, L. (1988). Existence and Non-existence of Global Smooth Solutions for Quasilinear Hyperbolic Systems. 9, Chin. Ann. Math. Series B.: 372-377.spa
dc.relation.referencesZhu, C. and Jiang, M. (2009). Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant. 246, Journal of Differential Equations: 50-77.spa
dc.relation.referencesZhu, C., Zhao, H., and Xu, X. (1999). Global smooth solution for nonlinearly damped p-system with large initial data. 73, Applicable Analysis: An International Journal: 507-522.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.ddc515 - Análisisspa
dc.subject.proposalVanishing viscosityeng
dc.subject.proposalSoluciones globalesspa
dc.subject.proposalLinearly damped p-systemeng
dc.subject.proposalP- sistema amortiguadospa
dc.subject.proposalGlobal solutionseng
dc.subject.proposalCompacidad compensadaspa
dc.subject.proposalCompensated compactnesseng
dc.subject.proposalViscosidad nulaspa
dc.titleGlobal lipschitz continuous solutions for a linear damped p-systemspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023939158.2020.pdf
Tamaño:
518.19 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: