Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
dc.contributor.advisor | Valencia Islas, Norma Angélica | |
dc.contributor.advisor | Rojas Araque, José Leopoldo | spa |
dc.contributor.author | Parra Gutiérrez, Sandy Johana | |
dc.contributor.researchgroup | Grupo de Investigación en Química Medicinal | spa |
dc.contributor.researchgroup | Grupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianos | spa |
dc.contributor.supervisor | Rojas Araque José Leopoldo | |
dc.date.accessioned | 2024-07-16T17:00:38Z | |
dc.date.available | 2024-07-16T17:00:38Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías, mapas | spa |
dc.description.abstract | Los problemas dérmicos, entre ellos el cáncer de piel, relacionados con la exposición a la radiación solar y el consecuente estrés oxidativo generado, constituyen un problema de salud pública que puede prevenirse mediante el uso de agentes fotoprotectores y antioxidantes. Dado que dichos agentes convencionales han demostrado inestabilidad, ineficacia y problemas de seguridad, surge la necesidad de encontrar sustancias novedosas potencialmente más eficaces e inocuas. El objetivo de este trabajo consistió en obtener principios activos con propiedades antioxidantes y/o fotoprotectoras a partir de un hongo liquenizado presente en el páramo de Sumapaz, Colombia. Inicialmente, se realizó el tamizaje de las especies Peltigera neopolydactyla, Sticta humboldtii y Cladonia rappii que crecen directamente expuestas a la radiación solar en este ecosistema, indicando la posibilidad de que biosintetizaran metabolitos con las actividades mencionadas. Posteriormente, la investigación se centró en la especie que presentó el mejor perfil de actividad, Cladonia rappii. Se llevó a cabo la evaluación de la actividad antioxidante y fotoprotectora estableciendo el poder captador de radicales libres, el poder reductor férrico y la inhibición de la peroxidación lipídica. La actividad fotoprotectora se determinó in vitro, calculando el factor de protección solar (FPS), la longitud de onda crítica y la relación UVA/UVB. Se aislaron y caracterizaron cinco compuestos a partir de dicha especie: ácido fumarprotocetrárico (1), ácido úsnico (2), ácido 3-formil-2,4-dihidroxi-6-metil benzoico o ácido haematommico (3), ácido 9-metil- protocetrárico (4) y al ácido 3beta-hidroxi-hopan-29- oico (5), estos tres últimos se reportan por primera vez para C. rappii. A pesar de que el ácido fumarprotocetrárico resultó ser el componente mayoritario en el extracto activo de C. rappii, éste no exhibió una actividad antioxidante ni fotoprotectora destacada, por su parte, el ácido úsnico destacó como un potente antioxidante, demostrando su habilidad para captar radicales libres, reducir iones férricos e inhibir la peroxidación lipídica. Además, exhibió una marcada capacidad de protección contra las radiaciones UVB y UVA, clasificándose como un protector solar de amplio espectro. Este compuesto presenta propiedades fisicoquímicas que lo hacen idóneo para su aplicación tópica en dermatología, facilitando su absorción en el estrato córneo de la piel con el fin de ejercer un efecto protector. La evaluación de los compuestos 3 a 5 no fue posible debido a que se encontraban en cantidades minoritarias en hongo liquénico de estudio, lo que limitó la capacidad de llevar a cabo un análisis de sus propiedades, ya que su presencia no era suficiente para obtener resultados en las pruebas realizadas en esta investigación (Texto tomado de la fuente). | spa |
dc.description.abstract | Dermatological issues, including skin cancer, related to exposure to solar radiation and the resulting oxidative stress, constitute a public health problem that can be prevented through the use of photoprotective and antioxidant agents. Given that such conventional agents have demonstrated instability, inefficacy, and safety issues, there arises the need to find novel substances that are potentially more effective and safer. The objective of this study was to obtain active compounds with antioxidant and/or photoprotective properties from a lichenized fungus found in the páramo of Sumapaz, Colombia. Initially, screening was conducted on the species Peltigera neopolydactyla, Sticta humboldtii, and Cladonia rappii, which grow directly exposed to solar radiation in this ecosystem, indicating the possibility of biosynthesizing metabolites with the mentioned activities. Subsequently, the research focused on the species that exhibited the best activity profile, Cladonia rappii. The evaluation of antioxidant and photoprotective activity was carried out by establishing free radical scavenging power, ferric reducing power, and inhibition of lipid peroxidation. Photoprotective activity was determined in vitro by calculating the sun protection factor (SPF), critical wavelength, and UVA/UVB ratio. Five compounds were isolated and characterized from this species: fumarprotocetraric acid (1), usnic acid (2), 3-formyl-2,4-dihydroxy-6-methyl benzoic acid, or haematommic acid (3), 9-methyl-protocetraric acid (4), and 3-hydroxy-hopan-29-oic acid (5), with the latter three being reported for the first time in C. rappii. Despite fumarprotocetraric acid being the major component in the active extract of C. rappii, it did not exhibit remarkable antioxidant or photoprotective activity. On the other hand, usnic acid emerged as a potent antioxidant, demonstrating its ability to scavenge free radicals, reduce ferric ions, and inhibit lipid peroxidation. Additionally, it displayed a pronounced protective capacity against both UVB and UVA radiation, qualifying it as a broad-spectrum sunscreen. This compound possesses physicochemical properties that make it suitable for topical application in dermatology, facilitating its absorption into the stratum corneum of the skin to exert a protective effect. The evaluation of compounds 3 to 5 was not possible due to their minority presence in the studied lichenized fungus, limiting the ability to conduct a detailed analysis of their properties, as their presence was insufficient to yield significant results in the tests conducted in this research. Keywords: Lichenized fungi, antioxidation, photoprotection, Cladonia rappii. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Farmacéuticas | spa |
dc.description.methods | 4.2. Selección de la especie objeto de estudio 4.2.1. Recolección 4.2.2. Preparación de extractos 4.2.3. Evaluación de la actividad antioxidante . 4.2.4. Evaluación de la actividad fotoprotectora 4.3. Estudio químico de Cladonia rappii 4.3.1. Procedimientos experimentales generales 4.3.2. Confirmación de la identidad taxonómica de Cladonia rappii 4.3.3. Extracción de Cladonia rappii 4.3.4. Fraccionamiento del extracto 4.4. Estudio biológico de Cladonia rappii 4.4.2. Determinación de la actividad antioxidante 4.4.3. Determinación de la actividad fotoprotectora 4.5. Análisis estadístico | spa |
dc.description.researcharea | Obtención de sustancias bioactivas a partir de fuentes naturales | spa |
dc.format.extent | 148 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86463 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | spa |
dc.relation.references | Abhimanyu, K. K., Ravindra, C. S., & Avanapu, R. S. (2017). A validated HPTLC method for the quantification of friedelin in Putranjiva roxburghii Wall extracts and in polyherbal formulations. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 79–84. Https://doi.org/10.1016/J.BFOPCU.2016.11.002 | spa |
dc.relation.references | Addor, F. A. S. A. (2017). Antioxidants in dermatology. Anais brasileiros de dermatologia, 92, 356-362. | spa |
dc.relation.references | Adin, C. A. (2021). Bilirubin as a therapeutic molecule: challenges and opportunities. Antioxidants 2021, Vol. 10, Page 1536, 10(10), 1536. https://doi.org/10.3390/ANTIOX10101536 | spa |
dc.relation.references | Aguirre, J. (2006). Diversidad de los musgos (Briophita) y líquenes de Colombia-Una evaluación con propósitos de conservación (Doctoral dissertation, Tesis doctoral. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, Bogotá. | spa |
dc.relation.references | Aguirre, J. (2008). Diversidad y riqueza de musgos y líquenes en Colombia- Generalidades y metodología. Colombia diversidad biótica VI: Riqueza y diversidad de los musgos y líquenes en Colombia, 1-17. | spa |
dc.relation.references | Alonso, C., Montero, T., Arias, S., & Buendía, A. (2022). Current state of skin cancer prevention: a systematic review. Actas Dermo-Sifiliograficas, 113(8), 781–791. https://doi.org/10.1016/J.AD.2022.04.015 | spa |
dc.relation.references | Baek, J., & Lee, M. G. (2016). Oxidative stress and antioxidant strategies in dermatology. Redox Report. 21(4), 164-169. | spa |
dc.relation.references | Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. | spa |
dc.relation.references | Bernal, R., Gradstein, S.R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. | spa |
dc.relation.references | Bernat, R. (2021). Recomendaciones sobre fotoprotección en una oficina de begoña, Farmacia. Begoña. | spa |
dc.relation.references | Bézivin, C., Tomasi, S., Rouaud, I., Delcros, J.-G., & Boustie, J. (2004). Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med, 70:877-877. | spa |
dc.relation.references | Bharate, S., Kumar, V., & A Vishwakarma, R. (2016). Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery. Combinatorial Chemistry & High Throughput Screening, 19(6), 461-469. | spa |
dc.relation.references | Bhattacharyya, S., Deep, P. R., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. Am. J. PharmTech Res, 6(6), 1-7. | spa |
dc.relation.references | Binev, Y., Marques, M. M. B., & Aires-de-Sousa, J. (2007). Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts. Journal of Chemical Information and Modeling, 47(6), 2089–2097. https://doi.org/10.1021/CI700172N | spa |
dc.relation.references | Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization 5: 9-19. | spa |
dc.relation.references | Brancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D’alicandro, G., Mazzaccara, C., Lombardo, B., Pero, R., Terracciano, D., Limongelli, G., Calabrò, P., D’argenio, V., Frisso, G., & Scudiero, O. (2022). The biological role of vitamins in athletes’ muscle, heart and microbiota. International journal of environmental research and public health, 19(3), 1249. https://doi.org/10.3390/IJERPH19031249 | spa |
dc.relation.references | Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. | spa |
dc.relation.references | Buso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2017). Guidelines for the development of herbal-based sunscreen. In Herbal medicine. IntechOpen. | spa |
dc.relation.references | Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/C7CS00431A | spa |
dc.relation.references | Celia, J. A., Pérez de la Lastra, J. M., Plou, F. J., & Perez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ros) revisited: outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 2021, Vol. 22, Page 4642, 22(9), 4642. https://doi.org/10.3390/IJMS22094642 | spa |
dc.relation.references | Cetin Cakmak, K., & Gülçin, İ. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273–1280. https://doi.org/10.1016/J.TOXREP.2019.11.003 | spa |
dc.relation.references | Chen, L., Hu, J. Y., & Wang, S. Q. (2012). The role of antioxidants in photoprotection: A critical review. Journal of the American Academy of Dermatology, 67(5), 1013–1024. https://doi.org/10.1016/J.JAAD.2012.02.009 | spa |
dc.relation.references | Coelho de Assis, T. (2014). Identificação de metabólitos secundários e estudo de bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro – MG. https://locus.ufv.br//handle/123456789/7634 | spa |
dc.relation.references | Consortium of Lichen Herbaria - Cladonia rappii. (2023). https://lichenportal.org/portal/taxa/index.php?taxon=53461&clid=1035 | spa |
dc.relation.references | Costa, M., Sezgin-Bayindir, Z., Losada-Barreiro, S., Paiva-Martins, F., Saso, L., & Bravo-Díaz, C. (2021). Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: encapsulation and interfacial phenomena. Biomedicines, 9(12). https://doi.org/10.3390/BIOMEDICINES9121909 | spa |
dc.relation.references | Crawford, S. D. (2015). Lichens used in traditional medicine. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential, 27–80. https://doi.org/10.1007/978-3-319-13374-4_2/COVER | spa |
dc.relation.references | Cuendet, M., Hostettmann, K., Potterat, O., & Dyatmiko, W. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4), 1144–1152. https://doi.org/10.1002/HLCA.19970800411 | spa |
dc.relation.references | Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. | spa |
dc.relation.references | Díaz, M., Llorca, M., & Barceló, D. (2008). Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC - Trends in Analytical Chemistry, 27(10), 873–887. https://doi.org/10.1016/J.TRAC.2008.08.012 | spa |
dc.relation.references | Díaz-Reinoso, B., Rodríguez-González, I., & Domínguez, H. (2021). Towards greener approaches in the extraction of bioactives from lichens. Reviews in Environmental Science and Biotechnology, 20(4), 917–942. https://doi.org/10.1007/S11157-021-09595-9 | spa |
dc.relation.references | Diffey, B. L. (1984). Whatever happened to the erythemal unit. Photodermatol Photoimmunol Photomed, 1, 103-105. | spa |
dc.relation.references | Donglikar, M. M., & Deore, S. L. (2016). Sunscreens: A review. Pharmacognosy Journals, 8(3). | spa |
dc.relation.references | Dunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y., & Kadekaro, A. L. (2018). Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Frontiers in Pharmacology, 9(APR). https://doi.org/10.3389/fphar.2018.00392 | spa |
dc.relation.references | Erna, M. (2017). Isolasi dan elusidasi struktur senyawa metabolit sekunder dari lichen sumatera Cladonia rappii serta pengujian aktivitas antibakteri. Diploma Thesis, Universitas Andalas. | spa |
dc.relation.references | Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/JM000942E/SUPPL_FILE/JM000942E_S.PDF | spa |
dc.relation.references | Espín de Gea, J. C., Soler-Rivas, C., Wichers, H. J., & García-Viguera, C. (2000). Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. Farris PK, Valacchi G. Ultraviolet light protection: is it really enough? Antioxidants (basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175. | spa |
dc.relation.references | Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175. | spa |
dc.relation.references | Fazio AT, Adler MT, Bertoni MD, Sepúlveda CS, Damonte EB, Maier MS. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):543-9. doi: 10.1515/znc-2007-7-813. PMID: 17913069.Fernandes, J., and C.R. Gattass (2009). Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1), Journal of Medicinal Chemistry. 52(4), 1214-1218. | spa |
dc.relation.references | Fernandes, J., and C.R. Gattass (2009). Topological Polar Surface Area Defines Substrate Transport by Multidrug Resistance Associated Protein 1 (MRP1/ABCC1), J. Med. Chem., 52(4), 1214-1218. | spa |
dc.relation.references | Fernández-Moriano, C., Gómez-Serranillos, M. P., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology, 54(1), 1–17. https://doi.org/10.3109/13880209.2014.1003354 | spa |
dc.relation.references | Fondo Colombiano de Enfermedades de Alto Costo. (2018). «23 de Mayo: Día mundial de la lucha contra el melanoma». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/site/investigaciones/dia-mundial-de-la-lucha-contra-el-melanoma-2/. | spa |
dc.relation.references | Fondo Colombiano de Enfermedades de Alto Costo. (2022). «Día mundial del melanoma 2023». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/cancer/dia-mundial-del-melanoma-2023/ | spa |
dc.relation.references | Food and Drug Administration. (2007). Department of Health and Human Services Food and Drug Administration 21 CFR Parts 347 and 352. Federal Register, 72(165), 49070–49122. | spa |
dc.relation.references | Food and Drug Administration. (2011). Labeling and effectiveness testing; sunscreen drug products for over-the-counter human use. Final rule. Federal Register, 76(117), 35620–35665. | spa |
dc.relation.references | Galanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules 2021, Vol. 26, Page 5224, 26(17), 5224. https://doi.org/10.3390/MOLECULES26175224 | spa |
dc.relation.references | Gaspar, L. R., Tharmann, J., Maia Campos, P. M. B. G., & Liebsch, M. (2013). Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. Toxicology in Vitro, 27(1), 418–425. https://doi.org/10.1016/J.TIV.2012.08.006 | spa |
dc.relation.references | GBIF. (2021). Cladonia rappii A.Evans. | spa |
dc.relation.references | Global Cancer Observatory (2020). https://gco.iarc.fr/ | spa |
dc.relation.references | Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209. | spa |
dc.relation.references | Grice, H. (1986). Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol, 24, 1127–1130. | spa |
dc.relation.references | Guo, J., Li, Z. L., Wang, A. L., Liu, X. Q., Wang, J., Guo, X., ... & Hua, H. M. (2011). Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells. Planta medica, 77(18), 2042-2046. | spa |
dc.relation.references | Halliwell, B., & Gutteridge, J. M. C. (1990). The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics, 280(1), 1–8. https://doi.org/10.1016/0003-9861(90)90510-6 | spa |
dc.relation.references | Halliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward?. Cardiovascular research, 47(3), 410-418. | spa |
dc.relation.references | Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition reviews, 70(5), 257-265. | spa |
dc.relation.references | Harris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ros in cancer. Trends in Cell Biology, 30(6), 440–451. https://doi.org/10.1016/j.tcb.2020.03.002 | spa |
dc.relation.references | Hawksworth, D. L. (2015). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. The Lichenologist, 47(4), 277–278. https://doi.org/10.1017/S0024282915000195 | spa |
dc.relation.references | Hojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International journal of pharmaceutics, 408(1-2), 27-38. | spa |
dc.relation.references | Huang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual role of reactive oxygen species and their application in cancer therapy. Journal of Cancer, 12(18), 5543. https://doi.org/10.7150/JCA.54699 | spa |
dc.relation.references | Huneck, S., & Yoshimura, I. (1996). Identification of lichen substances. Identification of lichen substances. https://doi.org/10.1007/978-3-642-85243-5 | spa |
dc.relation.references | Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/J.AJME.2017.09.001 | spa |
dc.relation.references | Imamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and removal of benzophenone-type uv filters from water matrices by advanced oxidation processes. Molecules 2022, Vol. 27, Page 1874, 27(6), 1874. https://doi.org/10.3390/MOLECULES27061874 | spa |
dc.relation.references | Instituto Nacional de Cancerología. (2020). Diagnostico y tratamiento. https://www.cancer.gov.co/portafolio-1/unidades-funcionales-1/dermatologia-oncologica/diagnostico-tratamiento | spa |
dc.relation.references | Jesus, A., Sousa, E., Cruz, M. T., Cidade, H., Lobo, J. M. S., & Almeida, I. F. (2022). UV filters: challenges and prospects. Pharmaceuticals, 15(3). https://doi.org/10.3390/PH15030263/S1 | spa |
dc.relation.references | Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29. https://doi.org/10.1016/J.ARR.2015.01.001 | spa |
dc.relation.references | Kasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., & Loscalzo, J. (2020). Manual de Medicina. New York, N.Y.: McGraw-Hill Education LLC. | spa |
dc.relation.references | Kassim, N. K., Lim, P. C., Ismail, A., & Awang, K. (2019). Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191. https://doi.org/10.1016/J.FOODCHEM.2018.08.045 | spa |
dc.relation.references | Kosanić, M., Ranković, B., & Vukojević, J. (2011). Antioxidant properties of some lichen species. Journal of Food Science and Technology, 48(5), 584–590. https://doi.org/10.1007/S13197-010-0174-2/METRICS | spa |
dc.relation.references | Kosanić, M., Ranković, B., Stanojković, T., Rančić, A., & Manojlović, N. (2014). Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. Food Science and Technology, 59(1), 518–525. https://doi.org/10.1016/J.LWT.2014.04.047 | spa |
dc.relation.references | Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 25, 726-732. | spa |
dc.relation.references | Lage, T. C. A., Horta, L. P., Montanari, R. M., Silva, J. G., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2016). Structural elucidation and free radical scavenging activity of a new o-orsellinic acid derivative isolated from the lichen Cladonia Rappii. Natural Product Communications, 11(9), 1311–1312. https://doi.org/10.1177/1934578X1601100932 | spa |
dc.relation.references | Lage, T. C. A., Maciel, T. M. S., Mota, Y. C. C., Sisto, F., Sabino, J. R., Santos, J. C. C., Figueiredo, I. M., Masia, C., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2018). In vitro inhibition of Helicobacter pylori and interaction studies of lichen natural products with jack bean urease. New Journal of Chemistry, 42(7), 5356–5366. https://doi.org/10.1039/C8NJ00072G | spa |
dc.relation.references | Leal, A., Rojas, J. L., Valencia-Islas, N. A., & Castellanos, L. (2018). New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural product research, 32(12), 1375-1382. | spa |
dc.relation.references | Liga Colombiana contra el Cáncer. (2022). Cáncer de piel y su clasificación. https://www.ligacancercolombia.org/educacion/clasificacion-cancer-de-piel/ | spa |
dc.relation.references | Lingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002 | spa |
dc.relation.references | Liu, J. K. (2022). Natural products in cosmetics. Natural Products and Bioprospecting, 12(1). https://doi.org/10.1007/S13659-022-00363-Y | spa |
dc.relation.references | Lohezic, F., Legouin, B., Couteau, C., Boustie, J., & Coiffard, L. (2013). Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology, 120, 17–28. https://doi.org/10.1016/J.JPHOTOBIOL.2013.01.009 | spa |
dc.relation.references | López Ladino, J. A. (2021). Determinación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadas. Tesis. Universidad Nacional de Colombia. | spa |
dc.relation.references | Macías, F. A., Molinillo, J. M. G., Varela, R. M., & Galindo, J. C. G. (2007). Allelopathy--a natural alternative for weed control. Pest Management Science, 63(4), 327–348. https://doi.org/10.1002/PS.1342 | spa |
dc.relation.references | Mamta, Misra, K., Dhillon, G. S., Brar, S. K., & Verma, M. (2014). Antioxidants. Biotransformation of waste biomass into high value biochemicals, New York: Springer; 2014. 117-138 p. | spa |
dc.relation.references | Manassov, N.; Samy, M.N.; Datkhayev, U.; Avula, B.; Adams, S.J.; Katragunta, K.; Raman, V.; Khan, I.A.; Ross, S.A. ultrastructural, energy-dispersive X-ray spectroscopy, chemical study and LC-DAD-QToF chemical characterization of Cetraria islandica (L.) Ach. Molecules 2023, 28, 4493. https://doi.org/10.3390/molecules28114493 | spa |
dc.relation.references | Mansur, J., Breder, M., Mansur, M., & Azulay, R. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61(3), 121–124. | spa |
dc.relation.references | Mejía GJC, Atehortúa L, P. M. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatología Cosmética, Médica y Quirúrgica. 2014;12(4):272-281. | spa |
dc.relation.references | Milner, F. (2017) Estructura de la piel. American Cancer Society, s.l. cancer.org/1.800.227.2345 | spa |
dc.relation.references | Ministerio de Salud de Colombia. (2020). «Vicesalud destacó acciones de Colombia frente al cáncer de piel». https://www.minsalud.gov.co/Paginas/Vicesalud-destaco-acciones-de-Colombia-frente-al-cancer-de-piel.aspx. | spa |
dc.relation.references | Mitsuda, H. (1966). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Syokuryo, 19, 210-214. | spa |
dc.relation.references | Mohammadi M, Zambare V, Malek L, Gottardo C, Suntres Z & Christopher L (2020) Lichenochemicals: extraction, purification, characterization, and application as potential anticancer agents, Expert Opinion on Drug Discovery, 15:5, 575-601, DOI: 10.1080/17460441.2020.1730325 | spa |
dc.relation.references | Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 65(3–4), 157–173. https://doi.org/10.1515/ZNC-2010-3-401/MACHINEREADABLECITATION/RIS | spa |
dc.relation.references | Moncada, B., Plata, E. R., & Fazio, A. (2012). GLALIA Revista Electrónica del Grupo LatinoAmericano de Liquenólogos. | spa |
dc.relation.references | Nabavi, S. M., & Silva, A. S. (2022). Antioxidants effects in health : the bright and the dark side. Elsevier. | spa |
dc.relation.references | Nash, T. H. (2008). Lichen Biology. Lichen Biology, Second Edition, 1–486. https://doi.org/10.1017/CBO9780511790478 | spa |
dc.relation.references | Ng, K. W., & Lau, W. M. (2015). Skin deep: The basics of human skin structure and drug penetration. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects, 3–11. https://doi.org/10.1007/978-3-662-45013-0_1/COVER | spa |
dc.relation.references | Nguyen, K. H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/C3NP70064J | spa |
dc.relation.references | Nguyen, T.T., Mai, V.H., Nguyen, C.T., Huynh, V.L., Lai, H.N., Tran, T.H and Kanaori, K. (2020). Novel hopanoic acid and depside from the lichen Dirinaria applanata Rec. Nat. Prod. 14:4 (2020) 248-255. https://doi.org/10.25135/RNP.161.19.10.1441 | spa |
dc.relation.references | Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941. https://doi.org/10.1002/PTR.1488 | spa |
dc.relation.references | Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315. | spa |
dc.relation.references | Panyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., & Mungkornasawakul, P. (2021). Kaempferia sp. extracts as UV protecting and antioxidant agents in sunscreen. Journal of Herbs, Spices and Medicinal Plants, 27(1), 37–56. https://doi.org/10.1080/10496475.2020.1777614 | spa |
dc.relation.references | Pelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In vitro evaluation of sunscreens: an update for the clinicians. International Scholarly Research Notices. 2012;2012:352135. doi: 10.5402/2012/352135. | spa |
dc.relation.references | Perico-Franco, L. S., Rojas, J. L., Cerbón, M. A., González-Sánchez, I., & Valencia-Islas, N. A. (2015). Antioxidant activity and protective effect on cell and DNA oxidative damage of substances isolated from lichens of Colombian Páramo. Pharmaceutical and Biosciences Journal, 09-17. | spa |
dc.relation.references | Pfeifer, G. P. (2020). Mechanisms of UV-induced mutations and skin cancer. Genome Instability & Disease 2020 1:3, 1(3), 99–113. https://doi.org/10.1007/S42764-020-00009-8 | spa |
dc.relation.references | Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74. | spa |
dc.relation.references | Pizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A., Pallio, G., Ramistella, V., Luca, F. De, Minutoli, L., Squadrito, F., & Altavilla, D. (2014). Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biology, 2(1), 686–693. https://doi.org/10.1016/J.REDOX.2014.05.003 | spa |
dc.relation.references | Plaza, C. M, Salazar, C. P., Vizcaya, M., Rodríguez-Castillo, C, G., Medina-Ramírez, G. E., & Plaza, R. E. (2017). Potential antifungal activity of Cladonia aff. rappii A. Evans. Journal of Pharmacy & Pharmacognosy Research, 5(5), . | spa |
dc.relation.references | Plaza, Claudia M., Torres, L. E. D. de, Lücking, R. K., Vizcaya, M., & Medina, G. E. (2014). Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes. Journal of Pharmacy & Pharmacognosy Research, 2(5), 138–147. https://doaj.org/article/1e49b71619a7437fafd8536ec05b674a | spa |
dc.relation.references | Ponnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., Lauridsen, C., & Dunshea, F. R. (2022). The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: antioxidant action, animal health, and product quality—Invited Review. Animals : An Open Access Journal from MDPI, 12(23). https://doi.org/10.3390/ANI12233279 | spa |
dc.relation.references | Pouillot, A., Polla, L. L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural antioxidants and their effects on the skin. Formulating, packaging, and marketing of natural cosmetic products, 239-257. | spa |
dc.relation.references | Prenzler, P. D., Ryan, D., & Robards, K. (2021). Chapter 1 introduction to basic principles of antioxidant activity. 1–62. https://doi.org/10.1039/9781839165337-00001 | spa |
dc.relation.references | Quilot, W. Garbarino, J. Piovano, M. Chamy, M., Gambaro, V.Oyarzun, M. Hormaechea, V. (1989). Studies on chilean lichens. XI.Secondary metabolites from antarctic lichens. Serie Científica - Instituto Antártico Chileno, (39), 75–89. | spa |
dc.relation.references | Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., ... & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica chimica acta, 436, 332-347. | spa |
dc.relation.references | Ramírez, N. (2009). Evaluación de las comunidades liquénicas en dos bosques con diferente historia de uso, de la reserva biológica el “encenillo” Colombia. Pontificia Universidad Javeriana. | spa |
dc.relation.references | Ranković, B. (Ed.). (2019). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. Springer. | spa |
dc.relation.references | Rashid, M. A., Majid, M. A., & Quader, M. A. (1999). Complete NMR assignments of (+)-usnic acid. Fitoterapia, 70(1), 113–115. https://doi.org/10.1016/S0367-326X(98)00033-1 | spa |
dc.relation.references | Rojas, J. L., Díaz-Santos, M., & Valencia-Islas, N. A. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 18-26. | spa |
dc.relation.references | Santos, L. L., Wu, E. L., Grinias, K. M., Koetting, M. C., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750. | spa |
dc.relation.references | Sayre, R. M., Agin, P. P., LeVee, G. J., & Marlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559-566. | spa |
dc.relation.references | Shaath, N. A. (2010). Ultraviolet filters. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 9(4), 464–469. https://doi.org/10.1039/B9PP00174C | spa |
dc.relation.references | Sharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Karaca, A. C., Sharifi-Rad, M., Karincaoglu, D. K., Gülseren, G., Şenol, E., Demircan, E., Taheri, Y., Suleria, H. A. R., Özçelik, B., Kasapoğlu, K. N., Gültekin-Özgüven, M., Daşkaya-Dikmen, C., Cho, W. C., Martins, N., & Calina, D. (2020). Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/IJERPH17072326 | spa |
dc.relation.references | Shiromi, P. S. A. I., Hewawasam, R. P., Jayalal, R. G. U., Rathnayake, H., Wijayaratne, W. M. D. G. B., & Wanniarachchi, D. (2021). Chemical composition and antimicrobial activity of two sri lankan lichens, Parmotrema rampoddense, and Parmotrema tinctorum against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/9985325 | spa |
dc.relation.references | Sierra, M. A., Danko, D. C., Sandoval, T. A., Pishchany, G., Moncada, B., Kolter, R., ... & Zambrano, M. M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Frontiers in microbiology, 398 | spa |
dc.relation.references | Silva, J. F., Ximenez, G. R., Bianchin, M., Jasper, J. O., Pastorini, L. H., Carvalho, J. E., Ruiz, A. L. T. G., Pomini, A. M., & Santin, S. M. O. (2020). Isolation of hopane triterpenes and other constituents from Machaerium brasiliense vogel (Fabaceae). Biochemical Systematics and Ecology, 93, 104182. https://doi.org/10.1016/j.bse.2020.104182 | spa |
dc.relation.references | Silverman, R. B., & Holladay, M. W. (2014). The organic chemistry of drug design and drug action. Academic Press. | spa |
dc.relation.references | Sipman, H. J, & Aguirre J. C. (1982). Contribución al conocimiento de los líquenes de Colombia—i. clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. Caldasia, 603-34. | spa |
dc.relation.references | Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4(1), 95. https://doi.org/10.2147/NSA.S19419 | spa |
dc.relation.references | Soto Medina, E., Diaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 122-135. | spa |
dc.relation.references | Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science (New York, N.Y.), 353(6298), 488. https://doi.org/10.1126/SCIENCE.AAF8287 | spa |
dc.relation.references | Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of agricultural and food chemistry, 52(4), 912-915. | spa |
dc.relation.references | Tatipamula, V. B., Polimati, H., Gopaiah, K. V., Babu, A. K., Vantaku, S., Rao, P. R., & Killari, K. N. (2020). Bioactive metabolites from manglicolous lichen Ramalina leiodea (Nyl.) Nyl. Indian Journal of Pharmaceutical Sciences, 82(2), 379–384. https://doi.org/10.36468/PHARMACEUTICAL-SCIENCES.660 | spa |
dc.relation.references | Thadani, V. M., Khan, S., Choudhary, M. I., & Karunaratne, V. (2009). Novel an glucosidase inhibitors from lichen Cladonia sp. Peradeniya University Research Session PURSE- 2009, University of Peradeniya , Sri Lanka , Vol.14. 3rd july. 2009 pp262 | spa |
dc.relation.references | Tripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A review of anti-cancer and related properties of lichen-extracts and metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115–142. https://doi.org/10.2174/1871520621666210322094647 | spa |
dc.relation.references | Türk, A. Ö., Yilmaz, M., Kivanç, M., & Türk, H. (2003). The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 58(11–12), 850–854. https://doi.org/10.1515/ZNC-2003-11-1219 | spa |
dc.relation.references | Valencia-Islas, N. A., Arguello, J. J., & Rojas, J. L. (2021). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, a lichen from the Andean páramo. Pharmaceutical Sciences, 27(2), 281-290. | spa |
dc.relation.references | Wang F, Li YM (2010). New hopane triterpene from Dicranostigma leptopodum (Maxim) Fedde. J Asian Nat Prod Res. Jan;12(1):94-7. doi: 10.1080/10286020903443028. PMID: 20390749 | spa |
dc.relation.references | White, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., Quintans-Junior, L. J., & Santos, M. R. V. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496. https://doi.org/10.3390/MOLECULES190914496 | spa |
dc.relation.references | Wirth, V. (2004). Guía de campo de los líquenes, musgos y hepáticas: con 288 especies de líquenes y 226 de briófitos (musgos y hepáticas). Omega. | spa |
dc.relation.references | Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., & Jiang, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. The Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/J.SCITOTENV.2018.06.213 | spa |
dc.relation.references | Yen, G. C., Duh, P. D., & Tsai, H. L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food chemistry, 79(3), 307-313. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.bne | Protectores solares | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.lcc | Sunscreens (Cosmetics) | eng |
dc.subject.lemb | Hongos | spa |
dc.subject.lemb | Fungi | eng |
dc.subject.lemb | Líquenes | spa |
dc.subject.lemb | Lichens | eng |
dc.subject.lemb | Radiación solar | spa |
dc.subject.lemb | Solar radiation | eng |
dc.subject.proposal | Hongos liquenizados | spa |
dc.subject.proposal | Antioxidantes | spa |
dc.subject.proposal | Fotoprotección | spa |
dc.subject.proposal | Cladonia rappii | |
dc.subject.proposal | Lichenized fungi | eng |
dc.subject.proposal | Antioxidation | eng |
dc.subject.proposal | Photoprotection | eng |
dc.subject.proposal | Cladonia rapp | eng |
dc.title | Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar | spa |
dc.title.translated | Chemical study, antioxidant activity, and photoprotective properties of a lichenized fungus from the Sumapaz páramo, Colombia, as a potential source of compounds for use in sun protection | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de maestría. Sandy Parra.
- Tamaño:
- 4.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: