On moment maps and Jacobi manifolds

dc.contributor.advisorSepe, Daniele
dc.contributor.advisorMartinez Alba, Nicolas
dc.contributor.authorLeguizamón Robayo, Alexander
dc.date.accessioned2021-06-21T22:30:00Z
dc.date.available2021-06-21T22:30:00Z
dc.date.issued2021
dc.description.abstractThe main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian action in the context of Poisson, contact, and locally conformally symplectic geometry.eng
dc.description.abstractEn el siguiente trabajo introducimos la idea de acción Hamiltoniana en el contexto de la geometría de Jacobi en fibrados de línea generales. Esta construcción la realizamos de forma intrínseca sin necesidad de recurrir al ”truco de Poissonización”. El concepto de acción Hamiltoniana en geometría de Jacobi nos permite recuperar resultados conocidos en geometría de Poisson, contacto, y localmente conformemente simplécticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaGeometría Diferencialspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79669
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesS. C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1995. isbn: 978-0-521-55119-9. doi: 10 . 1017/CBO9780511623653. url: https://www.cambridge.org/core/books/primer- of- algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473.spa
dc.relation.referencesMarius Crainic. Mastermath course Differential Geometry 2015/2016. Lecture Notes. Uni- versity of Utrecht, 2016.spa
dc.relation.referencesMarius Crainic and Marı́a Amelia Salazar. “Jacobi structures and Spencer operators”. In: Journal des Mathematiques Pures et Appliquees 103.2 (2015), pp. 504–521. doi: 10.1016/ j.matpur.2014.04.012.spa
dc.relation.referencesMarius Crainic and Chenchang Zhu. “Integrability of Jacobi and Poison Structures”. In: Annales de L’Institut Fourier 57.4 (2007), pp. 1181–1216. url: http://aif.cedram.org/ item?id=AIF_2007__57_4_1181_0.spa
dc.relation.referencesPierre Dazord, André Lichnerowicz, and Charles-Michel Marle. “Structure locale des variétés de Jacobi”. In: Journal de mathématiques pures et appliquées 70.1 (1991), pp. 101–152.spa
dc.relation.referencesRui Loja Fernandes. Differential Geometry. Lecture Notes. University of Illinois Urbana Champaign, Oct. 2020. url: https : / / faculty . math . illinois . edu / ~ruiloja / Meus - papers/HTML/notesDG.pdf.spa
dc.relation.referencesRui Loja Fernandes and Ioan Marcut. Lectures on Poisson geometry. 2015. url: https : //faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf.spa
dc.relation.referencesHansjörg Geiges. An Introduction to Contact Topology. Cambridge University Press, 2008.spa
dc.relation.referencesHansjörg Geiges. “Contact geometry”. In: Handbook of Differential Geometry Vol. 2. July 2006, pp. 315–312. doi: 10.1007/978-94-011-3330-2_3. url: http://arxiv.org/abs/ math/0307242.spa
dc.relation.referencesJanusz Grabowski. “Local lie algebra determines base manifold”. In: Progress in Mathematics 252.2 (2007), pp. 131–145. doi: 10.1007/978-0-8176-4530-4_9.spa
dc.relation.referencesA A Kirillov. “Local Lie Algebras”. In: Russian Mathematical Surveys 31.4 (Aug. 1976), pp. 55–75. doi: 10.1070/RM1976v031n04ABEH001556. url: http://stacks.iop.org/0036- 0279/31/i=4/a=R02?key=crossref.b88697572b48af4d7d2216e575131451.spa
dc.relation.referencesIvan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. en. Web Version, 1st Ed. 1993. Berlin ; New York: Springer-Verlag, 2005. isbn: 978-3-540-56235-1 978-0-387-56235-3. url: https://www.emis.de/monographs/KSM/kmsbookh.pdf.spa
dc.relation.referencesCamille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Poisson Structures. 1st ed. Publication Title: Grundlehren der mathematischen Wissenschaften. Basel: Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-31090-4. doi: 10.1007/978-3-642-31090-4. url: https://www.springer.com/gp/book/9783642310898.spa
dc.relation.referencesJohn Lee. Introduction to Smooth Manifolds. 2nd ed. Pages: XVI, 708. New York: Springer- Verlag New York, 2012. isbn: 978-1-4419-9981-8.spa
dc.relation.referencesAndré Lichnerowicz. “Les variétés de Jacobi et leurs algébres de Lie associées”. In: J. Math. Pures Appl 57 (1978), pp. 453–488.spa
dc.relation.referencesFrank Loose. “Reduction in Contact Geometry”. In: Journal of Lie Theory 11.1 (2001), pp. 9–22. url: https://www.emis.de/journals/JLT/vol.11_no.1/2.html (visited on 11/01/2020).spa
dc.relation.referencesCharles-Michel Marle. “On Jacobi Manifolds and Jacobi Bundles”. In: In Dazord P., We- instein A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Ed. by Mathe- matical Sciences Research Institute Publications. Vol. 111. New York, NY: Springer, New York, NY, 1991, pp. 1009–1010. doi: 10 . 1007 / 978 - 1 - 4613 - 9719 - 9 _ 16. url: http : //link.springer.com/10.1007/978-1-4613-9719-9_16.spa
dc.relation.referencesJet Nestruev. Smooth manifolds and observables. English. OCLC: 1199307234. 2020. isbn: 978-3-030-45649-8.spa
dc.relation.referencesMarı́a Amelia Salazar and Daniele Sepe. “Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators”. In: 13 (2014). doi: 10.3842/SIGMA.2017.033. url: http://arxiv. org/abs/1406.2138%0Ahttp://dx.doi.org/10.3842/SIGMA.2017.033.spa
dc.relation.referencesDaniele Sepe. Geometria Simpletica. Universidade Federal Fluminense (UFF), 2020.spa
dc.relation.referencesAna Canas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math- ematics. Publication Title: Lectures on Symplectic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5. doi: 10.1007/b80865. url: http://link. springer.com/10.1007/978-3-540-45330-7.spa
dc.relation.referencesAna Cannas da Silva and Alan Weinstein. Geometric Models for Noncommutative Algebras. Berkeley, CA: American Mathematical Society, 2000. url: https://bookstore.ams.org/ bmln-10 (visited on 10/19/2020).spa
dc.relation.referencesMiron Stanciu. “Locally conformally symplectic reduction”. en. In: (Aug. 2018). url: https: //arxiv.org/abs/1809.00034v2 (visited on 10/14/2020).spa
dc.relation.referencesAlfonso Giuseppe Tortorella. “Deformations of coisotropic submanifolds in Jacobi manifolds”. In: arXiv:1705.08962 [math] (May 2017). arXiv: 1705.08962. url: http://arxiv.org/abs/ 1705.08962 (visited on 07/22/2020).spa
dc.relation.referencesIzu Vaisman. “Locally Conformal Symplectic Manifolds”. In: International Journal of Math- ematics and Mathematical Sciences 8 (Jan. 1985). doi: 10.1155/S0161171285000564.spa
dc.relation.referencesLuca Vitagliano. “Dirac–Jacobi bundles”. In: Journal of Symplectic Geometry 16.2 (2018), pp. 485–561. doi: 10.4310/JSG.2018.v16.n2.a4. url: http://www.intlpress.com/site/ pub/pages/journals/items/jsg/content/vols/0016/0002/a004/. Bibliographyspa
dc.relation.referencesLuca Vitagliano and Aı̈ssa Wade. “Holomorphic Jacobi Manifolds and Holomorphic Contact Groupoids”. en. In: Math. Z. 294.3-4 (2020). arXiv: 1710.03300, pp. 1181–1225. issn: 0025- 5874, 1432-1823. doi: 10.1007/s00209-019-02320-x. url: http://arxiv.org/abs/1710. 03300 (visited on 07/20/2020).spa
dc.relation.referencesCarlos Zapata-Carratala. “A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science”. PhD thesis. Oct. 2019. url: http://arxiv.org/abs/1910.08469.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembSistemas Hamiltonianos
dc.subject.lembHamilton-Jacobi equation
dc.subject.proposalJacobi structureseng
dc.subject.proposalContact Manifoldseng
dc.subject.proposalLocally conformally symplectic structureseng
dc.subject.proposalHamiltonian actionseng
dc.subject.proposalMoment Mapseng
dc.subject.proposalEstructuras de Jacobispa
dc.subject.proposalVariedades de contactspa
dc.subject.proposalEstructuras localmente conformemente simplécticasspa
dc.subject.proposalAcción Hamiltonianaspa
dc.subject.proposalAplicación momentospa
dc.titleOn moment maps and Jacobi manifoldseng
dc.title.translatedSobre mapas momento y variedades de Jacobispa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
EncabezadoTesisMSc.pdf
Tamaño:
686.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: