Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar

dc.contributor.advisorValencia Islas, Norma Angélica
dc.contributor.advisorRojas Araque, José Leopoldospa
dc.contributor.authorParra Gutiérrez, Sandy Johana
dc.contributor.researchgroupGrupo de Investigación en Química Medicinalspa
dc.contributor.researchgroupGrupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianosspa
dc.contributor.supervisorRojas Araque José Leopoldo
dc.date.accessioned2024-07-16T17:00:38Z
dc.date.available2024-07-16T17:00:38Z
dc.date.issued2024
dc.descriptionilustraciones (principalmente a color), diagramas, fotografías, mapasspa
dc.description.abstractLos problemas dérmicos, entre ellos el cáncer de piel, relacionados con la exposición a la radiación solar y el consecuente estrés oxidativo generado, constituyen un problema de salud pública que puede prevenirse mediante el uso de agentes fotoprotectores y antioxidantes. Dado que dichos agentes convencionales han demostrado inestabilidad, ineficacia y problemas de seguridad, surge la necesidad de encontrar sustancias novedosas potencialmente más eficaces e inocuas. El objetivo de este trabajo consistió en obtener principios activos con propiedades antioxidantes y/o fotoprotectoras a partir de un hongo liquenizado presente en el páramo de Sumapaz, Colombia. Inicialmente, se realizó el tamizaje de las especies Peltigera neopolydactyla, Sticta humboldtii y Cladonia rappii que crecen directamente expuestas a la radiación solar en este ecosistema, indicando la posibilidad de que biosintetizaran metabolitos con las actividades mencionadas. Posteriormente, la investigación se centró en la especie que presentó el mejor perfil de actividad, Cladonia rappii. Se llevó a cabo la evaluación de la actividad antioxidante y fotoprotectora estableciendo el poder captador de radicales libres, el poder reductor férrico y la inhibición de la peroxidación lipídica. La actividad fotoprotectora se determinó in vitro, calculando el factor de protección solar (FPS), la longitud de onda crítica y la relación UVA/UVB. Se aislaron y caracterizaron cinco compuestos a partir de dicha especie: ácido fumarprotocetrárico (1), ácido úsnico (2), ácido 3-formil-2,4-dihidroxi-6-metil benzoico o ácido haematommico (3), ácido 9-metil- protocetrárico (4) y al ácido 3beta-hidroxi-hopan-29- oico (5), estos tres últimos se reportan por primera vez para C. rappii. A pesar de que el ácido fumarprotocetrárico resultó ser el componente mayoritario en el extracto activo de C. rappii, éste no exhibió una actividad antioxidante ni fotoprotectora destacada, por su parte, el ácido úsnico destacó como un potente antioxidante, demostrando su habilidad para captar radicales libres, reducir iones férricos e inhibir la peroxidación lipídica. Además, exhibió una marcada capacidad de protección contra las radiaciones UVB y UVA, clasificándose como un protector solar de amplio espectro. Este compuesto presenta propiedades fisicoquímicas que lo hacen idóneo para su aplicación tópica en dermatología, facilitando su absorción en el estrato córneo de la piel con el fin de ejercer un efecto protector. La evaluación de los compuestos 3 a 5 no fue posible debido a que se encontraban en cantidades minoritarias en hongo liquénico de estudio, lo que limitó la capacidad de llevar a cabo un análisis de sus propiedades, ya que su presencia no era suficiente para obtener resultados en las pruebas realizadas en esta investigación (Texto tomado de la fuente).spa
dc.description.abstractDermatological issues, including skin cancer, related to exposure to solar radiation and the resulting oxidative stress, constitute a public health problem that can be prevented through the use of photoprotective and antioxidant agents. Given that such conventional agents have demonstrated instability, inefficacy, and safety issues, there arises the need to find novel substances that are potentially more effective and safer. The objective of this study was to obtain active compounds with antioxidant and/or photoprotective properties from a lichenized fungus found in the páramo of Sumapaz, Colombia. Initially, screening was conducted on the species Peltigera neopolydactyla, Sticta humboldtii, and Cladonia rappii, which grow directly exposed to solar radiation in this ecosystem, indicating the possibility of biosynthesizing metabolites with the mentioned activities. Subsequently, the research focused on the species that exhibited the best activity profile, Cladonia rappii. The evaluation of antioxidant and photoprotective activity was carried out by establishing free radical scavenging power, ferric reducing power, and inhibition of lipid peroxidation. Photoprotective activity was determined in vitro by calculating the sun protection factor (SPF), critical wavelength, and UVA/UVB ratio. Five compounds were isolated and characterized from this species: fumarprotocetraric acid (1), usnic acid (2), 3-formyl-2,4-dihydroxy-6-methyl benzoic acid, or haematommic acid (3), 9-methyl-protocetraric acid (4), and 3-hydroxy-hopan-29-oic acid (5), with the latter three being reported for the first time in C. rappii. Despite fumarprotocetraric acid being the major component in the active extract of C. rappii, it did not exhibit remarkable antioxidant or photoprotective activity. On the other hand, usnic acid emerged as a potent antioxidant, demonstrating its ability to scavenge free radicals, reduce ferric ions, and inhibit lipid peroxidation. Additionally, it displayed a pronounced protective capacity against both UVB and UVA radiation, qualifying it as a broad-spectrum sunscreen. This compound possesses physicochemical properties that make it suitable for topical application in dermatology, facilitating its absorption into the stratum corneum of the skin to exert a protective effect. The evaluation of compounds 3 to 5 was not possible due to their minority presence in the studied lichenized fungus, limiting the ability to conduct a detailed analysis of their properties, as their presence was insufficient to yield significant results in the tests conducted in this research. Keywords: Lichenized fungi, antioxidation, photoprotection, Cladonia rappii.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.methods4.2. Selección de la especie objeto de estudio 4.2.1. Recolección 4.2.2. Preparación de extractos 4.2.3. Evaluación de la actividad antioxidante . 4.2.4. Evaluación de la actividad fotoprotectora 4.3. Estudio químico de Cladonia rappii 4.3.1. Procedimientos experimentales generales 4.3.2. Confirmación de la identidad taxonómica de Cladonia rappii 4.3.3. Extracción de Cladonia rappii 4.3.4. Fraccionamiento del extracto 4.4. Estudio biológico de Cladonia rappii 4.4.2. Determinación de la actividad antioxidante 4.4.3. Determinación de la actividad fotoprotectora 4.5. Análisis estadísticospa
dc.description.researchareaObtención de sustancias bioactivas a partir de fuentes naturalesspa
dc.format.extent148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86463
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesAbhimanyu, K. K., Ravindra, C. S., & Avanapu, R. S. (2017). A validated HPTLC method for the quantification of friedelin in Putranjiva roxburghii Wall extracts and in polyherbal formulations. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 79–84. Https://doi.org/10.1016/J.BFOPCU.2016.11.002spa
dc.relation.referencesAddor, F. A. S. A. (2017). Antioxidants in dermatology. Anais brasileiros de dermatologia, 92, 356-362.spa
dc.relation.referencesAdin, C. A. (2021). Bilirubin as a therapeutic molecule: challenges and opportunities. Antioxidants 2021, Vol. 10, Page 1536, 10(10), 1536. https://doi.org/10.3390/ANTIOX10101536spa
dc.relation.referencesAguirre, J. (2006). Diversidad de los musgos (Briophita) y líquenes de Colombia-Una evaluación con propósitos de conservación (Doctoral dissertation, Tesis doctoral. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, Bogotá.spa
dc.relation.referencesAguirre, J. (2008). Diversidad y riqueza de musgos y líquenes en Colombia- Generalidades y metodología. Colombia diversidad biótica VI: Riqueza y diversidad de los musgos y líquenes en Colombia, 1-17.spa
dc.relation.referencesAlonso, C., Montero, T., Arias, S., & Buendía, A. (2022). Current state of skin cancer prevention: a systematic review. Actas Dermo-Sifiliograficas, 113(8), 781–791. https://doi.org/10.1016/J.AD.2022.04.015spa
dc.relation.referencesBaek, J., & Lee, M. G. (2016). Oxidative stress and antioxidant strategies in dermatology. Redox Report. 21(4), 164-169.spa
dc.relation.referencesBenzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.spa
dc.relation.referencesBernal, R., Gradstein, S.R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesBernat, R. (2021). Recomendaciones sobre fotoprotección en una oficina de begoña, Farmacia. Begoña.spa
dc.relation.referencesBézivin, C., Tomasi, S., Rouaud, I., Delcros, J.-G., & Boustie, J. (2004). Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med, 70:877-877.spa
dc.relation.referencesBharate, S., Kumar, V., & A Vishwakarma, R. (2016). Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery. Combinatorial Chemistry & High Throughput Screening, 19(6), 461-469.spa
dc.relation.referencesBhattacharyya, S., Deep, P. R., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. Am. J. PharmTech Res, 6(6), 1-7.spa
dc.relation.referencesBinev, Y., Marques, M. M. B., & Aires-de-Sousa, J. (2007). Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts. Journal of Chemical Information and Modeling, 47(6), 2089–2097. https://doi.org/10.1021/CI700172Nspa
dc.relation.referencesBirben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization 5: 9-19.spa
dc.relation.referencesBrancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D’alicandro, G., Mazzaccara, C., Lombardo, B., Pero, R., Terracciano, D., Limongelli, G., Calabrò, P., D’argenio, V., Frisso, G., & Scudiero, O. (2022). The biological role of vitamins in athletes’ muscle, heart and microbiota. International journal of environmental research and public health, 19(3), 1249. https://doi.org/10.3390/IJERPH19031249spa
dc.relation.referencesBrand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.spa
dc.relation.referencesBuso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2017). Guidelines for the development of herbal-based sunscreen. In Herbal medicine. IntechOpen.spa
dc.relation.referencesCalcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/C7CS00431Aspa
dc.relation.referencesCelia, J. A., Pérez de la Lastra, J. M., Plou, F. J., & Perez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ros) revisited: outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 2021, Vol. 22, Page 4642, 22(9), 4642. https://doi.org/10.3390/IJMS22094642spa
dc.relation.referencesCetin Cakmak, K., & Gülçin, İ. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273–1280. https://doi.org/10.1016/J.TOXREP.2019.11.003spa
dc.relation.referencesChen, L., Hu, J. Y., & Wang, S. Q. (2012). The role of antioxidants in photoprotection: A critical review. Journal of the American Academy of Dermatology, 67(5), 1013–1024. https://doi.org/10.1016/J.JAAD.2012.02.009spa
dc.relation.referencesCoelho de Assis, T. (2014). Identificação de metabólitos secundários e estudo de bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro – MG. https://locus.ufv.br//handle/123456789/7634spa
dc.relation.referencesConsortium of Lichen Herbaria - Cladonia rappii. (2023). https://lichenportal.org/portal/taxa/index.php?taxon=53461&clid=1035spa
dc.relation.referencesCosta, M., Sezgin-Bayindir, Z., Losada-Barreiro, S., Paiva-Martins, F., Saso, L., & Bravo-Díaz, C. (2021). Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: encapsulation and interfacial phenomena. Biomedicines, 9(12). https://doi.org/10.3390/BIOMEDICINES9121909spa
dc.relation.referencesCrawford, S. D. (2015). Lichens used in traditional medicine. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential, 27–80. https://doi.org/10.1007/978-3-319-13374-4_2/COVERspa
dc.relation.referencesCuendet, M., Hostettmann, K., Potterat, O., & Dyatmiko, W. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4), 1144–1152. https://doi.org/10.1002/HLCA.19970800411spa
dc.relation.referencesDaina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.spa
dc.relation.referencesDíaz, M., Llorca, M., & Barceló, D. (2008). Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC - Trends in Analytical Chemistry, 27(10), 873–887. https://doi.org/10.1016/J.TRAC.2008.08.012spa
dc.relation.referencesDíaz-Reinoso, B., Rodríguez-González, I., & Domínguez, H. (2021). Towards greener approaches in the extraction of bioactives from lichens. Reviews in Environmental Science and Biotechnology, 20(4), 917–942. https://doi.org/10.1007/S11157-021-09595-9spa
dc.relation.referencesDiffey, B. L. (1984). Whatever happened to the erythemal unit. Photodermatol Photoimmunol Photomed, 1, 103-105.spa
dc.relation.referencesDonglikar, M. M., & Deore, S. L. (2016). Sunscreens: A review. Pharmacognosy Journals, 8(3).spa
dc.relation.referencesDunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y., & Kadekaro, A. L. (2018). Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Frontiers in Pharmacology, 9(APR). https://doi.org/10.3389/fphar.2018.00392spa
dc.relation.referencesErna, M. (2017). Isolasi dan elusidasi struktur senyawa metabolit sekunder dari lichen sumatera Cladonia rappii serta pengujian aktivitas antibakteri. Diploma Thesis, Universitas Andalas.spa
dc.relation.referencesErtl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/JM000942E/SUPPL_FILE/JM000942E_S.PDFspa
dc.relation.referencesEspín de Gea, J. C., Soler-Rivas, C., Wichers, H. J., & García-Viguera, C. (2000). Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. Farris PK, Valacchi G. Ultraviolet light protection: is it really enough? Antioxidants (basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175.spa
dc.relation.referencesFarris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175.spa
dc.relation.referencesFazio AT, Adler MT, Bertoni MD, Sepúlveda CS, Damonte EB, Maier MS. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):543-9. doi: 10.1515/znc-2007-7-813. PMID: 17913069.Fernandes, J., and C.R. Gattass (2009). Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1), Journal of Medicinal Chemistry. 52(4), 1214-1218.spa
dc.relation.referencesFernandes, J., and C.R. Gattass (2009). Topological Polar Surface Area Defines Substrate Transport by Multidrug Resistance Associated Protein 1 (MRP1/ABCC1), J. Med. Chem., 52(4), 1214-1218.spa
dc.relation.referencesFernández-Moriano, C., Gómez-Serranillos, M. P., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology, 54(1), 1–17. https://doi.org/10.3109/13880209.2014.1003354spa
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo. (2018). «23 de Mayo: Día mundial de la lucha contra el melanoma». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/site/investigaciones/dia-mundial-de-la-lucha-contra-el-melanoma-2/.spa
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo. (2022). «Día mundial del melanoma 2023». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/cancer/dia-mundial-del-melanoma-2023/spa
dc.relation.referencesFood and Drug Administration. (2007). Department of Health and Human Services Food and Drug Administration 21 CFR Parts 347 and 352. Federal Register, 72(165), 49070–49122.spa
dc.relation.referencesFood and Drug Administration. (2011). Labeling and effectiveness testing; sunscreen drug products for over-the-counter human use. Final rule. Federal Register, 76(117), 35620–35665.spa
dc.relation.referencesGalanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules 2021, Vol. 26, Page 5224, 26(17), 5224. https://doi.org/10.3390/MOLECULES26175224spa
dc.relation.referencesGaspar, L. R., Tharmann, J., Maia Campos, P. M. B. G., & Liebsch, M. (2013). Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. Toxicology in Vitro, 27(1), 418–425. https://doi.org/10.1016/J.TIV.2012.08.006spa
dc.relation.referencesGBIF. (2021). Cladonia rappii A.Evans.spa
dc.relation.referencesGlobal Cancer Observatory (2020). https://gco.iarc.fr/spa
dc.relation.referencesGoga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209.spa
dc.relation.referencesGrice, H. (1986). Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol, 24, 1127–1130.spa
dc.relation.referencesGuo, J., Li, Z. L., Wang, A. L., Liu, X. Q., Wang, J., Guo, X., ... & Hua, H. M. (2011). Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells. Planta medica, 77(18), 2042-2046.spa
dc.relation.referencesHalliwell, B., & Gutteridge, J. M. C. (1990). The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics, 280(1), 1–8. https://doi.org/10.1016/0003-9861(90)90510-6spa
dc.relation.referencesHalliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward?. Cardiovascular research, 47(3), 410-418.spa
dc.relation.referencesHalliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition reviews, 70(5), 257-265.spa
dc.relation.referencesHarris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ros in cancer. Trends in Cell Biology, 30(6), 440–451. https://doi.org/10.1016/j.tcb.2020.03.002spa
dc.relation.referencesHawksworth, D. L. (2015). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. The Lichenologist, 47(4), 277–278. https://doi.org/10.1017/S0024282915000195spa
dc.relation.referencesHojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International journal of pharmaceutics, 408(1-2), 27-38.spa
dc.relation.referencesHuang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual role of reactive oxygen species and their application in cancer therapy. Journal of Cancer, 12(18), 5543. https://doi.org/10.7150/JCA.54699spa
dc.relation.referencesHuneck, S., & Yoshimura, I. (1996). Identification of lichen substances. Identification of lichen substances. https://doi.org/10.1007/978-3-642-85243-5spa
dc.relation.referencesIghodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/J.AJME.2017.09.001spa
dc.relation.referencesImamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and removal of benzophenone-type uv filters from water matrices by advanced oxidation processes. Molecules 2022, Vol. 27, Page 1874, 27(6), 1874. https://doi.org/10.3390/MOLECULES27061874spa
dc.relation.referencesInstituto Nacional de Cancerología. (2020). Diagnostico y tratamiento. https://www.cancer.gov.co/portafolio-1/unidades-funcionales-1/dermatologia-oncologica/diagnostico-tratamientospa
dc.relation.referencesJesus, A., Sousa, E., Cruz, M. T., Cidade, H., Lobo, J. M. S., & Almeida, I. F. (2022). UV filters: challenges and prospects. Pharmaceuticals, 15(3). https://doi.org/10.3390/PH15030263/S1spa
dc.relation.referencesKammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29. https://doi.org/10.1016/J.ARR.2015.01.001spa
dc.relation.referencesKasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., & Loscalzo, J. (2020). Manual de Medicina. New York, N.Y.: McGraw-Hill Education LLC.spa
dc.relation.referencesKassim, N. K., Lim, P. C., Ismail, A., & Awang, K. (2019). Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191. https://doi.org/10.1016/J.FOODCHEM.2018.08.045spa
dc.relation.referencesKosanić, M., Ranković, B., & Vukojević, J. (2011). Antioxidant properties of some lichen species. Journal of Food Science and Technology, 48(5), 584–590. https://doi.org/10.1007/S13197-010-0174-2/METRICSspa
dc.relation.referencesKosanić, M., Ranković, B., Stanojković, T., Rančić, A., & Manojlović, N. (2014). Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. Food Science and Technology, 59(1), 518–525. https://doi.org/10.1016/J.LWT.2014.04.047spa
dc.relation.referencesKuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 25, 726-732.spa
dc.relation.referencesLage, T. C. A., Horta, L. P., Montanari, R. M., Silva, J. G., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2016). Structural elucidation and free radical scavenging activity of a new o-orsellinic acid derivative isolated from the lichen Cladonia Rappii. Natural Product Communications, 11(9), 1311–1312. https://doi.org/10.1177/1934578X1601100932spa
dc.relation.referencesLage, T. C. A., Maciel, T. M. S., Mota, Y. C. C., Sisto, F., Sabino, J. R., Santos, J. C. C., Figueiredo, I. M., Masia, C., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2018). In vitro inhibition of Helicobacter pylori and interaction studies of lichen natural products with jack bean urease. New Journal of Chemistry, 42(7), 5356–5366. https://doi.org/10.1039/C8NJ00072Gspa
dc.relation.referencesLeal, A., Rojas, J. L., Valencia-Islas, N. A., & Castellanos, L. (2018). New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural product research, 32(12), 1375-1382.spa
dc.relation.referencesLiga Colombiana contra el Cáncer. (2022). Cáncer de piel y su clasificación. https://www.ligacancercolombia.org/educacion/clasificacion-cancer-de-piel/spa
dc.relation.referencesLingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002spa
dc.relation.referencesLiu, J. K. (2022). Natural products in cosmetics. Natural Products and Bioprospecting, 12(1). https://doi.org/10.1007/S13659-022-00363-Yspa
dc.relation.referencesLohezic, F., Legouin, B., Couteau, C., Boustie, J., & Coiffard, L. (2013). Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology, 120, 17–28. https://doi.org/10.1016/J.JPHOTOBIOL.2013.01.009spa
dc.relation.referencesLópez Ladino, J. A. (2021). Determinación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadas. Tesis. Universidad Nacional de Colombia.spa
dc.relation.referencesMacías, F. A., Molinillo, J. M. G., Varela, R. M., & Galindo, J. C. G. (2007). Allelopathy--a natural alternative for weed control. Pest Management Science, 63(4), 327–348. https://doi.org/10.1002/PS.1342spa
dc.relation.referencesMamta, Misra, K., Dhillon, G. S., Brar, S. K., & Verma, M. (2014). Antioxidants. Biotransformation of waste biomass into high value biochemicals, New York: Springer; 2014. 117-138 p.spa
dc.relation.referencesManassov, N.; Samy, M.N.; Datkhayev, U.; Avula, B.; Adams, S.J.; Katragunta, K.; Raman, V.; Khan, I.A.; Ross, S.A. ultrastructural, energy-dispersive X-ray spectroscopy, chemical study and LC-DAD-QToF chemical characterization of Cetraria islandica (L.) Ach. Molecules 2023, 28, 4493. https://doi.org/10.3390/molecules28114493spa
dc.relation.referencesMansur, J., Breder, M., Mansur, M., & Azulay, R. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61(3), 121–124.spa
dc.relation.referencesMejía GJC, Atehortúa L, P. M. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatología Cosmética, Médica y Quirúrgica. 2014;12(4):272-281.spa
dc.relation.referencesMilner, F. (2017) Estructura de la piel. American Cancer Society, s.l. cancer.org/1.800.227.2345spa
dc.relation.referencesMinisterio de Salud de Colombia. (2020). «Vicesalud destacó acciones de Colombia frente al cáncer de piel». https://www.minsalud.gov.co/Paginas/Vicesalud-destaco-acciones-de-Colombia-frente-al-cancer-de-piel.aspx.spa
dc.relation.referencesMitsuda, H. (1966). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Syokuryo, 19, 210-214.spa
dc.relation.referencesMohammadi M, Zambare V, Malek L, Gottardo C, Suntres Z & Christopher L (2020) Lichenochemicals: extraction, purification, characterization, and application as potential anticancer agents, Expert Opinion on Drug Discovery, 15:5, 575-601, DOI: 10.1080/17460441.2020.1730325spa
dc.relation.referencesMolnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 65(3–4), 157–173. https://doi.org/10.1515/ZNC-2010-3-401/MACHINEREADABLECITATION/RISspa
dc.relation.referencesMoncada, B., Plata, E. R., & Fazio, A. (2012). GLALIA Revista Electrónica del Grupo LatinoAmericano de Liquenólogos.spa
dc.relation.referencesNabavi, S. M., & Silva, A. S. (2022). Antioxidants effects in health : the bright and the dark side. Elsevier.spa
dc.relation.referencesNash, T. H. (2008). Lichen Biology. Lichen Biology, Second Edition, 1–486. https://doi.org/10.1017/CBO9780511790478spa
dc.relation.referencesNg, K. W., & Lau, W. M. (2015). Skin deep: The basics of human skin structure and drug penetration. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects, 3–11. https://doi.org/10.1007/978-3-662-45013-0_1/COVERspa
dc.relation.referencesNguyen, K. H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/C3NP70064Jspa
dc.relation.referencesNguyen, T.T., Mai, V.H., Nguyen, C.T., Huynh, V.L., Lai, H.N., Tran, T.H and Kanaori, K. (2020). Novel hopanoic acid and depside from the lichen Dirinaria applanata Rec. Nat. Prod. 14:4 (2020) 248-255. https://doi.org/10.25135/RNP.161.19.10.1441spa
dc.relation.referencesOdabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941. https://doi.org/10.1002/PTR.1488spa
dc.relation.referencesOyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.spa
dc.relation.referencesPanyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., & Mungkornasawakul, P. (2021). Kaempferia sp. extracts as UV protecting and antioxidant agents in sunscreen. Journal of Herbs, Spices and Medicinal Plants, 27(1), 37–56. https://doi.org/10.1080/10496475.2020.1777614spa
dc.relation.referencesPelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In vitro evaluation of sunscreens: an update for the clinicians. International Scholarly Research Notices. 2012;2012:352135. doi: 10.5402/2012/352135.spa
dc.relation.referencesPerico-Franco, L. S., Rojas, J. L., Cerbón, M. A., González-Sánchez, I., & Valencia-Islas, N. A. (2015). Antioxidant activity and protective effect on cell and DNA oxidative damage of substances isolated from lichens of Colombian Páramo. Pharmaceutical and Biosciences Journal, 09-17.spa
dc.relation.referencesPfeifer, G. P. (2020). Mechanisms of UV-induced mutations and skin cancer. Genome Instability & Disease 2020 1:3, 1(3), 99–113. https://doi.org/10.1007/S42764-020-00009-8spa
dc.relation.referencesPisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.spa
dc.relation.referencesPizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A., Pallio, G., Ramistella, V., Luca, F. De, Minutoli, L., Squadrito, F., & Altavilla, D. (2014). Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biology, 2(1), 686–693. https://doi.org/10.1016/J.REDOX.2014.05.003spa
dc.relation.referencesPlaza, C. M, Salazar, C. P., Vizcaya, M., Rodríguez-Castillo, C, G., Medina-Ramírez, G. E., & Plaza, R. E. (2017). Potential antifungal activity of Cladonia aff. rappii A. Evans. Journal of Pharmacy & Pharmacognosy Research, 5(5), .spa
dc.relation.referencesPlaza, Claudia M., Torres, L. E. D. de, Lücking, R. K., Vizcaya, M., & Medina, G. E. (2014). Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes. Journal of Pharmacy & Pharmacognosy Research, 2(5), 138–147. https://doaj.org/article/1e49b71619a7437fafd8536ec05b674aspa
dc.relation.referencesPonnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., Lauridsen, C., & Dunshea, F. R. (2022). The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: antioxidant action, animal health, and product quality—Invited Review. Animals : An Open Access Journal from MDPI, 12(23). https://doi.org/10.3390/ANI12233279spa
dc.relation.referencesPouillot, A., Polla, L. L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural antioxidants and their effects on the skin. Formulating, packaging, and marketing of natural cosmetic products, 239-257.spa
dc.relation.referencesPrenzler, P. D., Ryan, D., & Robards, K. (2021). Chapter 1 introduction to basic principles of antioxidant activity. 1–62. https://doi.org/10.1039/9781839165337-00001spa
dc.relation.referencesQuilot, W. Garbarino, J. Piovano, M. Chamy, M., Gambaro, V.Oyarzun, M. Hormaechea, V. (1989). Studies on chilean lichens. XI.Secondary metabolites from antarctic lichens. Serie Científica - Instituto Antártico Chileno, (39), 75–89.spa
dc.relation.referencesRajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., ... & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica chimica acta, 436, 332-347.spa
dc.relation.referencesRamírez, N. (2009). Evaluación de las comunidades liquénicas en dos bosques con diferente historia de uso, de la reserva biológica el “encenillo” Colombia. Pontificia Universidad Javeriana.spa
dc.relation.referencesRanković, B. (Ed.). (2019). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. Springer.spa
dc.relation.referencesRashid, M. A., Majid, M. A., & Quader, M. A. (1999). Complete NMR assignments of (+)-usnic acid. Fitoterapia, 70(1), 113–115. https://doi.org/10.1016/S0367-326X(98)00033-1spa
dc.relation.referencesRojas, J. L., Díaz-Santos, M., & Valencia-Islas, N. A. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 18-26.spa
dc.relation.referencesSantos, L. L., Wu, E. L., Grinias, K. M., Koetting, M. C., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750.spa
dc.relation.referencesSayre, R. M., Agin, P. P., LeVee, G. J., & Marlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559-566.spa
dc.relation.referencesShaath, N. A. (2010). Ultraviolet filters. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 9(4), 464–469. https://doi.org/10.1039/B9PP00174Cspa
dc.relation.referencesSharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Karaca, A. C., Sharifi-Rad, M., Karincaoglu, D. K., Gülseren, G., Şenol, E., Demircan, E., Taheri, Y., Suleria, H. A. R., Özçelik, B., Kasapoğlu, K. N., Gültekin-Özgüven, M., Daşkaya-Dikmen, C., Cho, W. C., Martins, N., & Calina, D. (2020). Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/IJERPH17072326spa
dc.relation.referencesShiromi, P. S. A. I., Hewawasam, R. P., Jayalal, R. G. U., Rathnayake, H., Wijayaratne, W. M. D. G. B., & Wanniarachchi, D. (2021). Chemical composition and antimicrobial activity of two sri lankan lichens, Parmotrema rampoddense, and Parmotrema tinctorum against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/9985325spa
dc.relation.referencesSierra, M. A., Danko, D. C., Sandoval, T. A., Pishchany, G., Moncada, B., Kolter, R., ... & Zambrano, M. M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Frontiers in microbiology, 398spa
dc.relation.referencesSilva, J. F., Ximenez, G. R., Bianchin, M., Jasper, J. O., Pastorini, L. H., Carvalho, J. E., Ruiz, A. L. T. G., Pomini, A. M., & Santin, S. M. O. (2020). Isolation of hopane triterpenes and other constituents from Machaerium brasiliense vogel (Fabaceae). Biochemical Systematics and Ecology, 93, 104182. https://doi.org/10.1016/j.bse.2020.104182spa
dc.relation.referencesSilverman, R. B., & Holladay, M. W. (2014). The organic chemistry of drug design and drug action. Academic Press.spa
dc.relation.referencesSipman, H. J, & Aguirre J. C. (1982). Contribución al conocimiento de los líquenes de Colombia—i. clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. Caldasia, 603-34.spa
dc.relation.referencesSmijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4(1), 95. https://doi.org/10.2147/NSA.S19419spa
dc.relation.referencesSoto Medina, E., Diaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 122-135.spa
dc.relation.referencesSpribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science (New York, N.Y.), 353(6298), 488. https://doi.org/10.1126/SCIENCE.AAF8287spa
dc.relation.referencesSuja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of agricultural and food chemistry, 52(4), 912-915.spa
dc.relation.referencesTatipamula, V. B., Polimati, H., Gopaiah, K. V., Babu, A. K., Vantaku, S., Rao, P. R., & Killari, K. N. (2020). Bioactive metabolites from manglicolous lichen Ramalina leiodea (Nyl.) Nyl. Indian Journal of Pharmaceutical Sciences, 82(2), 379–384. https://doi.org/10.36468/PHARMACEUTICAL-SCIENCES.660spa
dc.relation.referencesThadani, V. M., Khan, S., Choudhary, M. I., & Karunaratne, V. (2009). Novel an glucosidase inhibitors from lichen Cladonia sp. Peradeniya University Research Session PURSE- 2009, University of Peradeniya , Sri Lanka , Vol.14. 3rd july. 2009 pp262spa
dc.relation.referencesTripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A review of anti-cancer and related properties of lichen-extracts and metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115–142. https://doi.org/10.2174/1871520621666210322094647spa
dc.relation.referencesTürk, A. Ö., Yilmaz, M., Kivanç, M., & Türk, H. (2003). The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 58(11–12), 850–854. https://doi.org/10.1515/ZNC-2003-11-1219spa
dc.relation.referencesValencia-Islas, N. A., Arguello, J. J., & Rojas, J. L. (2021). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, a lichen from the Andean páramo. Pharmaceutical Sciences, 27(2), 281-290.spa
dc.relation.referencesWang F, Li YM (2010). New hopane triterpene from Dicranostigma leptopodum (Maxim) Fedde. J Asian Nat Prod Res. Jan;12(1):94-7. doi: 10.1080/10286020903443028. PMID: 20390749spa
dc.relation.referencesWhite, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., Quintans-Junior, L. J., & Santos, M. R. V. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496. https://doi.org/10.3390/MOLECULES190914496spa
dc.relation.referencesWirth, V. (2004). Guía de campo de los líquenes, musgos y hepáticas: con 288 especies de líquenes y 226 de briófitos (musgos y hepáticas). Omega.spa
dc.relation.referencesYang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., & Jiang, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. The Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/J.SCITOTENV.2018.06.213spa
dc.relation.referencesYen, G. C., Duh, P. D., & Tsai, H. L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food chemistry, 79(3), 307-313.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.bneProtectores solaresspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lccSunscreens (Cosmetics)eng
dc.subject.lembHongosspa
dc.subject.lembFungieng
dc.subject.lembLíquenesspa
dc.subject.lembLichenseng
dc.subject.lembRadiación solarspa
dc.subject.lembSolar radiationeng
dc.subject.proposalHongos liquenizadosspa
dc.subject.proposalAntioxidantesspa
dc.subject.proposalFotoprotecciónspa
dc.subject.proposalCladonia rappii
dc.subject.proposalLichenized fungieng
dc.subject.proposalAntioxidationeng
dc.subject.proposalPhotoprotectioneng
dc.subject.proposalCladonia rappeng
dc.titleEstudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solarspa
dc.title.translatedChemical study, antioxidant activity, and photoprotective properties of a lichenized fungus from the Sumapaz páramo, Colombia, as a potential source of compounds for use in sun protectioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solarspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de maestría. Sandy Parra.
Tamaño:
4.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: