On moment maps and Jacobi manifolds
dc.contributor.advisor | Sepe, Daniele | |
dc.contributor.advisor | Martinez Alba, Nicolas | |
dc.contributor.author | Leguizamón Robayo, Alexander | |
dc.date.accessioned | 2021-06-21T22:30:00Z | |
dc.date.available | 2021-06-21T22:30:00Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian action in the context of Poisson, contact, and locally conformally symplectic geometry. | eng |
dc.description.abstract | En el siguiente trabajo introducimos la idea de acción Hamiltoniana en el contexto de la geometría de Jacobi en fibrados de línea generales. Esta construcción la realizamos de forma intrínseca sin necesidad de recurrir al ”truco de Poissonización”. El concepto de acción Hamiltoniana en geometría de Jacobi nos permite recuperar resultados conocidos en geometría de Poisson, contacto, y localmente conformemente simpléctica | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.description.researcharea | Geometría Diferencial | spa |
dc.format.extent | 103 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79669 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | S. C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1995. isbn: 978-0-521-55119-9. doi: 10 . 1017/CBO9780511623653. url: https://www.cambridge.org/core/books/primer- of- algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473. | spa |
dc.relation.references | Marius Crainic. Mastermath course Differential Geometry 2015/2016. Lecture Notes. Uni- versity of Utrecht, 2016. | spa |
dc.relation.references | Marius Crainic and Marı́a Amelia Salazar. “Jacobi structures and Spencer operators”. In: Journal des Mathematiques Pures et Appliquees 103.2 (2015), pp. 504–521. doi: 10.1016/ j.matpur.2014.04.012. | spa |
dc.relation.references | Marius Crainic and Chenchang Zhu. “Integrability of Jacobi and Poison Structures”. In: Annales de L’Institut Fourier 57.4 (2007), pp. 1181–1216. url: http://aif.cedram.org/ item?id=AIF_2007__57_4_1181_0. | spa |
dc.relation.references | Pierre Dazord, André Lichnerowicz, and Charles-Michel Marle. “Structure locale des variétés de Jacobi”. In: Journal de mathématiques pures et appliquées 70.1 (1991), pp. 101–152. | spa |
dc.relation.references | Rui Loja Fernandes. Differential Geometry. Lecture Notes. University of Illinois Urbana Champaign, Oct. 2020. url: https : / / faculty . math . illinois . edu / ~ruiloja / Meus - papers/HTML/notesDG.pdf. | spa |
dc.relation.references | Rui Loja Fernandes and Ioan Marcut. Lectures on Poisson geometry. 2015. url: https : //faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf. | spa |
dc.relation.references | Hansjörg Geiges. An Introduction to Contact Topology. Cambridge University Press, 2008. | spa |
dc.relation.references | Hansjörg Geiges. “Contact geometry”. In: Handbook of Differential Geometry Vol. 2. July 2006, pp. 315–312. doi: 10.1007/978-94-011-3330-2_3. url: http://arxiv.org/abs/ math/0307242. | spa |
dc.relation.references | Janusz Grabowski. “Local lie algebra determines base manifold”. In: Progress in Mathematics 252.2 (2007), pp. 131–145. doi: 10.1007/978-0-8176-4530-4_9. | spa |
dc.relation.references | A A Kirillov. “Local Lie Algebras”. In: Russian Mathematical Surveys 31.4 (Aug. 1976), pp. 55–75. doi: 10.1070/RM1976v031n04ABEH001556. url: http://stacks.iop.org/0036- 0279/31/i=4/a=R02?key=crossref.b88697572b48af4d7d2216e575131451. | spa |
dc.relation.references | Ivan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. en. Web Version, 1st Ed. 1993. Berlin ; New York: Springer-Verlag, 2005. isbn: 978-3-540-56235-1 978-0-387-56235-3. url: https://www.emis.de/monographs/KSM/kmsbookh.pdf. | spa |
dc.relation.references | Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Poisson Structures. 1st ed. Publication Title: Grundlehren der mathematischen Wissenschaften. Basel: Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-31090-4. doi: 10.1007/978-3-642-31090-4. url: https://www.springer.com/gp/book/9783642310898. | spa |
dc.relation.references | John Lee. Introduction to Smooth Manifolds. 2nd ed. Pages: XVI, 708. New York: Springer- Verlag New York, 2012. isbn: 978-1-4419-9981-8. | spa |
dc.relation.references | André Lichnerowicz. “Les variétés de Jacobi et leurs algébres de Lie associées”. In: J. Math. Pures Appl 57 (1978), pp. 453–488. | spa |
dc.relation.references | Frank Loose. “Reduction in Contact Geometry”. In: Journal of Lie Theory 11.1 (2001), pp. 9–22. url: https://www.emis.de/journals/JLT/vol.11_no.1/2.html (visited on 11/01/2020). | spa |
dc.relation.references | Charles-Michel Marle. “On Jacobi Manifolds and Jacobi Bundles”. In: In Dazord P., We- instein A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Ed. by Mathe- matical Sciences Research Institute Publications. Vol. 111. New York, NY: Springer, New York, NY, 1991, pp. 1009–1010. doi: 10 . 1007 / 978 - 1 - 4613 - 9719 - 9 _ 16. url: http : //link.springer.com/10.1007/978-1-4613-9719-9_16. | spa |
dc.relation.references | Jet Nestruev. Smooth manifolds and observables. English. OCLC: 1199307234. 2020. isbn: 978-3-030-45649-8. | spa |
dc.relation.references | Marı́a Amelia Salazar and Daniele Sepe. “Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators”. In: 13 (2014). doi: 10.3842/SIGMA.2017.033. url: http://arxiv. org/abs/1406.2138%0Ahttp://dx.doi.org/10.3842/SIGMA.2017.033. | spa |
dc.relation.references | Daniele Sepe. Geometria Simpletica. Universidade Federal Fluminense (UFF), 2020. | spa |
dc.relation.references | Ana Canas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math- ematics. Publication Title: Lectures on Symplectic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5. doi: 10.1007/b80865. url: http://link. springer.com/10.1007/978-3-540-45330-7. | spa |
dc.relation.references | Ana Cannas da Silva and Alan Weinstein. Geometric Models for Noncommutative Algebras. Berkeley, CA: American Mathematical Society, 2000. url: https://bookstore.ams.org/ bmln-10 (visited on 10/19/2020). | spa |
dc.relation.references | Miron Stanciu. “Locally conformally symplectic reduction”. en. In: (Aug. 2018). url: https: //arxiv.org/abs/1809.00034v2 (visited on 10/14/2020). | spa |
dc.relation.references | Alfonso Giuseppe Tortorella. “Deformations of coisotropic submanifolds in Jacobi manifolds”. In: arXiv:1705.08962 [math] (May 2017). arXiv: 1705.08962. url: http://arxiv.org/abs/ 1705.08962 (visited on 07/22/2020). | spa |
dc.relation.references | Izu Vaisman. “Locally Conformal Symplectic Manifolds”. In: International Journal of Math- ematics and Mathematical Sciences 8 (Jan. 1985). doi: 10.1155/S0161171285000564. | spa |
dc.relation.references | Luca Vitagliano. “Dirac–Jacobi bundles”. In: Journal of Symplectic Geometry 16.2 (2018), pp. 485–561. doi: 10.4310/JSG.2018.v16.n2.a4. url: http://www.intlpress.com/site/ pub/pages/journals/items/jsg/content/vols/0016/0002/a004/. Bibliography | spa |
dc.relation.references | Luca Vitagliano and Aı̈ssa Wade. “Holomorphic Jacobi Manifolds and Holomorphic Contact Groupoids”. en. In: Math. Z. 294.3-4 (2020). arXiv: 1710.03300, pp. 1181–1225. issn: 0025- 5874, 1432-1823. doi: 10.1007/s00209-019-02320-x. url: http://arxiv.org/abs/1710. 03300 (visited on 07/20/2020). | spa |
dc.relation.references | Carlos Zapata-Carratala. “A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science”. PhD thesis. Oct. 2019. url: http://arxiv.org/abs/1910.08469. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas | spa |
dc.subject.lemb | Sistemas Hamiltonianos | |
dc.subject.lemb | Hamilton-Jacobi equation | |
dc.subject.proposal | Jacobi structures | eng |
dc.subject.proposal | Contact Manifolds | eng |
dc.subject.proposal | Locally conformally symplectic structures | eng |
dc.subject.proposal | Hamiltonian actions | eng |
dc.subject.proposal | Moment Maps | eng |
dc.subject.proposal | Estructuras de Jacobi | spa |
dc.subject.proposal | Variedades de contact | spa |
dc.subject.proposal | Estructuras localmente conformemente simplécticas | spa |
dc.subject.proposal | Acción Hamiltoniana | spa |
dc.subject.proposal | Aplicación momento | spa |
dc.title | On moment maps and Jacobi manifolds | eng |
dc.title.translated | Sobre mapas momento y variedades de Jacobi | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience | General | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- EncabezadoTesisMSc.pdf
- Tamaño:
- 686.66 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: