Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana

dc.contributor.advisorVargas Ramírez, Mario
dc.contributor.authorCastillo Rodríguez, Nicolás
dc.contributor.orcidNicolás Castillo-Rodríguez [0000000346711687]spa
dc.contributor.researchgroupBiodiversidad y Conservación Genéticaspa
dc.date.accessioned2023-07-27T19:19:08Z
dc.date.available2023-07-27T19:19:08Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEl Caimán Llanero o Cocodrilo del Orinoco (Crocodylus intermedius) se encuentra críticamente amenazado debido a la caza indiscriminada que sufrió durante el siglo pasado con el fin de satisfacer la empresa curtiembre estadounidense y europea. Por lo que hoy, la especie es representada por individuos aislados, pocas agrupaciones remanentes, y en gran medida, poblaciones ex situ establecidas con fines de conservación en Colombia y Venezuela. Se han desarrollado legislaciones y planes de conservación estatales, que, en el caso de Colombia, incluyen la importancia y urgente necesidad de evaluar su estado genético en vida silvestre, buscando conservar su potencial evolutivo. La presente investigación se desarrolló con el fin de empezar a llenar este vacío de información y proponer acciones concretas y efectivas para la conservación de la especie. En el primer capítulo, reevaluamos el planteamiento efectuado a partir de fragmentos de ADN mitocondrial que sugería el manejo de la especie como una única unidad genética. Para ello, usamos marcadores moleculares variables (microsatélites y la región control de la mitocondria). Como resultado, identificamos tres agrupaciones genéticas con correspondencia geográfica en la Orinoquía Colombiana: i) Cuenca Oriental del Río Meta, ii) Cuenca Occidental del Río Meta y Cuenca del Río Vichada, y iii) Cuenca del Río Guaviare. Estimamos aspectos sobre su flujo genético y planteamos hipótesis que puedan explicar esta estructuración. Así mismo, evaluamos la asignación de individuos decomisados y cuyo origen era desconocido. En el segundo capítulo, efectuamos la caracterización genética de la población que habita el sistema de ríos Cravo Norte-Ele-Lipa y del programa de rancheo de huevos que allí se desarrolla, con el objetivo de aportar herramientas para seguir con su conservación y manejo. Identificamos a la población como un valioso recurso para la conservación de la especie, e identificamos aspectos demográficos históricos y actuales, entre los que destaca su bajo tamaño efectivo poblacional. Finalmente, en cada capítulo se proponen acciones concretas para la conservación y manejo de esta especie en Colombia. (Texto tomado de la fuente)spa
dc.description.abstractThe Orinoco Crocodile (Crocodylus intermedius) is critically endangered due to the indiscriminate hunting it suffered during the last century to satisfy the American and European leather demand. Therefore, today it is represented by isolated individuals, few remaining groups, and to a large extent, ex situ populations established for conservation purposes in Colombia and Venezuela. Likewise, legislation and state conservation plans have been developed, which, in the case of Colombia, have suggested the evaluation of the in situ genetic status of the species, seeking to preserve its evolutionary potential. The present investigation was developed aiming baseline information to propose concrete and effective actions towards the species conservation. In the first chapter, we re-evaluated the approach made using mitochondrial DNA fragments that suggested managing the species as a single genetic unit. To do this, we used variable molecular markers (microsatellites and the control region of mitochondria). As a result, we identified three genetic groups with geographic correspondence in the Colombian Orinoquía: i) Eastern Meta River Basin, ii) Western Meta and Vichada River Basins, and iii) Guaviare River Basin. Furthermore, we estimated aspects such as gene flow, propose hypotheses that may explain its structure, and performed the assignment of seized individuals whose origin was unknown. In the second chapter, we achieved the genetic characterization of the population that inhabits the Cravo Norte-Ele-Lipa River System and the egg ranching program for conservation purposes that is being locally developed. We identified the population as a valuable resource for the conservation of the species and evaluated historical and present demographic aspects, among which its low effective population size stands out. Finally, in each chapter we propose concrete actions for the conservation and management of the species in Colombia.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaConservación genéticaspa
dc.description.sponsorshipLa Dirección de Investigación y Extensión Sede Bogotá por medio de la “Convocatoria nacional para el fomento de alianzas interdisciplinarias que articulen investigación, creación, extensión y formación en la Universidad Nacional de Colombia 2019-2021” financió el proyecto con código HERMES 47329 “Recuperación del caimán del Orinoco en Colombia. Evaluación genética de una población silvestres objeto de conservación del críticamente amenazado Caimán del Orinoco (Crocodylus intermedius): completando la historia para aumentar su supervivencia"spa
dc.format.extentxii, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84327
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAllendorf, F. W., Luikart, G. H., & Aitken, S. N. (2012). Conservation and the Genetics of Populations. Wiley. https://books.google.com.co/books?id=VVploytG8jYCspa
dc.relation.referencesAmavet, P. S., Barban Zucoloto, R., Hrbek, T., & Farias Pires, I. (2021). Genetic diversity of new world crocodilians. In R. Barban Zucoloto, P. S. Amavet, L. Martins Verdade, & I. Farias Pires (Eds.), Conservation Genetics of New World Crocodilians (pp. 123–152). Springer. https://doi.org/10.1007/978-3-030-56383-7spa
dc.relation.referencesAmavet, P. S., Rueda, E. C., Vilardi, J. C., Siroski, P., Larriera, A., & Saidman, B. O. (2017). The broad-snouted caiman population recovery in Argentina. A case of genetics conservation. Amphibia Reptilia, 38(4), 411–424. https://doi.org/10.1163/15685381-00003123spa
dc.relation.referencesAntelo, R., Ayarzagüena, J., & Castroviejo, J. (2008). Biología del cocodrilo o caimán del Orinoco (Crocodylus intermedius) en la Estación Biológica El Frío, Estado Apure. Lozania, 336.spa
dc.relation.referencesAntelo, R., Vargas-Ramírez, M., Preciado, G., Saavedra-Rodríguez, C. A., & Forero-Medina, G. (2022). Plan de acción interinstitucional para la conservación del caimán llanero (Crocodylus intermedius) en Colombia. Wildlife Conservation Society, Estación de Biología Tropical Roberto Franco, Gobernación de Casanare y Universidad Nacional.spa
dc.relation.referencesAnzola, L. F. (2017). Abundancia poblacional , aspectos reproductivos y percepción de los habitantes locales, del Caimán LLanero (Crocodylus intermedius, Graves, 1819) en los ríos Lipa, Ele y Cravo Norte del Departamento de Arauca. Bol. Acad. C. Fís., Mat. y Nat., LXXVII(2–3), 147–158.spa
dc.relation.referencesAnzola, L. F., & Antelo, R. (2015). First data of natural recovery of any Orinoco crocodile Crocodylus intermedius population: Evidence from nesting. Herpetological Bulletin, 134, 10– 14.spa
dc.relation.referencesArdila-Robayo, M. C., Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (2002). Monitoreo poblacional de Crocodylus intermedius (caimán llanero) en los ríos Guayabero y Duda (municipio de la Macarena - Meta).spa
dc.relation.referencesArdila-Robayo, M. C., Barahona-Buitrago, S. L., Bonilla-Centeno, O. P., & Clavijo, B. J. (2002). Actualización del status poblaciones de Caimán del Orinoco (Crocodylus intermedius) en el Departamento de Arauca (Colombia). Memorias del Taller para la Conservación del Caimán del Orinoco (Crocodylus intermedius) en el Colombia y Venezuela.spa
dc.relation.referencesArdila-Robayo, M. C., Martínez-Barreto, W., Suárez-Daza, R. M., & Moreno-Torres, C. A. (2010). La Estación Roberto Franco (EBTRF) y el cocodrilo del Orinoco en Colombia: contribución a su biología y conservación. Revista Latinoamericana de Conservación, 1(2), 120–130. http://lajoc.procat-conservation.org/ojs/index.php/procat/article/view/60spa
dc.relation.referencesAvila-cervantes, J., & Larsson, H. C. E. (2023). Ice Age effects on genetic divergence of the American crocodile ( Crocodylus acutus ) in Panama : reconstructing limits of gene flow and environmental ranges : a reply to O ’ Dea et al . 77(December 2022), 329–334.spa
dc.relation.referencesBalaguera-Reina, S. A., Espinosa-Blanco, A., Antelo, R., Morales-Betancourt, M., & Seijas, A. (2018). Crocodylus intermedius (errata version published in 2020). The IUCN Red List of Threatened Species 2018: E.T5661A181089024. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018- 1.RLTS.T5661A181089024.enspa
dc.relation.referencesBalaguera-Reina, S. A., Espinosa-Blanco, A. S., Morales-Betancourt, M. A., Seijas, A. E., Lasso, C. A., Antelo, R., & Densmore, L. D. (2017). Conservation status and regional habitat priorities for the Orinoco crocodile: Past, present, and future. PLoS ONE, 12(2), 1–20. https://doi.org/10.1371/journal.pone.0172439spa
dc.relation.referencesBalaguera-Reina, S. A., Moncada-Jimenez, J. F., Prada-Quiroga, C. F., Hernandez-Gonzalez, F., Bolaños-Cubillos, N. W., Farfán-Ardila, N., Garcia-Calderón, L. M., & Densmore, L. D. (2021). Tracking a voyager: Mitochondrial DNA analyses reveal mainland-to-island dispersal of an American crocodile (Crocodylus acutus) across the Caribbean. Biological Journal of the Linnean Society, 131(3), 647–655. https://doi.org/10.1093/BIOLINNEAN/BLAA121spa
dc.relation.referencesBarahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (1999). Evaluación poblacional del Caimán Llanero (Crocodylus intermedius) en un subareal de distribución en el departamento de Arauca (Colombia). In Revista de la Academia Colombiana de Ciencias (Vol. 23, pp. 445–451).spa
dc.relation.referencesBehling, H., & Hooghiemstra, H. (2001). Chapter 18 - Neotropical Savanna Environments in Space and Time: Late Quaternary Interhemispheric Comparisons. In V. Markgraf (Ed.), Interhemispheric Climate Linkages (pp. 307–323). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012472670-3/50021-5spa
dc.relation.referencesBensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., & Pinheiro, R. T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 1583–1589. https://doi.org/10.1098/rspb.2000.1181spa
dc.relation.referencesBishop, J. M., Leslie, A. J., Bourquin, S. L., & O’Ryan, C. (2009). Reduced effective population size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biological Conservation, 142(10), 2335–2341. https://doi.org/https://doi.org/10.1016/j.biocon.2009.05.016spa
dc.relation.referencesBittencourt, P. S., Campos, Z., De Lima Muniz, F., Marioni, B., Souza, B. C., Silveira, R. Da, De Thoisy, B., Hrbek, T., & Farias, I. P. (2019). Evidence of cryptic lineages within a small South American crocodilian: The Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ, 2019(3), 1–26. https://doi.org/10.7717/peerj.6580spa
dc.relation.referencesBlomqvist, D., Pauliny, A., Larsson, M., & Flodin, L. Å. (2010). Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evolutionary Biology, 10(1), 1–9. https://doi.org/10.1186/1471-2148-10-33spa
dc.relation.referencesBustamante, C. (Ed.). (2019). El Gran Libro de la Orinoquia Colombiana. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Deutsche Gessellschaft für Internationale Zusammenarbeit (GIZ) GmbH.spa
dc.relation.referencesCampos, J. C., Mobaraki, A., Abtin, E., Godinho, R., & Brito, J. C. (2018). Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphibia Reptilia, 39(1), 126–131. https://doi.org/10.1163/15685381-16000173spa
dc.relation.referencesCasal, A. C., Fornelino, M. M., Restrepo, M. F. G., Torres, M. A. C., & Velasco, F. G. (2013). Uso histórico y actual del caimán llanero (Crocodylus intermedius) en la Orinoquia (Colombia-Venezuela). Biota Colombiana, 14(1), 65–82.spa
dc.relation.referencesCastro, A., Merchán, M., Garcés, M., Cárdenas, M., & Gómez, F. (2012). New data on the Conservation Status of the Orinoco crocodile (Crocodylus intermedius) in Colombia. Proceedings of the 21th Working Meeting of the Crocodile Specialist Group, IUCN, January, 65–73.spa
dc.relation.referencesCastro, A., Merchán, M., Gómez, F., Garcés, M. F., & Cárdenas, M. A. (2011). Nuevos datos sobre la presencia de caimán llanero (Crocodylus intermedius) y notas sobre su comportamiento en el río Vichada, Orinoquia (Colombia). Biota Colombiana, 12(1), 137–144. https://doi.org/10.21068/bc.v12i1.244spa
dc.relation.referencesCastro Casal, A. (2012). Generalidades sobre la biología y el comportamiento del Cocodrilo del Orinoco (Crocodylus intermedius) (pp. 17–56).spa
dc.relation.referencesCedeño-Vázquez, J. R., Platt, S. G., & Thorbjarnarson, J. (2012). Crocodylus moreletii. The IUCN Red List of Threatened Species 2012: e.T5663A3045579. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T5663A3045579.enspa
dc.relation.referencesChoudhury, B. C., & de Silva, A. (2013). Crocodylus palustris. The IUCN Red List of Threatened Species 2013: e.T5667A3046723. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2013- 2.RLTS.T5667A3046723.enspa
dc.relation.referencesCITES. (2017). Appendices I, II and III valid from 4 October 2017. In CITES-UNEP. https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdfspa
dc.relation.referencesClement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1660.spa
dc.relation.referencesCohen, J. I., & Ruane, L. G. (2022). Conservation genetics of Phlox hirsuta, a serpentine endemic. Conservation Genetics, 0123456789. https://doi.org/10.1007/s10592-022-01478-yspa
dc.relation.referencesCornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014. https://doi.org/10.1093/genetics/144.4.2001spa
dc.relation.referencesDavis, L. M., Glenn, T. C., Strickland, D. C., Guillette, L. J., Elsey, R. M., Rhodes, W. E., Dessauer, H. C., & Sawyer, R. H. (2002). Microsatellite DNA analyses support an east-west phylogeographic split of American alligator populations. Journal of Experimental Zoology, 294(4), 352–372. https://doi.org/10.1002/jez.10189spa
dc.relation.referencesde Thoisy, B., Hrbek, T., Farias, I. P., Vasconcelos, W. R., & Lavergne, A. (2006). Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biological Conservation, 133(4), 474–482. https://doi.org/10.1016/j.biocon.2006.07.009spa
dc.relation.referencesDever, J. A., & Densmore, L. D. (2001). Microsatellites in Morelet’s Crocodile (Crocodylus moreletii) and Their Utility in Addressing Crocodilian Population Genetics Questions. Journal of Herpetology, 35(3), 541–544.spa
dc.relation.referencesDever, J. A., Strauss, R. E., Rainwater, T., & Densmore, L. D. (2002). Genetic Diversity, Population Subdivision, and Gene Flow in Morelet’s Crocodile (Crocodylus moreletii) from Belize, Central America. December 2002. https://doi.org/10.1643/0045-8511(2002)002spa
dc.relation.referencesDi Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3166–3170. https://doi.org/10.1073/pnas.91.8.3166spa
dc.relation.referencesDo, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214. https://doi.org/https://doi.org/10.1111/1755-0998.12157spa
dc.relation.referencesDominguez, M., Pizzarello, G., Atencio, M., Scardamaglia, R., & Mahler, B. (2019). Genetic assignment and monitoring of yellow cardinals. Journal of Wildlife Management, 83(6), 1336– 1344. https://doi.org/10.1002/jwmg.21718spa
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xspa
dc.relation.referencesExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.xspa
dc.relation.referencesFaubet, P., Waples, R. S., & Gaggiotti, O. E. (2007). Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Molecular Ecology, 16(6), 1149–1166. https://doi.org/10.1111/j.1365-294X.2007.03218.xspa
dc.relation.referencesFitzsimmons, N. N., Tanksley, S., Forstner, M. R. J., Louis, E. E., Daglish, R., Gratten, J., & Davis, S. (2001). Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In Crocodilian Biology and Evolution (pp. 51–57).spa
dc.relation.referencesFrankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 66(2), 95–107. https://doi.org/10.1017/S0016672300034455spa
dc.relation.referencesFrankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation Biology, 10(6), 1500–1508. http://dx.doi.org/10.1046/j.1523-1739.1996.10061500.xspa
dc.relation.referencesFrankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610–2618. https://doi.org/10.1111/mec.13139spa
dc.relation.referencesFrankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology, 25(3), 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.xspa
dc.relation.referencesFrankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56–63. https://doi.org/https://doi.org/10.1016/j.biocon.2013.12.036spa
dc.relation.referencesFranklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 135–150). Sinauer Associates.spa
dc.relation.referencesFu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915–925. https://doi.org/10.1093/genetics/147.2.915spa
dc.relation.referencesGarcía-Dorado, A. (2015). On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity, 115(3), 185–187. https://doi.org/10.1038/hdy.2015.28spa
dc.relation.referencesGarza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365- 294x.2001.01190.xspa
dc.relation.referencesGillespie, J. H. (2004). Population Genetics: A Concise Guide. Johns Hopkins University Press. https://books.google.com.co/books?id=eslingEACAAJspa
dc.relation.referencesGilpin, M., & Soulé, M. E. (1986). Minimum viable populations : Processes of species extinction. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 19–34). Sinauer Associates.spa
dc.relation.referencesGlenn, T. C., Staton, J. L., Vu, A. T., Davis, L. M., Alvarado Bremer, J. R., Rhodes, W. E., Brisbin, I. L., & Sawyer, R. H. (2002). Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. Journal of Experimental Zoology, 294(4), 312– 324. https://doi.org/10.1002/jez.10206spa
dc.relation.referencesGottelli, D., Sillero-Zubiri, C., Marino, J., Funk, S. M., & Wang, J. (2013). Genetic structure and patterns of gene flow among populations of the endangered Ethiopian wolf. Animal Conservation, 16(2), 234–247. https://doi.org/10.1111/j.1469-1795.2012.00591.xspa
dc.relation.referencesGoudet, J. (2003). Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Updated from Goudet (1995). http://www.unil.ch/izea/softwares/fstat. htmlspa
dc.relation.referencesGuillot, G., Mortier, F., & Estoup, A. (2005). GENELAND: A computer package for landscape genetics. Molecular Ecology Notes, 5(3), 712–715. https://doi.org/10.1111/j.1471- 8286.2005.01031.xspa
dc.relation.referencesGustafson, K. D., Gagne, R. B., Buchalski, M. R., Vickers, T. W., Riley, S. P. D., Sikich, J. A., Rudd, J. L., Dellinger, J. A., LaCava, M. E. F., & Ernest, H. B. (2022). Multi-population puma connectivity could restore genomic diversity to at-risk coastal populations in California. Evolutionary Applications, 15(2), 286–299. https://doi.org/10.1111/eva.13341spa
dc.relation.referencesHall, T. (2005). BioEdit: Biological sequence alignmet editor for Win95/98/NT/2K/XP (7.0.5). Ibis Therapeutics.spa
dc.relation.referencesHartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates. https://books.google.com.co/books?id=4ypuQgAACAAJspa
dc.relation.referencesHekkala, E. R., Amato, G., DeSalle, R., & Blum, M. J. (2010). Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conservation Genetics, 11(4), 1435–1443. https://doi.org/10.1007/s10592-009-9970-5spa
dc.relation.referencesHernández-Camacho, J., Hurtado G., A., Ortiz Quijano, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. In G. Halffter (Ed.), La diversidad biológica de Iberoamérica (Vol. 1, pp. 105–152).spa
dc.relation.referencesHill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetical Research, 38(3), 209–216. https://doi.org/10.1017/S0016672300020553spa
dc.relation.referencesHinlo, M. R. P., Tabora, J. A. G., Bailey, C. A., Trewick, S., Rebong, G., van Weerd, M., Pomares, C. C., Engberg, S. E., Brenneman, R. A., & Louis, Jr., E. E. (2014). Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). Journal of Threatened Taxa, 6(3), 5513–5533. https://doi.org/10.11609/jott.o3384.5513-33spa
dc.relation.referencesHubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information - HUBISZ - 2009 - Molecular Ecology Resources - Wiley Online Library. Molecular Ecology Resources, 9(5), 1322–1332.spa
dc.relation.referencesIDEAM. (2020). Presentación Deforestación 2020. http://www.ideam.gov.co/documents/10182/113437783/Presentacion_Deforestacion%0A202 0_SMByC-IDEAM.pdf/8ea7473e-3393-4942-8b75-88967ac12a19spa
dc.relation.referencesIriondo, M. (1999). Climatic changes in the South American plains: Records of a continent-scale oscillation. Quaternary International, 57–58, 93–112. https://doi.org/10.1016/S1040- 6182(98)00053-6spa
dc.relation.referencesIsberg, S., Combrink, X., Lippai, C., & Balaguera-Reina, S. A. (2019). Crocodylus niloticus. The IUCN Red List of Threatened Species 2019: e.T45433088A3010181. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T45433088A3010181.enspa
dc.relation.referencesJablonski, D., Ribeiro-Júnior, M. A., Meiri, S., Maza, E., Kukushkin, O. V., Chirikova, M., Pirosová, A., Jelic, D., Mikulícek, P., & Jandzik, D. (2021). Morphological and genetic differentiation in the anguid lizard Pseudopus apodus supports the existence of an endemic subspecies in the Levant. Vertebrate Zoology, 71, 175–200. https://doi.org/10.3897/VZ.71.E60800spa
dc.relation.referencesJakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233spa
dc.relation.referencesJamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27(10), 578–584. https://doi.org/10.1016/j.tree.2012.07.001spa
dc.relation.referencesJamieson, I. G., Grueber, C. E., Waters, J. M., & Gleeson, D. M. (2008). Managing genetic diversity in threatened populations: a New Zealand perspective. New Zealand Journal of Ecology, 32(1), 130–137. http://www.jstor.org/stable/24058111spa
dc.relation.referencesJombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129spa
dc.relation.referencesJones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.xspa
dc.relation.referencesKalinowski, S. T. (2005). HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.xspa
dc.relation.referencesLi, Y. L., & Liu, J. X. (2018). StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176– 177. https://doi.org/10.1111/1755-0998.12719spa
dc.relation.referencesLugo-Rugeles, L. M., & Ardila-Robayo, M. C. (1998). Programa para la conservación del caiman del Orinoco (Crocodylus intermedius) en Colombia. Proyecto 290. Programa Research Fellowship NYZS. Wildlife Conservation Society. Proyecto 1101-13- 205-92 Colciencias.spa
dc.relation.referencesLuikart, G., & Cornuet, J.-M. (1998). Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data. Conservation Biology, 12(1), 228–237. https://doi.org/https://doi.org/10.1111/j.1523-1739.1998.96388.xspa
dc.relation.referencesMarkert, J. A., Denise M. Champlin, Ruth Gutjahr-Gobell, Jason S. Grear, Anne Kuhn, Thomas J. McGreevy, Annette Roth, Mark J. Bagley, & Diane E. Nacci. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(205), 1–13. http://www.biomedcentral.com/1471-2148/10/205spa
dc.relation.referencesMartin, S. (2008). Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia, 595(1), 587–591. https://doi.org/10.1007/s10750-007-9030-4spa
dc.relation.referencesMcvay, J. D., Rodriguez, D., Rainwater, T. R., Dever, J. A., Platt, S. G., Mcmurry, S. T., Forstner, M. R. J., & Densmore, L. D. (2008). Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 643–648. https://doi.org/10.1002/jez.500spa
dc.relation.referencesMedem, F. (1981). Los Crocodylia de Sur America: Los Crocodylia de Colombia. Vol. 1. Ministerio de Educacion Nacional, Fondo Colombiano de Investigaciones Científicas y Proyectos Especiales “Francisco José de Caldas.”spa
dc.relation.referencesMeirmans, P. G. (2014). Nonconvergence in Bayesian estimation of migration rates. Molecular Ecology Resources, 14(4), 726–733. https://doi.org/10.1111/1755-0998.12216spa
dc.relation.referencesMiles, L. G., Isberg, S. R., Moran, C., Hagen, C., & Glenn, T. C. (2009). 253 Novel polymorphic microsatellites for the saltwater crocodile (Crocodylus porosus). Conservation Genetics, 10(4), 963–980. https://doi.org/10.1007/s10592-008-9600-7spa
dc.relation.referencesMilián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Sosa-Rodríguez, G., Guerra-Manchena, L., Alonso-Tabet, M., Espinosa-López, G., & Russello, M. A. (2015). Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation. Heredity, 114(3), 272–280. https://doi.org/10.1038/hdy.2014.96spa
dc.relation.referencesMilián-García, Y., Russello, M. A., Castellanos-Labarcena, J., Cichon, M., Kumar, V., Espinosa, G., Rossi, N., Mazzotti, F., Hekkala, E., Amato, G., & Janke, A. (2018). Genetic evidence supports a distinct lineage of American crocodile (Crocodylus acutus) in the Greater Antilles. PeerJ, 2018(11), 1–16. https://doi.org/10.7717/peerj.5836spa
dc.relation.referencesMinisterio de Ambiente. (2016). Visión Amazonía. https://www.minambiente.gov.co/index.php/component/content/article/2138plantilla%0Abosques-biodiversidad-y-servicios-ecosistematicos-62spa
dc.relation.referencesMMA. (2002). Programa Nacional para la Conservación del Caimán Llanero. 31.spa
dc.relation.referencesMora-Fernández, C., Peñuela-Recio, L., & Castro-Lima, F. (2015). Estado del conocimiento de los ecosistemas de las sabanas inundables en la Orinoquia Colombiana TT - State of the knowledge of the flooded savanna ecosystems of Orinoquia Colombiana TT - Estado do conhecimento sobre os ecossistemas das savanas inundadas. Orinoquia, 19(2), 253–271.spa
dc.relation.referencesMorales-Betancourt, M. A., Lasso, C. A., Gutiérrez, F. de P., Martínez-Barreto, W., Ardila-Robayo, M. C., Moreno-Arias, R. A., Suarez-Daza, R. M., Clavijo, J., Anzola, L. F., Antelo, R., Lugo, M., & Trujillo, F. (2019). Identificación de áreas y estrategias para la conservación del caimán llanero (Crocodylus intermedius) en la Orinoquia colombiana. In M. C. Ardila-Robayo & W. Martínez-Barreto (Eds.), Homenaje a Federico Medem, aportes a la herpetología colombiana (1st ed., pp. 13–28). Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales.spa
dc.relation.referencesMorales-Betancourt, M. A., Lasso, C. A., Martínez, W., Ardila-Robayo, M. C., & Bloor, P. (2015). Caimán llanero (Crocodylus intermedius). In M. A. Morales-Betancourt, C. A. Lasso, V. P. Páez, & B. C. Bock (Eds.), Libro rojo de reptiles de Colombia (p. 258). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia.spa
dc.relation.referencesMoreno-Arias, R. A., & Ardila-Robayo, M. C. (2020). Journeying to freedom: The spatial ecology of a reintroduced population of Orinoco crocodiles (Crocodylus intermedius) in Colombia. Animal Biotelemetry, 8(1), 1–13. https://doi.org/10.1186/s40317-020-00202-2spa
dc.relation.referencesMoritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4spa
dc.relation.referencesMuniz, F. L., Ximenes, A. M., Bittencourt, P. S., Hernández-Rangel, S. M., Campos, Z., Hrbek, T., & Farias, I. P. (2019). Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Molecular Biology Reports, 46(2), 2473–2484. https://doi.org/10.1007/s11033-019-04709-7spa
dc.relation.referencesNei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19(2), 153–170. https://doi.org/10.1007/BF02300753spa
dc.relation.referencesNeuwald, J. L. (2010). Population isolation exacerbates conservation genetic concerns in the endangered Amargosa vole, Microtus californicus scirpensis. Biological Conservation, 143(9), 2028–2038. https://doi.org/10.1016/j.biocon.2010.05.007spa
dc.relation.referencesOaks, J. R. (2011). A time-calibrated species tree of crocodylia reveals a recent radiation of the true crocodiles. Evolution, 65(11), 3285–3297. https://doi.org/10.1111/j.1558-5646.2011.01373.xspa
dc.relation.referencesPacheco-Sierra, G., Vázquez-Domínguez, E., Pérez-Alquicira, J., Suárez-Atilano, M., & Domínguez-Laso, J. (2018). Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Frontiers in Ecology and Evolution, 6(SEP). https://doi.org/10.3389/fevo.2018.00138spa
dc.relation.referencesPaetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4(3), 347–354. https://doi.org/10.1111/j.1365-294x.1995.tb00227.xspa
dc.relation.referencesPaetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13(1), 55–65. https://doi.org/10.1046/j.1365-294x.2004.02008.xspa
dc.relation.referencesPalstra, F. P., & Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population size : what can they tell us about the importance of genetic stochasticity for wild population persistence ? Molecular Ecology, 17, 3428–3447. https://doi.org/10.1111/j.1365- 294X.2008.03842.xspa
dc.relation.referencesPeery, M. Z., Kirby, R., Reid, B. N., Stoelting, R., Doucet-Bëer, E., Robinson, S., Vásquez-Carrillo, C., Pauli, J. N., & Palsboll, P. J. (2012). Reliability of genetic bottleneck tests for detecting recent population declines. Molecular Ecology, 21(14), 3403–3418. https://doi.org/10.1111/j.1365-294X.2012.05635.xspa
dc.relation.referencesPiry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection. Journal of Heredity, 95(6), 536–539. https://doi.org/10.1093/jhered/esh074spa
dc.relation.referencesPiry, S., Luikart, G., & Cornuet, J.-M. (1999). Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered, 90. https://doi.org/10.1093/jhered/90.4.502spa
dc.relation.referencesPosso-Peláez, C., Ibáñezand, C., & Bloor, P. (2018). Low mitochondrial DNA variability in the captive breeding population of the critically endangered orinoco crocodile (Crocodylus intermedius) from Colombia. Herpetological Conservation and Biology, 13(2), 347–354.spa
dc.relation.referencesPreciado-Salas, B. A. (2018). Percepción, uso y conservación local del Caimán llanero (Crocodylus intermedius) en el complejo de ríos Cravo Norte, Ele y Lipa (Arauca, Colombia) Trabajo de grado para optar por el título de Magister en Conservación y Uso de la Biodiversidad. Modalidad d [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/bitstream/handle/10554/35678/Brigitte Preciado-Salas Percepcion%2C Uso y Conservacion Local del Caiman Llanero.pdf?sequence=2&isAllowed=yspa
dc.relation.referencesPritchard, J., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 9197–9201. https://doi.org/10.1093/genetics/155.2.945spa
dc.relation.referencesPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512spa
dc.relation.referencesR Development Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRainwater, T. R., Platt, S. G., Charruau, P., Balaguera-Reina, S. A., Sigler, L., Cedeño-Vázquez, J. R., & Thorbjarnarson, J. B. (2021). Crocodylus acutus (amended version of 2021 assessment). The IUCN Red List of Threatened Species 2022: e.T5659A212805700. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T5659A212805700.enspa
dc.relation.referencesRamasamy, R. K., Ramasamy, S., Bindroo, B. B., & Naik, V. G. (2014). STRUCTURE PLOT: A program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus, 3(1), 1–3. https://doi.org/10.1186/2193-1801-3-431spa
dc.relation.referencesRamos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19(12), 2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034spa
dc.relation.referencesRannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America, 94(17), 9197–9201. https://doi.org/10.1073/pnas.94.17.9197spa
dc.relation.referencesRay, D. A., & Densmore, L. (2002). The crocodilian mitochondrial control region: General structure, conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294(4), 334–345. https://doi.org/10.1002/jez.10198spa
dc.relation.referencesRay, D. A., & Densmore, L. D. (2003). Repetitive sequences in the crocodilian mitochondrial control region: Poly-A sequences and heteroplasmic tandem repeats. Molecular Biology and Evolution, 20(6), 1006–1013. https://doi.org/10.1093/molbev/msg117spa
dc.relation.referencesRay, D. A., Dever, J. A., Platt, S. G., Rainwater, T. R., Finger, A. G., McMurry, S. T., Batzer, M. A., Barr, B., Stafford, P. J., McKnight, J., & Densmore, L. D. (2004). Low levels of nucleotide diversity in Crocodylus moreletii and evidence of hybridization with C. acutus. Conservation Genetics, 5(4), 449–462. https://doi.org/10.1023/B:COGE.0000041024.96928.fespa
dc.relation.referencesReed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.xspa
dc.relation.referencesRhode, C., Maduna, S. N., Roodt-Wilding, R., & Bester-Van Der Merwe, A. E. (2014). Comparison of population genetic estimates amongst wild, F1 and F2 cultured abalone (Haliotis midae). Animal Genetics, 45(3), 456–459. https://doi.org/10.1111/age.12142spa
dc.relation.referencesRivera-Ortíz, F. A., Arizmendi, M. D. C., Juan-Espinosa, J., Solórzano, S., & Contreras-González, A. M. (2021). Genetic assignment tests to identify the probable geographic origin of a captive specimen of military macaw (Ara militaris) in mexico: Implications for conservation. Diversity, 13(6). https://doi.org/10.3390/d13060245spa
dc.relation.referencesRoa, P. (1979). Estudio de los médanos de los Llanos Centrales de Venezuela: Evidencias de un clima desértico. Acta Biológica Venezolana, 10, 19–49.spa
dc.relation.referencesRogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727spa
dc.relation.referencesRollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R., & Sherwin, W. B. (2009). Invasive species can’t cover their tracks: Using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Molecular Ecology, 18(8), 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.xspa
dc.relation.referencesRossi Lafferriere, N. A., Antelo, R., Alda, F., Martensson, D., Hailer, F., Castroviejo-Fisher, S., Ayarzagöena, J., Ginsberg, J. R., Castroviejo, J., Doadrio, I., Vilá, C., & Amato, G. (2016). Multiple paternity in a reintroduced population of the orinoco crocodile (Crocodylus intermedius) at the El frío biological station, Venezuela. PLoS ONE, 11(3), 1–16. https://doi.org/10.1371/journal.pone.0150245spa
dc.relation.referencesRossi Lafferriere, N. A., Menchaca-Rodriguez, A., Antelo, R., Wilson, B., McLaren, K., Mazzotti, F., Crespo, R., Wasilewski, J., Alda, F., Doadrio, I., Barros, T. R., Hekkala, E., Alonso-Tabet, M., Alonso-Giménez, Y., Lopez, M., Espinosa-Lopez, G., Burgess, J., Thorbjarnarson, J. B., Ginsberg, J. R., … Amato, G. (2020). High levels of population genetic differentiation in the American crocodile (Crocodylus acutus). Plos One, 15(7), e0235288. https://doi.org/10.1371/journal.pone.0235288spa
dc.relation.referencesRousset, F. (2008). GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.xspa
dc.relation.referencesRousset, F., & Raymond, M. (1995). Testing heterozygote excess and deficiency. Genetics, 140(4), 1413–1419. https://doi.org/10.1093/genetics/140.4.1413spa
dc.relation.referencesRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-García, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34, 3299–3302.spa
dc.relation.referencesRussello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J., & Caccone, A. (2007). Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conservation Genetics, 8(4), 777–787. https://doi.org/10.1007/s10592-006-9225-7spa
dc.relation.referencesRyberg, W. A., Fitzgerald, L. A., Honeycutt, R. L., & Cathey, J. C. (2002). Genetic relationships of American alligator populations distributed across different ecological and geographic scales. Journal of Experimental Zoology, 294(4), 325–333. https://doi.org/10.1002/jez.10207spa
dc.relation.referencesSaldarriaga-Gómez, A. M. (2021). Conservation genetics of the largest captive population of the critically endangered Orinoco crocodile (Crocodylus intermedius): a contribution for its survival [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80488spa
dc.relation.referencesSeijas, A. E., Antelo, R., & Hernández, O. (2015). Caimán del Orinoco, Crocodylus intermedius. In J. P. Rodríguez, A. García-Rawlns, & F. Rojas-Suárez (Eds.), Libro Rojo de la Fauna Venezolana (Forth). Provita y Fundación Empresas Polar.spa
dc.relation.referencesSeijas, A. E., Antelo, R., Thorbjarnarson, J. B., & Robayo, M. C. A. (2010). Orinoco Crocodile Crocodylus intermedius. Crocodiles: An Action Plan for Their Conservation., 59–65.spa
dc.relation.referencesShaffer, M. L. (1981). Minimum Population Sizes for Species Conservation. BioScience, 31(2), 131– 134. https://doi.org/10.2307/1308256spa
dc.relation.referencesSharma, S. P., Ghazi, M. G., Katdare, S., Dasgupta, N., Mondol, S., Gupta, S. K., & Hussain, S. A. (2021). Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-85201-wspa
dc.relation.referencesTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585spa
dc.relation.referencesTargarona, R. R., Soberón, R. R., Cotayo, L., Tabet, M. A., & Thorbjarnarson, J. (2008). Crocodylus rhombifer (errata version published in 2017). The IUCN Red List of Threatened Species 2008: e.T5670A112902585. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T5670A11516438.enspa
dc.relation.referencesThorbjarnarson, J. B. (1987). Status, ecology and conservation of the Orinoco Crocodile. Preliminary Report.spa
dc.relation.referencesThorbjarnarson, J. B. (1989). Ecology of the American crocodile, Crocodylus actus. In P. Hall & R. Bryant (Eds.), Crocodiles, their ecology, management and conservation a special publication of the crocodile specialist group (pp. 228–258). IUCN Publications.spa
dc.relation.referencesThorbjarnarson, J. B. ., & Hernández, G. (1993). Reproductive Ecology of the Orinoco Crocodile (Crocodylus intermedius) in Venezuela . II . Reproductive and Social Behavior. Herpetological Journal, 27(4), 371–379.spa
dc.relation.referencesTurba, R., Richmond, J. Q., Fitz-Gibbon, S., Morselli, M., Fisher, R. N., Swift, C. C., Ruiz-Campos, G., Backlin, A. R., Dellith, C., & Jacobs, D. K. (2022). Genetic structure and historic demography of endangered unarmoured threespine stickleback at southern latitudes signals a potential new management approach. Molecular Ecology, March, 6515–6530. https://doi.org/10.1111/mec.16722spa
dc.relation.referencesvan Asch, B., Versfeld, W. F., Hull, K. L., Leslie, A. J., Matheus, T. I., Beytell, P. C., du Preez, P., Slabbert, R., & Rhode, C. (2019). Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE, 14(12), 1–21. https://doi.org/10.1371/journal.pone.0226505spa
dc.relation.referencesvan Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/https://doi.org/10.1111/j.1471- 8286.2004.00684.xspa
dc.relation.referencesvan Weerd, M., C. Pomaro, C., de Leon, J., Antolin, R., & Mercado, V. (2016). Crocodylus mindorensis. The IUCN Red List of Threatened Species 2016: e.T5672A3048281. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T5672A3048281.enspa
dc.relation.referencesVandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6, 1–12. https://doi.org/10.1186/1741-7007-6-46spa
dc.relation.referencesVasconcelos, W. R., Hrbek, T., Da Silveira, R., De Thoisy, B., Dos Santos Ruffeil, L. A. A., & Farias, I. P. (2008). Phylogeographic and conservation genetic analysis of the Black Caiman (Melanosuchus niger). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 600–613. https://doi.org/10.1002/jez.452spa
dc.relation.referencesVashistha, G., Deepika, S., Dhakate, P. M., Khudsar, F. A., & Kothamasi, D. (2020). The effectiveness of microsatellite DNA as a genetic tool in crocodilian conservation. Conservation Genetics Resources, 12(4), 733–744. https://doi.org/10.1007/s12686-020-01164-6spa
dc.relation.referencesVelo-Antón, G., Godinho, R., Campos, J. C., & Brito, J. C. (2014). Should i stay or should i go? Dispersal and population structure in small, isolated desert populations of west african crocodiles. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094626spa
dc.relation.referencesVillamarín, F., Escobedo-Galván, A. H., Siroski, P., & Magnusson, W. E. (2021). Geographic Distribution, Habitat, Reproduction, and Conservation Status of Crocodilians in the Americas. In R. B. Zucoloto, P. S. Amavet, L. M. Verdade, & I. P. Farias (Eds.), Conservation Genetics of New World Crocodilians (pp. 1–30). Springer International Publishing. https://doi.org/10.1007/978-3-030-56383-7_1spa
dc.relation.referencesvon Humboldt, A. (1958). Vom Orinoko zum Amazonas: Reise in die Äquinoktial-Gegenden des neuen Kontinents (A. Plott (Ed.)). F. A. Brockhaus. https://books.google.com.co/books?id=Q%5C_GhugEACAAJspa
dc.relation.referencesWang, J. (2009). A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology, 18(10), 2148–2164. https://doi.org/10.1111/j.1365- 294X.2009.04175.xspa
dc.relation.referencesWaples, R. S. (2006). A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7(2), 167–184. https://doi.org/10.1007/s10592-005-9100-yspa
dc.relation.referencesWaples, R. S., & Do, C. (2010). Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3(3), 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.xspa
dc.relation.referencesWeaver, S., McGaugh, S. E., Kono, T. J. Y., Macip-Rios, R., & Gluesenkamp, A. G. (2022). Assessing genomic and ecological differentiation among subspecies of the rough-footed mud turtle, Kinosternon hirtipes. Journal of Heredity, 113(5), 538–551. https://doi.org/10.1093/jhered/esac036spa
dc.relation.referencesWebb, G. J. W., Manolis, C., Brien, M. L., Balaguera-Reina, S. A., & Isberg, S. (2021). Crocodylus porosus. The IUCN Red List of Threatened Species 2021: e.T5668A3047556. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T5668A3047556.enspa
dc.relation.referencesWeeks, A. R., Heinze, D., Perrin, L., Stoklosa, J., Hoffmann, A. A., Van Rooyen, A., Kelly, T., & Mansergh, I. (2017). Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nature Communications, 8(1), 1–6. https://doi.org/10.1038/s41467-017- 01182-3spa
dc.relation.referencesWeir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358–1370. https://doi.org/10.2307/2408641spa
dc.relation.referencesWijmstra, T. A., & van der Hammen, T. (1966). Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen, 38, 71–83.spa
dc.relation.referencesWilli, Y., Kristensen, T. N., Sgro, C. M., Weeks, A. R., Ørsted, M., & Hoffmann, A. A. (2022). Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 119(1), 1–10. https://doi.org/10.1073/pnas.2105076119spa
dc.relation.referencesWilloughby, J. R., Sundaram, M., Wijayawardena, B. K., Kimble, S. J. A., Ji, Y., Fernandez, N. B., Antonides, J. D., Lamb, M. C., Marra, N. J., & DeWoody, J. A. (2015). The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biological Conservation, 191, 495–503. https://doi.org/10.1016/j.biocon.2015.07.025spa
dc.relation.referencesWilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191. https://doi.org/10.1093/genetics/163.3.1177spa
dc.relation.referencesWright, S. (1939). Size of population and breeding structure in relation to evolution. Science, 87, 430–431.spa
dc.relation.referencesYang, J., & Jiang, Z. (2011). Genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle (Procapra przewalskii): Implications for conservation. Conservation Genetics, 12(6), 1457–1468. https://doi.org/10.1007/s10592-011-0244-7spa
dc.relation.referencesLeigh, J. W., & Bryant, D. (2015). Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolutionl, 6: 1110-1116. https://doi.org/10.1111/2041-210X.12410spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocCrocodylus intermedius
dc.subject.ddc576 - Genética y evoluciónspa
dc.subject.ddc597 - Vertebrados de sangre fríaspa
dc.subject.proposalConservación genéticaspa
dc.subject.proposalNeotrópicospa
dc.subject.proposalMicrosatélitesspa
dc.subject.proposalRegión control de la mitocondriaspa
dc.subject.proposalConservation geneticseng
dc.subject.proposalNeotropicseng
dc.subject.proposalMicrosatelliteseng
dc.subject.proposalMitochondrial control regioneng
dc.subject.unescoGenética animalspa
dc.subject.unescoAnimal geneticseng
dc.subject.unescoEvoluciónspa
dc.subject.unescoEvolutioneng
dc.titleEvaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombianaspa
dc.title.translatedPreliminary genetic evaluation of in situ populations of the Orinoco Crocodile (Crocodylus intermedius) in the Colombian Orinoquíaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameDirección de Investigación y Extensión Sede Bogotá, Vicerrectoría de Investigación UNALspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019131808.2023.pdf
Tamaño:
3.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: